17456
|
1 |
(* Title: CCL/Fix.thy
|
0
|
2 |
ID: $Id$
|
1474
|
3 |
Author: Martin Coen
|
0
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
17456
|
7 |
header {* Tentative attempt at including fixed point induction; justified by Smith *}
|
|
8 |
|
|
9 |
theory Fix
|
|
10 |
imports Type
|
|
11 |
begin
|
0
|
12 |
|
|
13 |
consts
|
1474
|
14 |
idgen :: "[i]=>i"
|
0
|
15 |
INCL :: "[i=>o]=>o"
|
|
16 |
|
24825
|
17 |
defs
|
17456
|
18 |
idgen_def:
|
3837
|
19 |
"idgen(f) == lam t. case(t,true,false,%x y.<f`x, f`y>,%u. lam x. f ` u(x))"
|
0
|
20 |
|
24825
|
21 |
axioms
|
17456
|
22 |
INCL_def: "INCL(%x. P(x)) == (ALL f.(ALL n:Nat. P(f^n`bot)) --> P(fix(f)))"
|
|
23 |
po_INCL: "INCL(%x. a(x) [= b(x))"
|
|
24 |
INCL_subst: "INCL(P) ==> INCL(%x. P((g::i=>i)(x)))"
|
|
25 |
|
20140
|
26 |
|
|
27 |
subsection {* Fixed Point Induction *}
|
|
28 |
|
|
29 |
lemma fix_ind:
|
|
30 |
assumes base: "P(bot)"
|
|
31 |
and step: "!!x. P(x) ==> P(f(x))"
|
|
32 |
and incl: "INCL(P)"
|
|
33 |
shows "P(fix(f))"
|
|
34 |
apply (rule incl [unfolded INCL_def, rule_format])
|
|
35 |
apply (rule Nat_ind [THEN ballI], assumption)
|
|
36 |
apply simp_all
|
|
37 |
apply (rule base)
|
|
38 |
apply (erule step)
|
|
39 |
done
|
|
40 |
|
|
41 |
|
|
42 |
subsection {* Inclusive Predicates *}
|
|
43 |
|
|
44 |
lemma inclXH: "INCL(P) <-> (ALL f. (ALL n:Nat. P(f ^ n ` bot)) --> P(fix(f)))"
|
|
45 |
by (simp add: INCL_def)
|
|
46 |
|
|
47 |
lemma inclI: "[| !!f. ALL n:Nat. P(f^n`bot) ==> P(fix(f)) |] ==> INCL(%x. P(x))"
|
|
48 |
unfolding inclXH by blast
|
|
49 |
|
|
50 |
lemma inclD: "[| INCL(P); !!n. n:Nat ==> P(f^n`bot) |] ==> P(fix(f))"
|
|
51 |
unfolding inclXH by blast
|
|
52 |
|
|
53 |
lemma inclE: "[| INCL(P); (ALL n:Nat. P(f^n`bot))-->P(fix(f)) ==> R |] ==> R"
|
|
54 |
by (blast dest: inclD)
|
|
55 |
|
|
56 |
|
|
57 |
subsection {* Lemmas for Inclusive Predicates *}
|
|
58 |
|
|
59 |
lemma npo_INCL: "INCL(%x.~ a(x) [= t)"
|
|
60 |
apply (rule inclI)
|
|
61 |
apply (drule bspec)
|
|
62 |
apply (rule zeroT)
|
|
63 |
apply (erule contrapos)
|
|
64 |
apply (rule po_trans)
|
|
65 |
prefer 2
|
|
66 |
apply assumption
|
|
67 |
apply (subst napplyBzero)
|
|
68 |
apply (rule po_cong, rule po_bot)
|
|
69 |
done
|
|
70 |
|
|
71 |
lemma conj_INCL: "[| INCL(P); INCL(Q) |] ==> INCL(%x. P(x) & Q(x))"
|
|
72 |
by (blast intro!: inclI dest!: inclD)
|
|
73 |
|
|
74 |
lemma all_INCL: "[| !!a. INCL(P(a)) |] ==> INCL(%x. ALL a. P(a,x))"
|
|
75 |
by (blast intro!: inclI dest!: inclD)
|
|
76 |
|
|
77 |
lemma ball_INCL: "[| !!a. a:A ==> INCL(P(a)) |] ==> INCL(%x. ALL a:A. P(a,x))"
|
|
78 |
by (blast intro!: inclI dest!: inclD)
|
|
79 |
|
|
80 |
lemma eq_INCL: "INCL(%x. a(x) = (b(x)::'a::prog))"
|
|
81 |
apply (simp add: eq_iff)
|
|
82 |
apply (rule conj_INCL po_INCL)+
|
|
83 |
done
|
|
84 |
|
|
85 |
|
|
86 |
subsection {* Derivation of Reachability Condition *}
|
|
87 |
|
|
88 |
(* Fixed points of idgen *)
|
|
89 |
|
|
90 |
lemma fix_idgenfp: "idgen(fix(idgen)) = fix(idgen)"
|
|
91 |
apply (rule fixB [symmetric])
|
|
92 |
done
|
|
93 |
|
|
94 |
lemma id_idgenfp: "idgen(lam x. x) = lam x. x"
|
|
95 |
apply (simp add: idgen_def)
|
|
96 |
apply (rule term_case [THEN allI])
|
|
97 |
apply simp_all
|
|
98 |
done
|
|
99 |
|
|
100 |
(* All fixed points are lam-expressions *)
|
|
101 |
|
|
102 |
lemma idgenfp_lam: "idgen(d) = d ==> d = lam x. ?f(x)"
|
|
103 |
apply (unfold idgen_def)
|
|
104 |
apply (erule ssubst)
|
|
105 |
apply (rule refl)
|
|
106 |
done
|
|
107 |
|
|
108 |
(* Lemmas for rewriting fixed points of idgen *)
|
|
109 |
|
|
110 |
lemma l_lemma: "[| a = b; a ` t = u |] ==> b ` t = u"
|
|
111 |
by (simp add: idgen_def)
|
|
112 |
|
|
113 |
lemma idgen_lemmas:
|
|
114 |
"idgen(d) = d ==> d ` bot = bot"
|
|
115 |
"idgen(d) = d ==> d ` true = true"
|
|
116 |
"idgen(d) = d ==> d ` false = false"
|
|
117 |
"idgen(d) = d ==> d ` <a,b> = <d ` a,d ` b>"
|
|
118 |
"idgen(d) = d ==> d ` (lam x. f(x)) = lam x. d ` f(x)"
|
|
119 |
by (erule l_lemma, simp add: idgen_def)+
|
|
120 |
|
|
121 |
|
|
122 |
(* Proof of Reachability law - show that fix and lam x.x both give LEAST fixed points
|
|
123 |
of idgen and hence are they same *)
|
|
124 |
|
|
125 |
lemma po_eta:
|
|
126 |
"[| ALL x. t ` x [= u ` x; EX f. t=lam x. f(x); EX f. u=lam x. f(x) |] ==> t [= u"
|
|
127 |
apply (drule cond_eta)+
|
|
128 |
apply (erule ssubst)
|
|
129 |
apply (erule ssubst)
|
|
130 |
apply (rule po_lam [THEN iffD2])
|
|
131 |
apply simp
|
|
132 |
done
|
|
133 |
|
|
134 |
lemma po_eta_lemma: "idgen(d) = d ==> d = lam x. ?f(x)"
|
|
135 |
apply (unfold idgen_def)
|
|
136 |
apply (erule sym)
|
|
137 |
done
|
|
138 |
|
|
139 |
lemma lemma1:
|
|
140 |
"idgen(d) = d ==>
|
|
141 |
{p. EX a b. p=<a,b> & (EX t. a=fix(idgen) ` t & b = d ` t)} <=
|
|
142 |
POgen({p. EX a b. p=<a,b> & (EX t. a=fix(idgen) ` t & b = d ` t)})"
|
|
143 |
apply clarify
|
|
144 |
apply (rule_tac t = t in term_case)
|
|
145 |
apply (simp_all add: POgenXH idgen_lemmas idgen_lemmas [OF fix_idgenfp])
|
|
146 |
apply blast
|
|
147 |
apply fast
|
|
148 |
done
|
|
149 |
|
|
150 |
lemma fix_least_idgen: "idgen(d) = d ==> fix(idgen) [= d"
|
|
151 |
apply (rule allI [THEN po_eta])
|
|
152 |
apply (rule lemma1 [THEN [2] po_coinduct])
|
|
153 |
apply (blast intro: po_eta_lemma fix_idgenfp)+
|
|
154 |
done
|
|
155 |
|
|
156 |
lemma lemma2:
|
|
157 |
"idgen(d) = d ==>
|
|
158 |
{p. EX a b. p=<a,b> & b = d ` a} <= POgen({p. EX a b. p=<a,b> & b = d ` a})"
|
|
159 |
apply clarify
|
|
160 |
apply (rule_tac t = a in term_case)
|
|
161 |
apply (simp_all add: POgenXH idgen_lemmas)
|
|
162 |
apply fast
|
|
163 |
done
|
|
164 |
|
|
165 |
lemma id_least_idgen: "idgen(d) = d ==> lam x. x [= d"
|
|
166 |
apply (rule allI [THEN po_eta])
|
|
167 |
apply (rule lemma2 [THEN [2] po_coinduct])
|
|
168 |
apply simp
|
|
169 |
apply (fast intro: po_eta_lemma fix_idgenfp)+
|
|
170 |
done
|
|
171 |
|
|
172 |
lemma reachability: "fix(idgen) = lam x. x"
|
|
173 |
apply (fast intro: eq_iff [THEN iffD2]
|
|
174 |
id_idgenfp [THEN fix_least_idgen] fix_idgenfp [THEN id_least_idgen])
|
|
175 |
done
|
|
176 |
|
|
177 |
(********)
|
|
178 |
|
|
179 |
lemma id_apply: "f = lam x. x ==> f`t = t"
|
|
180 |
apply (erule ssubst)
|
|
181 |
apply (rule applyB)
|
|
182 |
done
|
|
183 |
|
|
184 |
lemma term_ind:
|
23467
|
185 |
assumes 1: "P(bot)" and 2: "P(true)" and 3: "P(false)"
|
|
186 |
and 4: "!!x y.[| P(x); P(y) |] ==> P(<x,y>)"
|
|
187 |
and 5: "!!u.(!!x. P(u(x))) ==> P(lam x. u(x))"
|
|
188 |
and 6: "INCL(P)"
|
20140
|
189 |
shows "P(t)"
|
|
190 |
apply (rule reachability [THEN id_apply, THEN subst])
|
|
191 |
apply (rule_tac x = t in spec)
|
|
192 |
apply (rule fix_ind)
|
|
193 |
apply (unfold idgen_def)
|
|
194 |
apply (rule allI)
|
|
195 |
apply (subst applyBbot)
|
23467
|
196 |
apply (rule 1)
|
20140
|
197 |
apply (rule allI)
|
|
198 |
apply (rule applyB [THEN ssubst])
|
|
199 |
apply (rule_tac t = "xa" in term_case)
|
|
200 |
apply simp_all
|
23467
|
201 |
apply (fast intro: assms INCL_subst all_INCL)+
|
20140
|
202 |
done
|
0
|
203 |
|
|
204 |
end
|