author | paulson |
Tue, 16 Dec 1997 15:17:26 +0100 | |
changeset 4422 | 21238c9d363e |
parent 4157 | 200f897f0858 |
child 4477 | b3e5857d8d99 |
permissions | -rw-r--r-- |
1839 | 1 |
(* Title: HOL/Auth/Message |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1996 University of Cambridge |
|
5 |
||
6 |
Datatypes of agents and messages; |
|
1913 | 7 |
Inductive relations "parts", "analz" and "synth" |
1839 | 8 |
*) |
9 |
||
3702 | 10 |
|
11 |
(*Eliminates a commonly-occurring expression*) |
|
12 |
goal HOL.thy "~ (ALL x. x~=y)"; |
|
13 |
by (Blast_tac 1); |
|
14 |
Addsimps [result()]; |
|
15 |
||
1839 | 16 |
open Message; |
17 |
||
3668 | 18 |
AddIffs atomic.inject; |
19 |
AddIffs msg.inject; |
|
1839 | 20 |
|
4422
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
21 |
(*Equations hold because constructors are injective; cannot prove for all f*) |
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
22 |
goal thy "(Friend x : Friend``A) = (x:A)"; |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
23 |
by (Auto_tac()); |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
24 |
qed "Friend_image_eq"; |
4422
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
25 |
|
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
26 |
goal thy "(Key x : Key``A) = (x:A)"; |
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
27 |
by (Auto_tac()); |
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
28 |
qed "Key_image_eq"; |
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
29 |
|
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
30 |
goal thy "(Nonce x ~: Key``A)"; |
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
31 |
by (Auto_tac()); |
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
32 |
qed "Nonce_Key_image_eq"; |
21238c9d363e
Simplified proofs using rewrites for f``A where f is injective
paulson
parents:
4157
diff
changeset
|
33 |
Addsimps [Friend_image_eq, Key_image_eq, Nonce_Key_image_eq]; |
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
34 |
|
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
35 |
|
1839 | 36 |
(** Inverse of keys **) |
37 |
||
38 |
goal thy "!!K K'. (invKey K = invKey K') = (K=K')"; |
|
3730 | 39 |
by Safe_tac; |
2032 | 40 |
by (rtac box_equals 1); |
1839 | 41 |
by (REPEAT (rtac invKey 2)); |
42 |
by (Asm_simp_tac 1); |
|
43 |
qed "invKey_eq"; |
|
44 |
||
45 |
Addsimps [invKey, invKey_eq]; |
|
46 |
||
47 |
||
48 |
(**** keysFor operator ****) |
|
49 |
||
50 |
goalw thy [keysFor_def] "keysFor {} = {}"; |
|
2891 | 51 |
by (Blast_tac 1); |
1839 | 52 |
qed "keysFor_empty"; |
53 |
||
54 |
goalw thy [keysFor_def] "keysFor (H Un H') = keysFor H Un keysFor H'"; |
|
2891 | 55 |
by (Blast_tac 1); |
1839 | 56 |
qed "keysFor_Un"; |
57 |
||
4157 | 58 |
goalw thy [keysFor_def] "keysFor (UN i:A. H i) = (UN i:A. keysFor (H i))"; |
2891 | 59 |
by (Blast_tac 1); |
4157 | 60 |
qed "keysFor_UN"; |
1839 | 61 |
|
62 |
(*Monotonicity*) |
|
63 |
goalw thy [keysFor_def] "!!G H. G<=H ==> keysFor(G) <= keysFor(H)"; |
|
2891 | 64 |
by (Blast_tac 1); |
1839 | 65 |
qed "keysFor_mono"; |
66 |
||
67 |
goalw thy [keysFor_def] "keysFor (insert (Agent A) H) = keysFor H"; |
|
3102 | 68 |
by (Blast_tac 1); |
1839 | 69 |
qed "keysFor_insert_Agent"; |
70 |
||
71 |
goalw thy [keysFor_def] "keysFor (insert (Nonce N) H) = keysFor H"; |
|
3102 | 72 |
by (Blast_tac 1); |
1839 | 73 |
qed "keysFor_insert_Nonce"; |
74 |
||
3668 | 75 |
goalw thy [keysFor_def] "keysFor (insert (Number N) H) = keysFor H"; |
76 |
by (Blast_tac 1); |
|
77 |
qed "keysFor_insert_Number"; |
|
78 |
||
1839 | 79 |
goalw thy [keysFor_def] "keysFor (insert (Key K) H) = keysFor H"; |
3102 | 80 |
by (Blast_tac 1); |
1839 | 81 |
qed "keysFor_insert_Key"; |
82 |
||
2373 | 83 |
goalw thy [keysFor_def] "keysFor (insert (Hash X) H) = keysFor H"; |
3102 | 84 |
by (Blast_tac 1); |
2373 | 85 |
qed "keysFor_insert_Hash"; |
86 |
||
1839 | 87 |
goalw thy [keysFor_def] "keysFor (insert {|X,Y|} H) = keysFor H"; |
3102 | 88 |
by (Blast_tac 1); |
1839 | 89 |
qed "keysFor_insert_MPair"; |
90 |
||
91 |
goalw thy [keysFor_def] |
|
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
92 |
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"; |
1839 | 93 |
by (Auto_tac()); |
94 |
qed "keysFor_insert_Crypt"; |
|
95 |
||
4157 | 96 |
Addsimps [keysFor_empty, keysFor_Un, keysFor_UN, |
3668 | 97 |
keysFor_insert_Agent, keysFor_insert_Nonce, |
98 |
keysFor_insert_Number, keysFor_insert_Key, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
99 |
keysFor_insert_Hash, keysFor_insert_MPair, keysFor_insert_Crypt]; |
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
100 |
AddSEs [keysFor_Un RS equalityD1 RS subsetD RS UnE, |
4157 | 101 |
keysFor_UN RS equalityD1 RS subsetD RS UN_E]; |
1839 | 102 |
|
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
103 |
goalw thy [keysFor_def] "keysFor (Key``E) = {}"; |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
104 |
by (Auto_tac ()); |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
105 |
qed "keysFor_image_Key"; |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
106 |
Addsimps [keysFor_image_Key]; |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
107 |
|
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
108 |
goalw thy [keysFor_def] "!!H. Crypt K X : H ==> invKey K : keysFor H"; |
2891 | 109 |
by (Blast_tac 1); |
2068 | 110 |
qed "Crypt_imp_invKey_keysFor"; |
111 |
||
1839 | 112 |
|
113 |
(**** Inductive relation "parts" ****) |
|
114 |
||
115 |
val major::prems = |
|
116 |
goal thy "[| {|X,Y|} : parts H; \ |
|
117 |
\ [| X : parts H; Y : parts H |] ==> P \ |
|
118 |
\ |] ==> P"; |
|
119 |
by (cut_facts_tac [major] 1); |
|
2032 | 120 |
by (resolve_tac prems 1); |
1839 | 121 |
by (REPEAT (eresolve_tac [asm_rl, parts.Fst, parts.Snd] 1)); |
122 |
qed "MPair_parts"; |
|
123 |
||
124 |
AddIs [parts.Inj]; |
|
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
125 |
|
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
126 |
val partsEs = [MPair_parts, make_elim parts.Body]; |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
127 |
|
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
128 |
AddSEs partsEs; |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
129 |
(*NB These two rules are UNSAFE in the formal sense, as they discard the |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
130 |
compound message. They work well on THIS FILE, perhaps because its |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
131 |
proofs concern only atomic messages.*) |
1839 | 132 |
|
133 |
goal thy "H <= parts(H)"; |
|
2891 | 134 |
by (Blast_tac 1); |
1839 | 135 |
qed "parts_increasing"; |
136 |
||
137 |
(*Monotonicity*) |
|
138 |
goalw thy parts.defs "!!G H. G<=H ==> parts(G) <= parts(H)"; |
|
139 |
by (rtac lfp_mono 1); |
|
140 |
by (REPEAT (ares_tac basic_monos 1)); |
|
141 |
qed "parts_mono"; |
|
142 |
||
2373 | 143 |
val parts_insertI = impOfSubs (subset_insertI RS parts_mono); |
144 |
||
1839 | 145 |
goal thy "parts{} = {}"; |
3730 | 146 |
by Safe_tac; |
2032 | 147 |
by (etac parts.induct 1); |
2891 | 148 |
by (ALLGOALS Blast_tac); |
1839 | 149 |
qed "parts_empty"; |
150 |
Addsimps [parts_empty]; |
|
151 |
||
152 |
goal thy "!!X. X: parts{} ==> P"; |
|
153 |
by (Asm_full_simp_tac 1); |
|
154 |
qed "parts_emptyE"; |
|
155 |
AddSEs [parts_emptyE]; |
|
156 |
||
1893 | 157 |
(*WARNING: loops if H = {Y}, therefore must not be repeated!*) |
158 |
goal thy "!!H. X: parts H ==> EX Y:H. X: parts {Y}"; |
|
2032 | 159 |
by (etac parts.induct 1); |
2891 | 160 |
by (ALLGOALS Blast_tac); |
1893 | 161 |
qed "parts_singleton"; |
162 |
||
1839 | 163 |
|
164 |
(** Unions **) |
|
165 |
||
166 |
goal thy "parts(G) Un parts(H) <= parts(G Un H)"; |
|
167 |
by (REPEAT (ares_tac [Un_least, parts_mono, Un_upper1, Un_upper2] 1)); |
|
168 |
val parts_Un_subset1 = result(); |
|
169 |
||
170 |
goal thy "parts(G Un H) <= parts(G) Un parts(H)"; |
|
2032 | 171 |
by (rtac subsetI 1); |
172 |
by (etac parts.induct 1); |
|
2891 | 173 |
by (ALLGOALS Blast_tac); |
1839 | 174 |
val parts_Un_subset2 = result(); |
175 |
||
176 |
goal thy "parts(G Un H) = parts(G) Un parts(H)"; |
|
177 |
by (REPEAT (ares_tac [equalityI, parts_Un_subset1, parts_Un_subset2] 1)); |
|
178 |
qed "parts_Un"; |
|
179 |
||
2011 | 180 |
goal thy "parts (insert X H) = parts {X} Un parts H"; |
1852 | 181 |
by (stac (read_instantiate [("A","H")] insert_is_Un) 1); |
2011 | 182 |
by (simp_tac (HOL_ss addsimps [parts_Un]) 1); |
183 |
qed "parts_insert"; |
|
184 |
||
185 |
(*TWO inserts to avoid looping. This rewrite is better than nothing. |
|
186 |
Not suitable for Addsimps: its behaviour can be strange.*) |
|
187 |
goal thy "parts (insert X (insert Y H)) = parts {X} Un parts {Y} Un parts H"; |
|
4091 | 188 |
by (simp_tac (simpset() addsimps [Un_assoc]) 1); |
189 |
by (simp_tac (simpset() addsimps [parts_insert RS sym]) 1); |
|
1852 | 190 |
qed "parts_insert2"; |
191 |
||
1839 | 192 |
goal thy "(UN x:A. parts(H x)) <= parts(UN x:A. H x)"; |
193 |
by (REPEAT (ares_tac [UN_least, parts_mono, UN_upper] 1)); |
|
194 |
val parts_UN_subset1 = result(); |
|
195 |
||
196 |
goal thy "parts(UN x:A. H x) <= (UN x:A. parts(H x))"; |
|
2032 | 197 |
by (rtac subsetI 1); |
198 |
by (etac parts.induct 1); |
|
2891 | 199 |
by (ALLGOALS Blast_tac); |
1839 | 200 |
val parts_UN_subset2 = result(); |
201 |
||
202 |
goal thy "parts(UN x:A. H x) = (UN x:A. parts(H x))"; |
|
203 |
by (REPEAT (ares_tac [equalityI, parts_UN_subset1, parts_UN_subset2] 1)); |
|
204 |
qed "parts_UN"; |
|
205 |
||
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
206 |
(*Added to simplify arguments to parts, analz and synth. |
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
207 |
NOTE: the UN versions are no longer used!*) |
4157 | 208 |
Addsimps [parts_Un, parts_UN]; |
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
209 |
AddSEs [parts_Un RS equalityD1 RS subsetD RS UnE, |
4157 | 210 |
parts_UN RS equalityD1 RS subsetD RS UN_E]; |
1839 | 211 |
|
212 |
goal thy "insert X (parts H) <= parts(insert X H)"; |
|
4091 | 213 |
by (blast_tac (claset() addIs [impOfSubs parts_mono]) 1); |
1839 | 214 |
qed "parts_insert_subset"; |
215 |
||
216 |
(** Idempotence and transitivity **) |
|
217 |
||
218 |
goal thy "!!H. X: parts (parts H) ==> X: parts H"; |
|
2032 | 219 |
by (etac parts.induct 1); |
2891 | 220 |
by (ALLGOALS Blast_tac); |
2922 | 221 |
qed "parts_partsD"; |
222 |
AddSDs [parts_partsD]; |
|
1839 | 223 |
|
224 |
goal thy "parts (parts H) = parts H"; |
|
2891 | 225 |
by (Blast_tac 1); |
1839 | 226 |
qed "parts_idem"; |
227 |
Addsimps [parts_idem]; |
|
228 |
||
229 |
goal thy "!!H. [| X: parts G; G <= parts H |] ==> X: parts H"; |
|
230 |
by (dtac parts_mono 1); |
|
2891 | 231 |
by (Blast_tac 1); |
1839 | 232 |
qed "parts_trans"; |
233 |
||
234 |
(*Cut*) |
|
2373 | 235 |
goal thy "!!H. [| Y: parts (insert X G); X: parts H |] \ |
236 |
\ ==> Y: parts (G Un H)"; |
|
2032 | 237 |
by (etac parts_trans 1); |
2373 | 238 |
by (Auto_tac()); |
1839 | 239 |
qed "parts_cut"; |
240 |
||
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
241 |
goal thy "!!H. X: parts H ==> parts (insert X H) = parts H"; |
4091 | 242 |
by (fast_tac (claset() addSDs [parts_cut] |
2373 | 243 |
addIs [parts_insertI] |
4091 | 244 |
addss (simpset())) 1); |
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
245 |
qed "parts_cut_eq"; |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
246 |
|
2028
738bb98d65ec
Last working version prior to addition of "lost" component
paulson
parents:
2026
diff
changeset
|
247 |
Addsimps [parts_cut_eq]; |
738bb98d65ec
Last working version prior to addition of "lost" component
paulson
parents:
2026
diff
changeset
|
248 |
|
1839 | 249 |
|
250 |
(** Rewrite rules for pulling out atomic messages **) |
|
251 |
||
2373 | 252 |
fun parts_tac i = |
253 |
EVERY [rtac ([subsetI, parts_insert_subset] MRS equalityI) i, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
254 |
etac parts.induct i, |
3102 | 255 |
REPEAT (Blast_tac i)]; |
2373 | 256 |
|
1839 | 257 |
goal thy "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"; |
2373 | 258 |
by (parts_tac 1); |
1839 | 259 |
qed "parts_insert_Agent"; |
260 |
||
261 |
goal thy "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"; |
|
2373 | 262 |
by (parts_tac 1); |
1839 | 263 |
qed "parts_insert_Nonce"; |
264 |
||
3668 | 265 |
goal thy "parts (insert (Number N) H) = insert (Number N) (parts H)"; |
266 |
by (parts_tac 1); |
|
267 |
qed "parts_insert_Number"; |
|
268 |
||
1839 | 269 |
goal thy "parts (insert (Key K) H) = insert (Key K) (parts H)"; |
2373 | 270 |
by (parts_tac 1); |
1839 | 271 |
qed "parts_insert_Key"; |
272 |
||
2373 | 273 |
goal thy "parts (insert (Hash X) H) = insert (Hash X) (parts H)"; |
274 |
by (parts_tac 1); |
|
275 |
qed "parts_insert_Hash"; |
|
276 |
||
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
277 |
goal thy "parts (insert (Crypt K X) H) = \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
278 |
\ insert (Crypt K X) (parts (insert X H))"; |
2032 | 279 |
by (rtac equalityI 1); |
280 |
by (rtac subsetI 1); |
|
281 |
by (etac parts.induct 1); |
|
1839 | 282 |
by (Auto_tac()); |
2032 | 283 |
by (etac parts.induct 1); |
4091 | 284 |
by (ALLGOALS (blast_tac (claset() addIs [parts.Body]))); |
1839 | 285 |
qed "parts_insert_Crypt"; |
286 |
||
287 |
goal thy "parts (insert {|X,Y|} H) = \ |
|
288 |
\ insert {|X,Y|} (parts (insert X (insert Y H)))"; |
|
2032 | 289 |
by (rtac equalityI 1); |
290 |
by (rtac subsetI 1); |
|
291 |
by (etac parts.induct 1); |
|
1839 | 292 |
by (Auto_tac()); |
2032 | 293 |
by (etac parts.induct 1); |
4091 | 294 |
by (ALLGOALS (blast_tac (claset() addIs [parts.Fst, parts.Snd]))); |
1839 | 295 |
qed "parts_insert_MPair"; |
296 |
||
3668 | 297 |
Addsimps [parts_insert_Agent, parts_insert_Nonce, |
298 |
parts_insert_Number, parts_insert_Key, |
|
2373 | 299 |
parts_insert_Hash, parts_insert_Crypt, parts_insert_MPair]; |
1839 | 300 |
|
301 |
||
2026
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
302 |
goal thy "parts (Key``N) = Key``N"; |
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
303 |
by (Auto_tac()); |
2032 | 304 |
by (etac parts.induct 1); |
2026
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
305 |
by (Auto_tac()); |
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
306 |
qed "parts_image_Key"; |
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
307 |
Addsimps [parts_image_Key]; |
2026
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
308 |
|
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
309 |
|
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
310 |
(*In any message, there is an upper bound N on its greatest nonce.*) |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
311 |
goal thy "EX N. ALL n. N<=n --> Nonce n ~: parts {msg}"; |
3668 | 312 |
by (induct_tac "msg" 1); |
313 |
by (induct_tac "atomic" 1); |
|
4091 | 314 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [exI, parts_insert2]))); |
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
315 |
(*MPair case: blast_tac works out the necessary sum itself!*) |
4091 | 316 |
by (blast_tac (claset() addSEs [add_leE]) 2); |
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
317 |
(*Nonce case*) |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
318 |
by (res_inst_tac [("x","N + Suc nat")] exI 1); |
4091 | 319 |
by (fast_tac (claset() addSEs [add_leE] addaltern trans_tac) 1); |
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
320 |
qed "msg_Nonce_supply"; |
2026
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
321 |
|
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
322 |
|
1913 | 323 |
(**** Inductive relation "analz" ****) |
1839 | 324 |
|
325 |
val major::prems = |
|
1913 | 326 |
goal thy "[| {|X,Y|} : analz H; \ |
327 |
\ [| X : analz H; Y : analz H |] ==> P \ |
|
1839 | 328 |
\ |] ==> P"; |
329 |
by (cut_facts_tac [major] 1); |
|
2032 | 330 |
by (resolve_tac prems 1); |
1913 | 331 |
by (REPEAT (eresolve_tac [asm_rl, analz.Fst, analz.Snd] 1)); |
332 |
qed "MPair_analz"; |
|
1839 | 333 |
|
1913 | 334 |
AddIs [analz.Inj]; |
2011 | 335 |
AddSEs [MPair_analz]; (*Perhaps it should NOT be deemed safe!*) |
1913 | 336 |
AddDs [analz.Decrypt]; |
1839 | 337 |
|
1913 | 338 |
Addsimps [analz.Inj]; |
1885 | 339 |
|
1913 | 340 |
goal thy "H <= analz(H)"; |
2891 | 341 |
by (Blast_tac 1); |
1913 | 342 |
qed "analz_increasing"; |
1839 | 343 |
|
1913 | 344 |
goal thy "analz H <= parts H"; |
1839 | 345 |
by (rtac subsetI 1); |
2032 | 346 |
by (etac analz.induct 1); |
2891 | 347 |
by (ALLGOALS Blast_tac); |
1913 | 348 |
qed "analz_subset_parts"; |
1839 | 349 |
|
1913 | 350 |
bind_thm ("not_parts_not_analz", analz_subset_parts RS contra_subsetD); |
1839 | 351 |
|
352 |
||
1913 | 353 |
goal thy "parts (analz H) = parts H"; |
2032 | 354 |
by (rtac equalityI 1); |
355 |
by (rtac (analz_subset_parts RS parts_mono RS subset_trans) 1); |
|
1839 | 356 |
by (Simp_tac 1); |
4091 | 357 |
by (blast_tac (claset() addIs [analz_increasing RS parts_mono RS subsetD]) 1); |
1913 | 358 |
qed "parts_analz"; |
359 |
Addsimps [parts_analz]; |
|
1839 | 360 |
|
1913 | 361 |
goal thy "analz (parts H) = parts H"; |
1885 | 362 |
by (Auto_tac()); |
2032 | 363 |
by (etac analz.induct 1); |
1885 | 364 |
by (Auto_tac()); |
1913 | 365 |
qed "analz_parts"; |
366 |
Addsimps [analz_parts]; |
|
1885 | 367 |
|
1839 | 368 |
(*Monotonicity; Lemma 1 of Lowe*) |
1913 | 369 |
goalw thy analz.defs "!!G H. G<=H ==> analz(G) <= analz(H)"; |
1839 | 370 |
by (rtac lfp_mono 1); |
371 |
by (REPEAT (ares_tac basic_monos 1)); |
|
1913 | 372 |
qed "analz_mono"; |
1839 | 373 |
|
2373 | 374 |
val analz_insertI = impOfSubs (subset_insertI RS analz_mono); |
375 |
||
1839 | 376 |
(** General equational properties **) |
377 |
||
1913 | 378 |
goal thy "analz{} = {}"; |
3730 | 379 |
by Safe_tac; |
2032 | 380 |
by (etac analz.induct 1); |
2891 | 381 |
by (ALLGOALS Blast_tac); |
1913 | 382 |
qed "analz_empty"; |
383 |
Addsimps [analz_empty]; |
|
1839 | 384 |
|
1913 | 385 |
(*Converse fails: we can analz more from the union than from the |
1839 | 386 |
separate parts, as a key in one might decrypt a message in the other*) |
1913 | 387 |
goal thy "analz(G) Un analz(H) <= analz(G Un H)"; |
388 |
by (REPEAT (ares_tac [Un_least, analz_mono, Un_upper1, Un_upper2] 1)); |
|
389 |
qed "analz_Un"; |
|
1839 | 390 |
|
1913 | 391 |
goal thy "insert X (analz H) <= analz(insert X H)"; |
4091 | 392 |
by (blast_tac (claset() addIs [impOfSubs analz_mono]) 1); |
1913 | 393 |
qed "analz_insert"; |
1839 | 394 |
|
395 |
(** Rewrite rules for pulling out atomic messages **) |
|
396 |
||
2373 | 397 |
fun analz_tac i = |
398 |
EVERY [rtac ([subsetI, analz_insert] MRS equalityI) i, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
399 |
etac analz.induct i, |
3102 | 400 |
REPEAT (Blast_tac i)]; |
2373 | 401 |
|
1913 | 402 |
goal thy "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"; |
2373 | 403 |
by (analz_tac 1); |
1913 | 404 |
qed "analz_insert_Agent"; |
1839 | 405 |
|
1913 | 406 |
goal thy "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"; |
2373 | 407 |
by (analz_tac 1); |
1913 | 408 |
qed "analz_insert_Nonce"; |
1839 | 409 |
|
3668 | 410 |
goal thy "analz (insert (Number N) H) = insert (Number N) (analz H)"; |
411 |
by (analz_tac 1); |
|
412 |
qed "analz_insert_Number"; |
|
413 |
||
2373 | 414 |
goal thy "analz (insert (Hash X) H) = insert (Hash X) (analz H)"; |
415 |
by (analz_tac 1); |
|
416 |
qed "analz_insert_Hash"; |
|
417 |
||
1839 | 418 |
(*Can only pull out Keys if they are not needed to decrypt the rest*) |
419 |
goalw thy [keysFor_def] |
|
1913 | 420 |
"!!K. K ~: keysFor (analz H) ==> \ |
421 |
\ analz (insert (Key K) H) = insert (Key K) (analz H)"; |
|
2373 | 422 |
by (analz_tac 1); |
1913 | 423 |
qed "analz_insert_Key"; |
1839 | 424 |
|
1913 | 425 |
goal thy "analz (insert {|X,Y|} H) = \ |
426 |
\ insert {|X,Y|} (analz (insert X (insert Y H)))"; |
|
2032 | 427 |
by (rtac equalityI 1); |
428 |
by (rtac subsetI 1); |
|
429 |
by (etac analz.induct 1); |
|
1885 | 430 |
by (Auto_tac()); |
2032 | 431 |
by (etac analz.induct 1); |
4091 | 432 |
by (ALLGOALS (blast_tac (claset() addIs [analz.Fst, analz.Snd]))); |
1913 | 433 |
qed "analz_insert_MPair"; |
1885 | 434 |
|
435 |
(*Can pull out enCrypted message if the Key is not known*) |
|
1913 | 436 |
goal thy "!!H. Key (invKey K) ~: analz H ==> \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
437 |
\ analz (insert (Crypt K X) H) = \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
438 |
\ insert (Crypt K X) (analz H)"; |
2373 | 439 |
by (analz_tac 1); |
1913 | 440 |
qed "analz_insert_Crypt"; |
1839 | 441 |
|
1913 | 442 |
goal thy "!!H. Key (invKey K) : analz H ==> \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
443 |
\ analz (insert (Crypt K X) H) <= \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
444 |
\ insert (Crypt K X) (analz (insert X H))"; |
2032 | 445 |
by (rtac subsetI 1); |
1913 | 446 |
by (eres_inst_tac [("za","x")] analz.induct 1); |
3102 | 447 |
by (ALLGOALS (Blast_tac)); |
1839 | 448 |
val lemma1 = result(); |
449 |
||
1913 | 450 |
goal thy "!!H. Key (invKey K) : analz H ==> \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
451 |
\ insert (Crypt K X) (analz (insert X H)) <= \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
452 |
\ analz (insert (Crypt K X) H)"; |
1839 | 453 |
by (Auto_tac()); |
1913 | 454 |
by (eres_inst_tac [("za","x")] analz.induct 1); |
1839 | 455 |
by (Auto_tac()); |
4091 | 456 |
by (blast_tac (claset() addIs [analz_insertI, analz.Decrypt]) 1); |
1839 | 457 |
val lemma2 = result(); |
458 |
||
1913 | 459 |
goal thy "!!H. Key (invKey K) : analz H ==> \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
460 |
\ analz (insert (Crypt K X) H) = \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
461 |
\ insert (Crypt K X) (analz (insert X H))"; |
1839 | 462 |
by (REPEAT (ares_tac [equalityI, lemma1, lemma2] 1)); |
1913 | 463 |
qed "analz_insert_Decrypt"; |
1839 | 464 |
|
1885 | 465 |
(*Case analysis: either the message is secure, or it is not! |
1946 | 466 |
Effective, but can cause subgoals to blow up! |
1885 | 467 |
Use with expand_if; apparently split_tac does not cope with patterns |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
468 |
such as "analz (insert (Crypt K X) H)" *) |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
469 |
goal thy "analz (insert (Crypt K X) H) = \ |
2154 | 470 |
\ (if (Key (invKey K) : analz H) \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
471 |
\ then insert (Crypt K X) (analz (insert X H)) \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
472 |
\ else insert (Crypt K X) (analz H))"; |
2102 | 473 |
by (case_tac "Key (invKey K) : analz H " 1); |
4091 | 474 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [analz_insert_Crypt, |
2032 | 475 |
analz_insert_Decrypt]))); |
1913 | 476 |
qed "analz_Crypt_if"; |
1885 | 477 |
|
3668 | 478 |
Addsimps [analz_insert_Agent, analz_insert_Nonce, |
479 |
analz_insert_Number, analz_insert_Key, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
480 |
analz_insert_Hash, analz_insert_MPair, analz_Crypt_if]; |
1839 | 481 |
|
482 |
(*This rule supposes "for the sake of argument" that we have the key.*) |
|
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
483 |
goal thy "analz (insert (Crypt K X) H) <= \ |
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
484 |
\ insert (Crypt K X) (analz (insert X H))"; |
2032 | 485 |
by (rtac subsetI 1); |
486 |
by (etac analz.induct 1); |
|
1839 | 487 |
by (Auto_tac()); |
1913 | 488 |
qed "analz_insert_Crypt_subset"; |
1839 | 489 |
|
490 |
||
2026
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
491 |
goal thy "analz (Key``N) = Key``N"; |
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
492 |
by (Auto_tac()); |
2032 | 493 |
by (etac analz.induct 1); |
2026
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
494 |
by (Auto_tac()); |
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
495 |
qed "analz_image_Key"; |
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
496 |
|
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
497 |
Addsimps [analz_image_Key]; |
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
498 |
|
0df5a96bf77e
Last working version prior to introduction of "lost"
paulson
parents:
2011
diff
changeset
|
499 |
|
1839 | 500 |
(** Idempotence and transitivity **) |
501 |
||
1913 | 502 |
goal thy "!!H. X: analz (analz H) ==> X: analz H"; |
2032 | 503 |
by (etac analz.induct 1); |
2891 | 504 |
by (ALLGOALS Blast_tac); |
2922 | 505 |
qed "analz_analzD"; |
506 |
AddSDs [analz_analzD]; |
|
1839 | 507 |
|
1913 | 508 |
goal thy "analz (analz H) = analz H"; |
2891 | 509 |
by (Blast_tac 1); |
1913 | 510 |
qed "analz_idem"; |
511 |
Addsimps [analz_idem]; |
|
1839 | 512 |
|
1913 | 513 |
goal thy "!!H. [| X: analz G; G <= analz H |] ==> X: analz H"; |
514 |
by (dtac analz_mono 1); |
|
2891 | 515 |
by (Blast_tac 1); |
1913 | 516 |
qed "analz_trans"; |
1839 | 517 |
|
518 |
(*Cut; Lemma 2 of Lowe*) |
|
1998
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
519 |
goal thy "!!H. [| Y: analz (insert X H); X: analz H |] ==> Y: analz H"; |
2032 | 520 |
by (etac analz_trans 1); |
2891 | 521 |
by (Blast_tac 1); |
1913 | 522 |
qed "analz_cut"; |
1839 | 523 |
|
524 |
(*Cut can be proved easily by induction on |
|
1913 | 525 |
"!!H. Y: analz (insert X H) ==> X: analz H --> Y: analz H" |
1839 | 526 |
*) |
527 |
||
3449 | 528 |
(*This rewrite rule helps in the simplification of messages that involve |
529 |
the forwarding of unknown components (X). Without it, removing occurrences |
|
530 |
of X can be very complicated. *) |
|
3431 | 531 |
goal thy "!!H. X: analz H ==> analz (insert X H) = analz H"; |
4091 | 532 |
by (blast_tac (claset() addIs [analz_cut, analz_insertI]) 1); |
3431 | 533 |
qed "analz_insert_eq"; |
534 |
||
1885 | 535 |
|
1913 | 536 |
(** A congruence rule for "analz" **) |
1885 | 537 |
|
1913 | 538 |
goal thy "!!H. [| analz G <= analz G'; analz H <= analz H' \ |
539 |
\ |] ==> analz (G Un H) <= analz (G' Un H')"; |
|
3714 | 540 |
by (Clarify_tac 1); |
2032 | 541 |
by (etac analz.induct 1); |
4091 | 542 |
by (ALLGOALS (best_tac (claset() addIs [analz_mono RS subsetD]))); |
1913 | 543 |
qed "analz_subset_cong"; |
1885 | 544 |
|
1913 | 545 |
goal thy "!!H. [| analz G = analz G'; analz H = analz H' \ |
546 |
\ |] ==> analz (G Un H) = analz (G' Un H')"; |
|
547 |
by (REPEAT_FIRST (ares_tac [equalityI, analz_subset_cong] |
|
2032 | 548 |
ORELSE' etac equalityE)); |
1913 | 549 |
qed "analz_cong"; |
1885 | 550 |
|
551 |
||
1913 | 552 |
goal thy "!!H. analz H = analz H' ==> analz(insert X H) = analz(insert X H')"; |
4091 | 553 |
by (asm_simp_tac (simpset() addsimps [insert_def] delsimps [singleton_conv] |
2032 | 554 |
setloop (rtac analz_cong)) 1); |
1913 | 555 |
qed "analz_insert_cong"; |
1885 | 556 |
|
1913 | 557 |
(*If there are no pairs or encryptions then analz does nothing*) |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
558 |
goal thy "!!H. [| ALL X Y. {|X,Y|} ~: H; ALL X K. Crypt K X ~: H |] ==> \ |
1913 | 559 |
\ analz H = H"; |
3730 | 560 |
by Safe_tac; |
2032 | 561 |
by (etac analz.induct 1); |
2891 | 562 |
by (ALLGOALS Blast_tac); |
1913 | 563 |
qed "analz_trivial"; |
1839 | 564 |
|
4157 | 565 |
(*These two are obsolete (with a single Spy) but cost little to prove...*) |
566 |
goal thy "!!X. X: analz (UN i:A. analz (H i)) ==> X: analz (UN i:A. H i)"; |
|
2032 | 567 |
by (etac analz.induct 1); |
4091 | 568 |
by (ALLGOALS (blast_tac (claset() addIs [impOfSubs analz_mono]))); |
1839 | 569 |
val lemma = result(); |
570 |
||
4157 | 571 |
goal thy "analz (UN i:A. analz (H i)) = analz (UN i:A. H i)"; |
4091 | 572 |
by (blast_tac (claset() addIs [lemma, impOfSubs analz_mono]) 1); |
1913 | 573 |
qed "analz_UN_analz"; |
574 |
Addsimps [analz_UN_analz]; |
|
1839 | 575 |
|
576 |
||
1913 | 577 |
(**** Inductive relation "synth" ****) |
1839 | 578 |
|
1913 | 579 |
AddIs synth.intrs; |
1839 | 580 |
|
2011 | 581 |
(*Can only produce a nonce or key if it is already known, |
582 |
but can synth a pair or encryption from its components...*) |
|
3668 | 583 |
val mk_cases = synth.mk_cases (atomic.simps @ msg.simps); |
2011 | 584 |
|
3668 | 585 |
(*NO Agent_synth, as any Agent name can be synthesized. Ditto for Number*) |
2011 | 586 |
val Nonce_synth = mk_cases "Nonce n : synth H"; |
587 |
val Key_synth = mk_cases "Key K : synth H"; |
|
2373 | 588 |
val Hash_synth = mk_cases "Hash X : synth H"; |
2011 | 589 |
val MPair_synth = mk_cases "{|X,Y|} : synth H"; |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
590 |
val Crypt_synth = mk_cases "Crypt K X : synth H"; |
2011 | 591 |
|
2373 | 592 |
AddSEs [Nonce_synth, Key_synth, Hash_synth, MPair_synth, Crypt_synth]; |
2011 | 593 |
|
1913 | 594 |
goal thy "H <= synth(H)"; |
2891 | 595 |
by (Blast_tac 1); |
1913 | 596 |
qed "synth_increasing"; |
1839 | 597 |
|
598 |
(*Monotonicity*) |
|
1913 | 599 |
goalw thy synth.defs "!!G H. G<=H ==> synth(G) <= synth(H)"; |
1839 | 600 |
by (rtac lfp_mono 1); |
601 |
by (REPEAT (ares_tac basic_monos 1)); |
|
1913 | 602 |
qed "synth_mono"; |
1839 | 603 |
|
604 |
(** Unions **) |
|
605 |
||
1913 | 606 |
(*Converse fails: we can synth more from the union than from the |
1839 | 607 |
separate parts, building a compound message using elements of each.*) |
1913 | 608 |
goal thy "synth(G) Un synth(H) <= synth(G Un H)"; |
609 |
by (REPEAT (ares_tac [Un_least, synth_mono, Un_upper1, Un_upper2] 1)); |
|
610 |
qed "synth_Un"; |
|
1839 | 611 |
|
1913 | 612 |
goal thy "insert X (synth H) <= synth(insert X H)"; |
4091 | 613 |
by (blast_tac (claset() addIs [impOfSubs synth_mono]) 1); |
1913 | 614 |
qed "synth_insert"; |
1885 | 615 |
|
1839 | 616 |
(** Idempotence and transitivity **) |
617 |
||
1913 | 618 |
goal thy "!!H. X: synth (synth H) ==> X: synth H"; |
2032 | 619 |
by (etac synth.induct 1); |
2891 | 620 |
by (ALLGOALS Blast_tac); |
2922 | 621 |
qed "synth_synthD"; |
622 |
AddSDs [synth_synthD]; |
|
1839 | 623 |
|
1913 | 624 |
goal thy "synth (synth H) = synth H"; |
2891 | 625 |
by (Blast_tac 1); |
1913 | 626 |
qed "synth_idem"; |
1839 | 627 |
|
1913 | 628 |
goal thy "!!H. [| X: synth G; G <= synth H |] ==> X: synth H"; |
629 |
by (dtac synth_mono 1); |
|
2891 | 630 |
by (Blast_tac 1); |
1913 | 631 |
qed "synth_trans"; |
1839 | 632 |
|
633 |
(*Cut; Lemma 2 of Lowe*) |
|
1998
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
634 |
goal thy "!!H. [| Y: synth (insert X H); X: synth H |] ==> Y: synth H"; |
2032 | 635 |
by (etac synth_trans 1); |
2891 | 636 |
by (Blast_tac 1); |
1913 | 637 |
qed "synth_cut"; |
1839 | 638 |
|
1946 | 639 |
goal thy "Agent A : synth H"; |
2891 | 640 |
by (Blast_tac 1); |
1946 | 641 |
qed "Agent_synth"; |
642 |
||
3668 | 643 |
goal thy "Number n : synth H"; |
644 |
by (Blast_tac 1); |
|
645 |
qed "Number_synth"; |
|
646 |
||
1913 | 647 |
goal thy "(Nonce N : synth H) = (Nonce N : H)"; |
2891 | 648 |
by (Blast_tac 1); |
1913 | 649 |
qed "Nonce_synth_eq"; |
1839 | 650 |
|
1913 | 651 |
goal thy "(Key K : synth H) = (Key K : H)"; |
2891 | 652 |
by (Blast_tac 1); |
1913 | 653 |
qed "Key_synth_eq"; |
1839 | 654 |
|
2373 | 655 |
goal thy "!!K. Key K ~: H ==> (Crypt K X : synth H) = (Crypt K X : H)"; |
2891 | 656 |
by (Blast_tac 1); |
2011 | 657 |
qed "Crypt_synth_eq"; |
658 |
||
3668 | 659 |
Addsimps [Agent_synth, Number_synth, |
660 |
Nonce_synth_eq, Key_synth_eq, Crypt_synth_eq]; |
|
1839 | 661 |
|
662 |
||
663 |
goalw thy [keysFor_def] |
|
1913 | 664 |
"keysFor (synth H) = keysFor H Un invKey``{K. Key K : H}"; |
2891 | 665 |
by (Blast_tac 1); |
1913 | 666 |
qed "keysFor_synth"; |
667 |
Addsimps [keysFor_synth]; |
|
1839 | 668 |
|
669 |
||
1913 | 670 |
(*** Combinations of parts, analz and synth ***) |
1839 | 671 |
|
1913 | 672 |
goal thy "parts (synth H) = parts H Un synth H"; |
2032 | 673 |
by (rtac equalityI 1); |
674 |
by (rtac subsetI 1); |
|
675 |
by (etac parts.induct 1); |
|
1839 | 676 |
by (ALLGOALS |
4091 | 677 |
(blast_tac (claset() addIs ((synth_increasing RS parts_mono RS subsetD) |
2032 | 678 |
::parts.intrs)))); |
1913 | 679 |
qed "parts_synth"; |
680 |
Addsimps [parts_synth]; |
|
1839 | 681 |
|
2373 | 682 |
goal thy "analz (analz G Un H) = analz (G Un H)"; |
683 |
by (REPEAT_FIRST (resolve_tac [equalityI, analz_subset_cong])); |
|
684 |
by (ALLGOALS Simp_tac); |
|
685 |
qed "analz_analz_Un"; |
|
686 |
||
687 |
goal thy "analz (synth G Un H) = analz (G Un H) Un synth G"; |
|
2032 | 688 |
by (rtac equalityI 1); |
689 |
by (rtac subsetI 1); |
|
690 |
by (etac analz.induct 1); |
|
4091 | 691 |
by (blast_tac (claset() addIs [impOfSubs analz_mono]) 5); |
692 |
by (ALLGOALS (blast_tac (claset() addIs analz.intrs))); |
|
2373 | 693 |
qed "analz_synth_Un"; |
694 |
||
695 |
goal thy "analz (synth H) = analz H Un synth H"; |
|
696 |
by (cut_inst_tac [("H","{}")] analz_synth_Un 1); |
|
697 |
by (Full_simp_tac 1); |
|
1913 | 698 |
qed "analz_synth"; |
2373 | 699 |
Addsimps [analz_analz_Un, analz_synth_Un, analz_synth]; |
1839 | 700 |
|
1946 | 701 |
|
702 |
(** For reasoning about the Fake rule in traces **) |
|
703 |
||
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
704 |
goal thy "!!Y. X: G ==> parts(insert X H) <= parts G Un parts H"; |
2032 | 705 |
by (rtac ([parts_mono, parts_Un_subset2] MRS subset_trans) 1); |
2891 | 706 |
by (Blast_tac 1); |
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
707 |
qed "parts_insert_subset_Un"; |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
708 |
|
1946 | 709 |
(*More specifically for Fake*) |
710 |
goal thy "!!H. X: synth (analz G) ==> \ |
|
711 |
\ parts (insert X H) <= synth (analz G) Un parts G Un parts H"; |
|
2032 | 712 |
by (dtac parts_insert_subset_Un 1); |
1946 | 713 |
by (Full_simp_tac 1); |
2891 | 714 |
by (Blast_tac 1); |
1946 | 715 |
qed "Fake_parts_insert"; |
716 |
||
2061 | 717 |
goal thy |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
718 |
"!!H. [| Crypt K Y : parts (insert X H); X: synth (analz G); \ |
2061 | 719 |
\ Key K ~: analz G |] \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
720 |
\ ==> Crypt K Y : parts G Un parts H"; |
2061 | 721 |
by (dtac (impOfSubs Fake_parts_insert) 1); |
2170 | 722 |
by (assume_tac 1); |
4091 | 723 |
by (blast_tac (claset() addDs [impOfSubs analz_subset_parts]) 1); |
2061 | 724 |
qed "Crypt_Fake_parts_insert"; |
725 |
||
2373 | 726 |
goal thy "!!H. X: synth (analz G) ==> \ |
727 |
\ analz (insert X H) <= synth (analz G) Un analz (G Un H)"; |
|
728 |
by (rtac subsetI 1); |
|
729 |
by (subgoal_tac "x : analz (synth (analz G) Un H)" 1); |
|
4091 | 730 |
by (blast_tac (claset() addIs [impOfSubs analz_mono, |
2922 | 731 |
impOfSubs (analz_mono RS synth_mono)]) 2); |
2373 | 732 |
by (Full_simp_tac 1); |
2891 | 733 |
by (Blast_tac 1); |
2373 | 734 |
qed "Fake_analz_insert"; |
735 |
||
2011 | 736 |
goal thy "(X: analz H & X: parts H) = (X: analz H)"; |
4091 | 737 |
by (blast_tac (claset() addIs [impOfSubs analz_subset_parts]) 1); |
2011 | 738 |
val analz_conj_parts = result(); |
739 |
||
740 |
goal thy "(X: analz H | X: parts H) = (X: parts H)"; |
|
4091 | 741 |
by (blast_tac (claset() addIs [impOfSubs analz_subset_parts]) 1); |
2011 | 742 |
val analz_disj_parts = result(); |
743 |
||
744 |
AddIffs [analz_conj_parts, analz_disj_parts]; |
|
745 |
||
1998
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
746 |
(*Without this equation, other rules for synth and analz would yield |
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
747 |
redundant cases*) |
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
748 |
goal thy "({|X,Y|} : synth (analz H)) = \ |
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
749 |
\ (X : synth (analz H) & Y : synth (analz H))"; |
2891 | 750 |
by (Blast_tac 1); |
1998
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
751 |
qed "MPair_synth_analz"; |
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
752 |
|
f8230821f1e8
Reordering of premises for cut theorems, and new law MPair_synth_analz
paulson
parents:
1994
diff
changeset
|
753 |
AddIffs [MPair_synth_analz]; |
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
754 |
|
2154 | 755 |
goal thy "!!K. [| Key K : analz H; Key (invKey K) : analz H |] \ |
2284
80ebd1a213fd
Swapped arguments of Crypt (for clarity and because it is conventional)
paulson
parents:
2170
diff
changeset
|
756 |
\ ==> (Crypt K X : synth (analz H)) = (X : synth (analz H))"; |
2891 | 757 |
by (Blast_tac 1); |
2154 | 758 |
qed "Crypt_synth_analz"; |
759 |
||
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
760 |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
761 |
goal thy "!!K. X ~: synth (analz H) \ |
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
762 |
\ ==> (Hash{|X,Y|} : synth (analz H)) = (Hash{|X,Y|} : analz H)"; |
2891 | 763 |
by (Blast_tac 1); |
2373 | 764 |
qed "Hash_synth_analz"; |
765 |
Addsimps [Hash_synth_analz]; |
|
766 |
||
767 |
||
2484 | 768 |
(**** HPair: a combination of Hash and MPair ****) |
769 |
||
770 |
(*** Freeness ***) |
|
771 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
772 |
goalw thy [HPair_def] "Agent A ~= Hash[X] Y"; |
2484 | 773 |
by (Simp_tac 1); |
774 |
qed "Agent_neq_HPair"; |
|
775 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
776 |
goalw thy [HPair_def] "Nonce N ~= Hash[X] Y"; |
2484 | 777 |
by (Simp_tac 1); |
778 |
qed "Nonce_neq_HPair"; |
|
779 |
||
3668 | 780 |
goalw thy [HPair_def] "Number N ~= Hash[X] Y"; |
781 |
by (Simp_tac 1); |
|
782 |
qed "Number_neq_HPair"; |
|
783 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
784 |
goalw thy [HPair_def] "Key K ~= Hash[X] Y"; |
2484 | 785 |
by (Simp_tac 1); |
786 |
qed "Key_neq_HPair"; |
|
787 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
788 |
goalw thy [HPair_def] "Hash Z ~= Hash[X] Y"; |
2484 | 789 |
by (Simp_tac 1); |
790 |
qed "Hash_neq_HPair"; |
|
791 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
792 |
goalw thy [HPair_def] "Crypt K X' ~= Hash[X] Y"; |
2484 | 793 |
by (Simp_tac 1); |
794 |
qed "Crypt_neq_HPair"; |
|
795 |
||
3668 | 796 |
val HPair_neqs = [Agent_neq_HPair, Nonce_neq_HPair, Number_neq_HPair, |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
797 |
Key_neq_HPair, Hash_neq_HPair, Crypt_neq_HPair]; |
2484 | 798 |
|
799 |
AddIffs HPair_neqs; |
|
800 |
AddIffs (HPair_neqs RL [not_sym]); |
|
801 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
802 |
goalw thy [HPair_def] "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)"; |
2484 | 803 |
by (Simp_tac 1); |
804 |
qed "HPair_eq"; |
|
805 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
806 |
goalw thy [HPair_def] "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"; |
2484 | 807 |
by (Simp_tac 1); |
808 |
qed "MPair_eq_HPair"; |
|
809 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
810 |
goalw thy [HPair_def] "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"; |
2484 | 811 |
by (Auto_tac()); |
812 |
qed "HPair_eq_MPair"; |
|
813 |
||
814 |
AddIffs [HPair_eq, MPair_eq_HPair, HPair_eq_MPair]; |
|
815 |
||
816 |
||
817 |
(*** Specialized laws, proved in terms of those for Hash and MPair ***) |
|
818 |
||
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
819 |
goalw thy [HPair_def] "keysFor (insert (Hash[X] Y) H) = keysFor H"; |
2484 | 820 |
by (Simp_tac 1); |
821 |
qed "keysFor_insert_HPair"; |
|
822 |
||
823 |
goalw thy [HPair_def] |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
824 |
"parts (insert (Hash[X] Y) H) = \ |
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
825 |
\ insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"; |
2484 | 826 |
by (Simp_tac 1); |
827 |
qed "parts_insert_HPair"; |
|
828 |
||
829 |
goalw thy [HPair_def] |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
830 |
"analz (insert (Hash[X] Y) H) = \ |
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
831 |
\ insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"; |
2484 | 832 |
by (Simp_tac 1); |
833 |
qed "analz_insert_HPair"; |
|
834 |
||
835 |
goalw thy [HPair_def] "!!H. X ~: synth (analz H) \ |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
836 |
\ ==> (Hash[X] Y : synth (analz H)) = \ |
2484 | 837 |
\ (Hash {|X, Y|} : analz H & Y : synth (analz H))"; |
838 |
by (Simp_tac 1); |
|
2891 | 839 |
by (Blast_tac 1); |
2484 | 840 |
qed "HPair_synth_analz"; |
841 |
||
842 |
Addsimps [keysFor_insert_HPair, parts_insert_HPair, analz_insert_HPair, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
843 |
HPair_synth_analz, HPair_synth_analz]; |
2484 | 844 |
|
845 |
||
1929
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
846 |
(*We do NOT want Crypt... messages broken up in protocols!!*) |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
847 |
Delrules partsEs; |
f0839bab4b00
Working version of NS, messages 1-3, WITH INTERLEAVING
paulson
parents:
1913
diff
changeset
|
848 |
|
2327 | 849 |
|
850 |
(** Rewrites to push in Key and Crypt messages, so that other messages can |
|
851 |
be pulled out using the analz_insert rules **) |
|
852 |
||
853 |
fun insComm thy x y = read_instantiate_sg (sign_of thy) [("x",x), ("y",y)] |
|
854 |
insert_commute; |
|
855 |
||
856 |
val pushKeys = map (insComm thy "Key ?K") |
|
3668 | 857 |
["Agent ?C", "Nonce ?N", "Number ?N", |
858 |
"Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"]; |
|
2327 | 859 |
|
860 |
val pushCrypts = map (insComm thy "Crypt ?X ?K") |
|
3668 | 861 |
["Agent ?C", "Nonce ?N", "Number ?N", |
862 |
"Hash ?X'", "MPair ?X' ?Y"]; |
|
2327 | 863 |
|
864 |
(*Cannot be added with Addsimps -- we don't always want to re-order messages*) |
|
865 |
val pushes = pushKeys@pushCrypts; |
|
866 |
||
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
867 |
|
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
868 |
(*** Tactics useful for many protocol proofs ***) |
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
869 |
|
3470 | 870 |
(*Prove base case (subgoal i) and simplify others. A typical base case |
3683 | 871 |
concerns Crypt K X ~: Key``shrK``bad and cannot be proved by rewriting |
3470 | 872 |
alone.*) |
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
873 |
fun prove_simple_subgoals_tac i = |
4091 | 874 |
fast_tac (claset() addss (simpset())) i THEN |
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
875 |
ALLGOALS Asm_simp_tac; |
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
876 |
|
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
877 |
fun Fake_parts_insert_tac i = |
4091 | 878 |
blast_tac (claset() addDs [impOfSubs analz_subset_parts, |
3121
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
879 |
impOfSubs Fake_parts_insert]) i; |
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
880 |
|
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
881 |
(*Apply rules to break down assumptions of the form |
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
882 |
Y : parts(insert X H) and Y : analz(insert X H) |
cbb6c0c1c58a
Conversion to use blast_tac (with other improvements)
paulson
parents:
3102
diff
changeset
|
883 |
*) |
2373 | 884 |
val Fake_insert_tac = |
885 |
dresolve_tac [impOfSubs Fake_analz_insert, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
886 |
impOfSubs Fake_parts_insert] THEN' |
2373 | 887 |
eresolve_tac [asm_rl, synth.Inj]; |
888 |
||
3702 | 889 |
fun Fake_insert_simp_tac i = |
890 |
REPEAT (Fake_insert_tac i) THEN Asm_full_simp_tac i; |
|
891 |
||
892 |
||
3449 | 893 |
(*Analysis of Fake cases. Also works for messages that forward unknown parts, |
894 |
but this application is no longer necessary if analz_insert_eq is used. |
|
2327 | 895 |
Abstraction over i is ESSENTIAL: it delays the dereferencing of claset |
896 |
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) |
|
897 |
fun spy_analz_tac i = |
|
2373 | 898 |
DETERM |
899 |
(SELECT_GOAL |
|
900 |
(EVERY |
|
901 |
[ (*push in occurrences of X...*) |
|
902 |
(REPEAT o CHANGED) |
|
903 |
(res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1), |
|
904 |
(*...allowing further simplifications*) |
|
4091 | 905 |
simp_tac (simpset() addsplits [expand_if]) 1, |
3476
1be4fee7606b
spy_analz_tac: Restored iffI to the list of rules used to break down
paulson
parents:
3470
diff
changeset
|
906 |
REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), |
2373 | 907 |
DEPTH_SOLVE |
3702 | 908 |
(Fake_insert_simp_tac 1 |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
909 |
THEN |
3102 | 910 |
IF_UNSOLVED (Blast.depth_tac |
4091 | 911 |
(claset() addIs [analz_insertI, |
3668 | 912 |
impOfSubs analz_subset_parts]) 4 1)) |
2373 | 913 |
]) i); |
2327 | 914 |
|
2415 | 915 |
(** Useful in many uniqueness proofs **) |
2327 | 916 |
fun ex_strip_tac i = REPEAT (swap_res_tac [exI, conjI] i) THEN |
917 |
assume_tac (i+1); |
|
918 |
||
2415 | 919 |
(*Apply the EX-ALL quantifification to prove uniqueness theorems in |
920 |
their standard form*) |
|
921 |
fun prove_unique_tac lemma = |
|
922 |
EVERY' [dtac lemma, |
|
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
923 |
REPEAT o (mp_tac ORELSE' eresolve_tac [asm_rl,exE]), |
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
924 |
(*Duplicate the assumption*) |
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
925 |
forw_inst_tac [("psi", "ALL C.?P(C)")] asm_rl, |
4091 | 926 |
Blast.depth_tac (claset() addSDs [spec]) 0]; |
2415 | 927 |
|
2373 | 928 |
|
929 |
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) |
|
930 |
goal Set.thy "A Un (B Un A) = B Un A"; |
|
2891 | 931 |
by (Blast_tac 1); |
2373 | 932 |
val Un_absorb3 = result(); |
933 |
Addsimps [Un_absorb3]; |
|
3514
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
934 |
|
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
935 |
(*By default only o_apply is built-in. But in the presence of eta-expansion |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
936 |
this means that some terms displayed as (f o g) will be rewritten, and others |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
937 |
will not!*) |
eb16b8e8d872
Moved some declarations to Message from Public and Shared
paulson
parents:
3476
diff
changeset
|
938 |
Addsimps [o_def]; |