| author | wenzelm | 
| Tue, 02 Jul 2024 23:29:46 +0200 | |
| changeset 80482 | 2136ecf06a4c | 
| parent 66453 | cc19f7ca2ed6 | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Matrix_LP/LP.thy | 
| 19453 | 2 | Author: Steven Obua | 
| 3 | *) | |
| 4 | ||
| 5 | theory LP | |
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
62390diff
changeset | 6 | imports Main "HOL-Library.Lattice_Algebras" | 
| 19453 | 7 | begin | 
| 8 | ||
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 9 | lemma le_add_right_mono: | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 10 | assumes | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 11 | "a <= b + (c::'a::ordered_ab_group_add)" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 12 | "c <= d" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 13 | shows "a <= b + d" | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 14 | apply (rule_tac order_trans[where y = "b+c"]) | 
| 41550 | 15 | apply (simp_all add: assms) | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 16 | done | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 17 | |
| 19453 | 18 | lemma linprog_dual_estimate: | 
| 19 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 20 | "A * x \<le> (b::'a::lattice_ring)" | 
| 19453 | 21 | "0 \<le> y" | 
| 61945 | 22 | "\<bar>A - A'\<bar> \<le> \<delta>_A" | 
| 19453 | 23 | "b \<le> b'" | 
| 61945 | 24 | "\<bar>c - c'\<bar> \<le> \<delta>_c" | 
| 25 | "\<bar>x\<bar> \<le> r" | |
| 19453 | 26 | shows | 
| 61945 | 27 | "c * x \<le> y * b' + (y * \<delta>_A + \<bar>y * A' - c'\<bar> + \<delta>_c) * r" | 
| 19453 | 28 | proof - | 
| 41550 | 29 | from assms have 1: "y * b <= y * b'" by (simp add: mult_left_mono) | 
| 30 | from assms have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) | |
| 29667 | 31 | have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: algebra_simps) | 
| 19453 | 32 | from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp | 
| 61945 | 33 | have 5: "c * x <= y * b' + \<bar>(y * (A - A') + (y * A' - c') + (c'-c)) * x\<bar>" | 
| 19453 | 34 | by (simp only: 4 estimate_by_abs) | 
| 61945 | 35 | have 6: "\<bar>(y * (A - A') + (y * A' - c') + (c'-c)) * x\<bar> <= \<bar>y * (A - A') + (y * A' - c') + (c'-c)\<bar> * \<bar>x\<bar>" | 
| 19453 | 36 | by (simp add: abs_le_mult) | 
| 61945 | 37 | have 7: "(\<bar>y * (A - A') + (y * A' - c') + (c'-c)\<bar>) * \<bar>x\<bar> <= (\<bar>y * (A-A') + (y*A'-c')\<bar> + \<bar>c' - c\<bar>) * \<bar>x\<bar>" | 
| 19453 | 38 | by(rule abs_triangle_ineq [THEN mult_right_mono]) simp | 
| 61945 | 39 | have 8: "(\<bar>y * (A-A') + (y*A'-c')\<bar> + \<bar>c' - c\<bar>) * \<bar>x\<bar> <= (\<bar>y * (A-A')\<bar> + \<bar>y*A'-c'\<bar> + \<bar>c' - c\<bar>) * \<bar>x\<bar>" | 
| 19453 | 40 | by (simp add: abs_triangle_ineq mult_right_mono) | 
| 61945 | 41 | have 9: "(\<bar>y * (A-A')\<bar> + \<bar>y*A'-c'\<bar> + \<bar>c'-c\<bar>) * \<bar>x\<bar> <= (\<bar>y\<bar> * \<bar>A-A'\<bar> + \<bar>y*A'-c'\<bar> + \<bar>c'-c\<bar>) * \<bar>x\<bar>" | 
| 19453 | 42 | by (simp add: abs_le_mult mult_right_mono) | 
| 29667 | 43 | have 10: "c'-c = -(c-c')" by (simp add: algebra_simps) | 
| 61945 | 44 | have 11: "\<bar>c'-c\<bar> = \<bar>c-c'\<bar>" | 
| 19453 | 45 | by (subst 10, subst abs_minus_cancel, simp) | 
| 61945 | 46 | have 12: "(\<bar>y\<bar> * \<bar>A-A'\<bar> + \<bar>y*A'-c'\<bar> + \<bar>c'-c\<bar>) * \<bar>x\<bar> <= (\<bar>y\<bar> * \<bar>A-A'\<bar> + \<bar>y*A'-c'\<bar> + \<delta>_c) * \<bar>x\<bar>" | 
| 41550 | 47 | by (simp add: 11 assms mult_right_mono) | 
| 61945 | 48 | have 13: "(\<bar>y\<bar> * \<bar>A-A'\<bar> + \<bar>y*A'-c'\<bar> + \<delta>_c) * \<bar>x\<bar> <= (\<bar>y\<bar> * \<delta>_A + \<bar>y*A'-c'\<bar> + \<delta>_c) * \<bar>x\<bar>" | 
| 41550 | 49 | by (simp add: assms mult_right_mono mult_left_mono) | 
| 61945 | 50 | have r: "(\<bar>y\<bar> * \<delta>_A + \<bar>y*A'-c'\<bar> + \<delta>_c) * \<bar>x\<bar> <= (\<bar>y\<bar> * \<delta>_A + \<bar>y*A'-c'\<bar> + \<delta>_c) * r" | 
| 19453 | 51 | apply (rule mult_left_mono) | 
| 41550 | 52 | apply (simp add: assms) | 
| 19453 | 53 | apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+ | 
| 50252 | 54 | apply (rule mult_left_mono[of "0" "\<delta>_A", simplified]) | 
| 19453 | 55 | apply (simp_all) | 
| 61945 | 56 | apply (rule order_trans[where y="\<bar>A-A'\<bar>"], simp_all add: assms) | 
| 57 | apply (rule order_trans[where y="\<bar>c-c'\<bar>"], simp_all add: assms) | |
| 19453 | 58 | done | 
| 61945 | 59 | from 6 7 8 9 12 13 r have 14: "\<bar>(y * (A - A') + (y * A' - c') + (c'-c)) * x\<bar> <= (\<bar>y\<bar> * \<delta>_A + \<bar>y*A'-c'\<bar> + \<delta>_c) * r" | 
| 19453 | 60 | by (simp) | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
35032diff
changeset | 61 | show ?thesis | 
| 61945 | 62 | apply (rule le_add_right_mono[of _ _ "\<bar>(y * (A - A') + (y * A' - c') + (c'-c)) * x\<bar>"]) | 
| 41550 | 63 | apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified assms]]) | 
| 19453 | 64 | done | 
| 65 | qed | |
| 66 | ||
| 67 | lemma le_ge_imp_abs_diff_1: | |
| 68 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 69 | "A1 <= (A::'a::lattice_ring)" | 
| 19453 | 70 | "A <= A2" | 
| 61945 | 71 | shows "\<bar>A-A1\<bar> <= A2-A1" | 
| 19453 | 72 | proof - | 
| 73 | have "0 <= A - A1" | |
| 74 | proof - | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
50252diff
changeset | 75 | from assms add_right_mono [of A1 A "- A1"] show ?thesis by simp | 
| 19453 | 76 | qed | 
| 61945 | 77 | then have "\<bar>A-A1\<bar> = A-A1" by (rule abs_of_nonneg) | 
| 78 | with assms show "\<bar>A-A1\<bar> <= (A2-A1)" by simp | |
| 19453 | 79 | qed | 
| 80 | ||
| 81 | lemma mult_le_prts: | |
| 82 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 83 | "a1 <= (a::'a::lattice_ring)" | 
| 19453 | 84 | "a <= a2" | 
| 85 | "b1 <= b" | |
| 86 | "b <= b2" | |
| 87 | shows | |
| 88 | "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" | |
| 89 | proof - | |
| 90 | have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 91 | apply (subst prts[symmetric])+ | |
| 92 | apply simp | |
| 93 | done | |
| 94 | then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 29667 | 95 | by (simp add: algebra_simps) | 
| 19453 | 96 | moreover have "pprt a * pprt b <= pprt a2 * pprt b2" | 
| 41550 | 97 | by (simp_all add: assms mult_mono) | 
| 19453 | 98 | moreover have "pprt a * nprt b <= pprt a1 * nprt b2" | 
| 99 | proof - | |
| 100 | have "pprt a * nprt b <= pprt a * nprt b2" | |
| 41550 | 101 | by (simp add: mult_left_mono assms) | 
| 19453 | 102 | moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" | 
| 41550 | 103 | by (simp add: mult_right_mono_neg assms) | 
| 19453 | 104 | ultimately show ?thesis | 
| 105 | by simp | |
| 106 | qed | |
| 107 | moreover have "nprt a * pprt b <= nprt a2 * pprt b1" | |
| 108 | proof - | |
| 109 | have "nprt a * pprt b <= nprt a2 * pprt b" | |
| 41550 | 110 | by (simp add: mult_right_mono assms) | 
| 19453 | 111 | moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" | 
| 41550 | 112 | by (simp add: mult_left_mono_neg assms) | 
| 19453 | 113 | ultimately show ?thesis | 
| 114 | by simp | |
| 115 | qed | |
| 116 | moreover have "nprt a * nprt b <= nprt a1 * nprt b1" | |
| 117 | proof - | |
| 118 | have "nprt a * nprt b <= nprt a * nprt b1" | |
| 41550 | 119 | by (simp add: mult_left_mono_neg assms) | 
| 19453 | 120 | moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" | 
| 41550 | 121 | by (simp add: mult_right_mono_neg assms) | 
| 19453 | 122 | ultimately show ?thesis | 
| 123 | by simp | |
| 124 | qed | |
| 125 | ultimately show ?thesis | |
| 126 | by - (rule add_mono | simp)+ | |
| 127 | qed | |
| 128 | ||
| 129 | lemma mult_le_dual_prts: | |
| 130 | assumes | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 131 | "A * x \<le> (b::'a::lattice_ring)" | 
| 19453 | 132 | "0 \<le> y" | 
| 133 | "A1 \<le> A" | |
| 134 | "A \<le> A2" | |
| 135 | "c1 \<le> c" | |
| 136 | "c \<le> c2" | |
| 137 | "r1 \<le> x" | |
| 138 | "x \<le> r2" | |
| 139 | shows | |
| 140 | "c * x \<le> y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)" | |
| 141 | (is "_ <= _ + ?C") | |
| 142 | proof - | |
| 41550 | 143 | from assms have "y * (A * x) <= y * b" by (simp add: mult_left_mono) | 
| 29667 | 144 | moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: algebra_simps) | 
| 19453 | 145 | ultimately have "c * x + (y * A - c) * x <= y * b" by simp | 
| 146 | then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq) | |
| 29667 | 147 | then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: algebra_simps) | 
| 19453 | 148 | have s2: "c - y * A <= c2 - y * A1" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
50252diff
changeset | 149 | by (simp add: assms add_mono mult_left_mono algebra_simps) | 
| 19453 | 150 | have s1: "c1 - y * A2 <= c - y * A" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
50252diff
changeset | 151 | by (simp add: assms add_mono mult_left_mono algebra_simps) | 
| 19453 | 152 | have prts: "(c - y * A) * x <= ?C" | 
| 153 | apply (simp add: Let_def) | |
| 154 | apply (rule mult_le_prts) | |
| 41550 | 155 | apply (simp_all add: assms s1 s2) | 
| 19453 | 156 | done | 
| 157 | then have "y * b + (c - y * A) * x <= y * b + ?C" | |
| 158 | by simp | |
| 159 | with cx show ?thesis | |
| 160 | by(simp only:) | |
| 161 | qed | |
| 162 | ||
| 62390 | 163 | end |