13634
|
1 |
(* Title: ZF/Constructible/Rank_Separation.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {*Separation for Facts About Order Types, Rank Functions and
|
|
7 |
Well-Founded Relations*}
|
|
8 |
|
|
9 |
theory Rank_Separation = Rank + Rec_Separation:
|
|
10 |
|
|
11 |
|
|
12 |
text{*This theory proves all instances needed for locales
|
13687
|
13 |
@{text "M_ordertype"} and @{text "M_wfrank"}. But the material is not
|
|
14 |
needed for proving the relative consistency of AC.*}
|
13634
|
15 |
|
|
16 |
subsection{*The Locale @{text "M_ordertype"}*}
|
|
17 |
|
|
18 |
subsubsection{*Separation for Order-Isomorphisms*}
|
|
19 |
|
|
20 |
lemma well_ord_iso_Reflects:
|
|
21 |
"REFLECTS[\<lambda>x. x\<in>A -->
|
|
22 |
(\<exists>y[L]. \<exists>p[L]. fun_apply(L,f,x,y) & pair(L,y,x,p) & p \<in> r),
|
|
23 |
\<lambda>i x. x\<in>A --> (\<exists>y \<in> Lset(i). \<exists>p \<in> Lset(i).
|
|
24 |
fun_apply(**Lset(i),f,x,y) & pair(**Lset(i),y,x,p) & p \<in> r)]"
|
|
25 |
by (intro FOL_reflections function_reflections)
|
|
26 |
|
|
27 |
lemma well_ord_iso_separation:
|
|
28 |
"[| L(A); L(f); L(r) |]
|
|
29 |
==> separation (L, \<lambda>x. x\<in>A --> (\<exists>y[L]. (\<exists>p[L].
|
|
30 |
fun_apply(L,f,x,y) & pair(L,y,x,p) & p \<in> r)))"
|
13687
|
31 |
apply (rule gen_separation_multi [OF well_ord_iso_Reflects, of "{A,f,r}"],
|
|
32 |
auto)
|
|
33 |
apply (rule_tac env="[A,f,r]" in DPow_LsetI)
|
13634
|
34 |
apply (rule sep_rules | simp)+
|
|
35 |
done
|
|
36 |
|
|
37 |
|
|
38 |
subsubsection{*Separation for @{term "obase"}*}
|
|
39 |
|
|
40 |
lemma obase_reflects:
|
|
41 |
"REFLECTS[\<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
|
|
42 |
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
|
|
43 |
order_isomorphism(L,par,r,x,mx,g),
|
|
44 |
\<lambda>i a. \<exists>x \<in> Lset(i). \<exists>g \<in> Lset(i). \<exists>mx \<in> Lset(i). \<exists>par \<in> Lset(i).
|
|
45 |
ordinal(**Lset(i),x) & membership(**Lset(i),x,mx) & pred_set(**Lset(i),A,a,r,par) &
|
|
46 |
order_isomorphism(**Lset(i),par,r,x,mx,g)]"
|
|
47 |
by (intro FOL_reflections function_reflections fun_plus_reflections)
|
|
48 |
|
|
49 |
lemma obase_separation:
|
|
50 |
--{*part of the order type formalization*}
|
|
51 |
"[| L(A); L(r) |]
|
|
52 |
==> separation(L, \<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
|
|
53 |
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
|
|
54 |
order_isomorphism(L,par,r,x,mx,g))"
|
13687
|
55 |
apply (rule gen_separation_multi [OF obase_reflects, of "{A,r}"], auto)
|
|
56 |
apply (rule_tac env="[A,r]" in DPow_LsetI)
|
|
57 |
apply (rule ordinal_iff_sats sep_rules | simp)+
|
13634
|
58 |
done
|
|
59 |
|
|
60 |
|
|
61 |
subsubsection{*Separation for a Theorem about @{term "obase"}*}
|
|
62 |
|
|
63 |
lemma obase_equals_reflects:
|
|
64 |
"REFLECTS[\<lambda>x. x\<in>A --> ~(\<exists>y[L]. \<exists>g[L].
|
|
65 |
ordinal(L,y) & (\<exists>my[L]. \<exists>pxr[L].
|
|
66 |
membership(L,y,my) & pred_set(L,A,x,r,pxr) &
|
|
67 |
order_isomorphism(L,pxr,r,y,my,g))),
|
|
68 |
\<lambda>i x. x\<in>A --> ~(\<exists>y \<in> Lset(i). \<exists>g \<in> Lset(i).
|
|
69 |
ordinal(**Lset(i),y) & (\<exists>my \<in> Lset(i). \<exists>pxr \<in> Lset(i).
|
|
70 |
membership(**Lset(i),y,my) & pred_set(**Lset(i),A,x,r,pxr) &
|
|
71 |
order_isomorphism(**Lset(i),pxr,r,y,my,g)))]"
|
|
72 |
by (intro FOL_reflections function_reflections fun_plus_reflections)
|
|
73 |
|
|
74 |
lemma obase_equals_separation:
|
|
75 |
"[| L(A); L(r) |]
|
|
76 |
==> separation (L, \<lambda>x. x\<in>A --> ~(\<exists>y[L]. \<exists>g[L].
|
|
77 |
ordinal(L,y) & (\<exists>my[L]. \<exists>pxr[L].
|
|
78 |
membership(L,y,my) & pred_set(L,A,x,r,pxr) &
|
|
79 |
order_isomorphism(L,pxr,r,y,my,g))))"
|
13687
|
80 |
apply (rule gen_separation_multi [OF obase_equals_reflects, of "{A,r}"], auto)
|
|
81 |
apply (rule_tac env="[A,r]" in DPow_LsetI)
|
13634
|
82 |
apply (rule sep_rules | simp)+
|
|
83 |
done
|
|
84 |
|
|
85 |
|
|
86 |
subsubsection{*Replacement for @{term "omap"}*}
|
|
87 |
|
|
88 |
lemma omap_reflects:
|
|
89 |
"REFLECTS[\<lambda>z. \<exists>a[L]. a\<in>B & (\<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
|
|
90 |
ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &
|
|
91 |
pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g)),
|
|
92 |
\<lambda>i z. \<exists>a \<in> Lset(i). a\<in>B & (\<exists>x \<in> Lset(i). \<exists>g \<in> Lset(i). \<exists>mx \<in> Lset(i).
|
|
93 |
\<exists>par \<in> Lset(i).
|
|
94 |
ordinal(**Lset(i),x) & pair(**Lset(i),a,x,z) &
|
|
95 |
membership(**Lset(i),x,mx) & pred_set(**Lset(i),A,a,r,par) &
|
|
96 |
order_isomorphism(**Lset(i),par,r,x,mx,g))]"
|
|
97 |
by (intro FOL_reflections function_reflections fun_plus_reflections)
|
|
98 |
|
|
99 |
lemma omap_replacement:
|
|
100 |
"[| L(A); L(r) |]
|
|
101 |
==> strong_replacement(L,
|
|
102 |
\<lambda>a z. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].
|
|
103 |
ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &
|
|
104 |
pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g))"
|
|
105 |
apply (rule strong_replacementI)
|
13687
|
106 |
apply (rule_tac u="{A,r,B}" in gen_separation_multi [OF omap_reflects], auto)
|
|
107 |
apply (rule_tac env="[A,B,r]" in DPow_LsetI)
|
13634
|
108 |
apply (rule sep_rules | simp)+
|
|
109 |
done
|
|
110 |
|
|
111 |
|
|
112 |
|
|
113 |
subsection{*Instantiating the locale @{text M_ordertype}*}
|
|
114 |
text{*Separation (and Strong Replacement) for basic set-theoretic constructions
|
|
115 |
such as intersection, Cartesian Product and image.*}
|
|
116 |
|
|
117 |
lemma M_ordertype_axioms_L: "M_ordertype_axioms(L)"
|
|
118 |
apply (rule M_ordertype_axioms.intro)
|
|
119 |
apply (assumption | rule well_ord_iso_separation
|
|
120 |
obase_separation obase_equals_separation
|
|
121 |
omap_replacement)+
|
|
122 |
done
|
|
123 |
|
|
124 |
theorem M_ordertype_L: "PROP M_ordertype(L)"
|
|
125 |
apply (rule M_ordertype.intro)
|
|
126 |
apply (rule M_basic.axioms [OF M_basic_L])+
|
|
127 |
apply (rule M_ordertype_axioms_L)
|
|
128 |
done
|
|
129 |
|
|
130 |
|
|
131 |
subsection{*The Locale @{text "M_wfrank"}*}
|
|
132 |
|
|
133 |
subsubsection{*Separation for @{term "wfrank"}*}
|
|
134 |
|
|
135 |
lemma wfrank_Reflects:
|
|
136 |
"REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
|
|
137 |
~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)),
|
|
138 |
\<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
|
|
139 |
~ (\<exists>f \<in> Lset(i).
|
|
140 |
M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y),
|
|
141 |
rplus, x, f))]"
|
|
142 |
by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection)
|
|
143 |
|
|
144 |
lemma wfrank_separation:
|
|
145 |
"L(r) ==>
|
|
146 |
separation (L, \<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
|
|
147 |
~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)))"
|
|
148 |
apply (rule gen_separation [OF wfrank_Reflects], simp)
|
13687
|
149 |
apply (rule_tac env="[r]" in DPow_LsetI)
|
|
150 |
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
|
13634
|
151 |
done
|
|
152 |
|
|
153 |
|
|
154 |
subsubsection{*Replacement for @{term "wfrank"}*}
|
|
155 |
|
|
156 |
lemma wfrank_replacement_Reflects:
|
|
157 |
"REFLECTS[\<lambda>z. \<exists>x[L]. x \<in> A &
|
|
158 |
(\<forall>rplus[L]. tran_closure(L,r,rplus) -->
|
|
159 |
(\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z) &
|
|
160 |
M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
|
|
161 |
is_range(L,f,y))),
|
|
162 |
\<lambda>i z. \<exists>x \<in> Lset(i). x \<in> A &
|
|
163 |
(\<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
|
|
164 |
(\<exists>y \<in> Lset(i). \<exists>f \<in> Lset(i). pair(**Lset(i),x,y,z) &
|
|
165 |
M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y), rplus, x, f) &
|
|
166 |
is_range(**Lset(i),f,y)))]"
|
|
167 |
by (intro FOL_reflections function_reflections fun_plus_reflections
|
|
168 |
is_recfun_reflection tran_closure_reflection)
|
|
169 |
|
|
170 |
lemma wfrank_strong_replacement:
|
|
171 |
"L(r) ==>
|
|
172 |
strong_replacement(L, \<lambda>x z.
|
|
173 |
\<forall>rplus[L]. tran_closure(L,r,rplus) -->
|
|
174 |
(\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z) &
|
|
175 |
M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
|
|
176 |
is_range(L,f,y)))"
|
|
177 |
apply (rule strong_replacementI)
|
13687
|
178 |
apply (rule_tac u="{r,B}"
|
|
179 |
in gen_separation_multi [OF wfrank_replacement_Reflects],
|
|
180 |
auto)
|
|
181 |
apply (rule_tac env="[r,B]" in DPow_LsetI)
|
|
182 |
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
|
13634
|
183 |
done
|
|
184 |
|
|
185 |
|
|
186 |
subsubsection{*Separation for Proving @{text Ord_wfrank_range}*}
|
|
187 |
|
|
188 |
lemma Ord_wfrank_Reflects:
|
|
189 |
"REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
|
|
190 |
~ (\<forall>f[L]. \<forall>rangef[L].
|
|
191 |
is_range(L,f,rangef) -->
|
|
192 |
M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) -->
|
|
193 |
ordinal(L,rangef)),
|
|
194 |
\<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
|
|
195 |
~ (\<forall>f \<in> Lset(i). \<forall>rangef \<in> Lset(i).
|
|
196 |
is_range(**Lset(i),f,rangef) -->
|
|
197 |
M_is_recfun(**Lset(i), \<lambda>x f y. is_range(**Lset(i),f,y),
|
|
198 |
rplus, x, f) -->
|
|
199 |
ordinal(**Lset(i),rangef))]"
|
|
200 |
by (intro FOL_reflections function_reflections is_recfun_reflection
|
|
201 |
tran_closure_reflection ordinal_reflection)
|
|
202 |
|
|
203 |
lemma Ord_wfrank_separation:
|
|
204 |
"L(r) ==>
|
|
205 |
separation (L, \<lambda>x.
|
|
206 |
\<forall>rplus[L]. tran_closure(L,r,rplus) -->
|
|
207 |
~ (\<forall>f[L]. \<forall>rangef[L].
|
|
208 |
is_range(L,f,rangef) -->
|
|
209 |
M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) -->
|
|
210 |
ordinal(L,rangef)))"
|
|
211 |
apply (rule gen_separation [OF Ord_wfrank_Reflects], simp)
|
13687
|
212 |
apply (rule_tac env="[r]" in DPow_LsetI)
|
|
213 |
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
|
13634
|
214 |
done
|
|
215 |
|
|
216 |
|
|
217 |
subsubsection{*Instantiating the locale @{text M_wfrank}*}
|
|
218 |
|
|
219 |
lemma M_wfrank_axioms_L: "M_wfrank_axioms(L)"
|
|
220 |
apply (rule M_wfrank_axioms.intro)
|
|
221 |
apply (assumption | rule
|
|
222 |
wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+
|
|
223 |
done
|
|
224 |
|
|
225 |
theorem M_wfrank_L: "PROP M_wfrank(L)"
|
|
226 |
apply (rule M_wfrank.intro)
|
|
227 |
apply (rule M_trancl.axioms [OF M_trancl_L])+
|
|
228 |
apply (rule M_wfrank_axioms_L)
|
|
229 |
done
|
|
230 |
|
|
231 |
lemmas exists_wfrank = M_wfrank.exists_wfrank [OF M_wfrank_L]
|
|
232 |
and M_wellfoundedrank = M_wfrank.M_wellfoundedrank [OF M_wfrank_L]
|
|
233 |
and Ord_wfrank_range = M_wfrank.Ord_wfrank_range [OF M_wfrank_L]
|
|
234 |
and Ord_range_wellfoundedrank = M_wfrank.Ord_range_wellfoundedrank [OF M_wfrank_L]
|
|
235 |
and function_wellfoundedrank = M_wfrank.function_wellfoundedrank [OF M_wfrank_L]
|
|
236 |
and domain_wellfoundedrank = M_wfrank.domain_wellfoundedrank [OF M_wfrank_L]
|
|
237 |
and wellfoundedrank_type = M_wfrank.wellfoundedrank_type [OF M_wfrank_L]
|
|
238 |
and Ord_wellfoundedrank = M_wfrank.Ord_wellfoundedrank [OF M_wfrank_L]
|
|
239 |
and wellfoundedrank_eq = M_wfrank.wellfoundedrank_eq [OF M_wfrank_L]
|
|
240 |
and wellfoundedrank_lt = M_wfrank.wellfoundedrank_lt [OF M_wfrank_L]
|
|
241 |
and wellfounded_imp_subset_rvimage = M_wfrank.wellfounded_imp_subset_rvimage [OF M_wfrank_L]
|
|
242 |
and wellfounded_imp_wf = M_wfrank.wellfounded_imp_wf [OF M_wfrank_L]
|
|
243 |
and wellfounded_on_imp_wf_on = M_wfrank.wellfounded_on_imp_wf_on [OF M_wfrank_L]
|
|
244 |
and wf_abs = M_wfrank.wf_abs [OF M_wfrank_L]
|
|
245 |
and wf_on_abs = M_wfrank.wf_on_abs [OF M_wfrank_L]
|
|
246 |
|
|
247 |
end |