author | nipkow |
Mon, 12 Sep 2011 07:55:43 +0200 | |
changeset 44890 | 22f665a2e91c |
parent 44750 | 5b11f36fcacb |
child 49522 | 355f3d076924 |
permissions | -rw-r--r-- |
44133 | 1 |
(* Title: HOL/Multivariate_Analysis/Linear_Algebra.thy |
2 |
Author: Amine Chaieb, University of Cambridge |
|
3 |
*) |
|
4 |
||
5 |
header {* Elementary linear algebra on Euclidean spaces *} |
|
6 |
||
7 |
theory Linear_Algebra |
|
8 |
imports |
|
9 |
Euclidean_Space |
|
10 |
"~~/src/HOL/Library/Infinite_Set" |
|
11 |
begin |
|
12 |
||
13 |
lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" |
|
14 |
by auto |
|
15 |
||
16 |
notation inner (infix "\<bullet>" 70) |
|
17 |
||
18 |
lemma square_bound_lemma: "(x::real) < (1 + x) * (1 + x)" |
|
19 |
proof- |
|
20 |
have "(x + 1/2)^2 + 3/4 > 0" using zero_le_power2[of "x+1/2"] by arith |
|
21 |
thus ?thesis by (simp add: field_simps power2_eq_square) |
|
22 |
qed |
|
23 |
||
24 |
lemma square_continuous: "0 < (e::real) ==> \<exists>d. 0 < d \<and> (\<forall>y. abs(y - x) < d \<longrightarrow> abs(y * y - x * x) < e)" |
|
25 |
using isCont_power[OF isCont_ident, of 2, unfolded isCont_def LIM_eq, rule_format, of e x] apply (auto simp add: power2_eq_square) |
|
26 |
apply (rule_tac x="s" in exI) |
|
27 |
apply auto |
|
28 |
apply (erule_tac x=y in allE) |
|
29 |
apply auto |
|
30 |
done |
|
31 |
||
32 |
lemma real_le_lsqrt: "0 <= x \<Longrightarrow> 0 <= y \<Longrightarrow> x <= y^2 ==> sqrt x <= y" |
|
33 |
using real_sqrt_le_iff[of x "y^2"] by simp |
|
34 |
||
35 |
lemma real_le_rsqrt: "x^2 \<le> y \<Longrightarrow> x \<le> sqrt y" |
|
36 |
using real_sqrt_le_mono[of "x^2" y] by simp |
|
37 |
||
38 |
lemma real_less_rsqrt: "x^2 < y \<Longrightarrow> x < sqrt y" |
|
39 |
using real_sqrt_less_mono[of "x^2" y] by simp |
|
40 |
||
41 |
lemma sqrt_even_pow2: assumes n: "even n" |
|
42 |
shows "sqrt(2 ^ n) = 2 ^ (n div 2)" |
|
43 |
proof- |
|
44 |
from n obtain m where m: "n = 2*m" unfolding even_mult_two_ex .. |
|
45 |
from m have "sqrt(2 ^ n) = sqrt ((2 ^ m) ^ 2)" |
|
46 |
by (simp only: power_mult[symmetric] mult_commute) |
|
47 |
then show ?thesis using m by simp |
|
48 |
qed |
|
49 |
||
50 |
lemma real_div_sqrt: "0 <= x ==> x / sqrt(x) = sqrt(x)" |
|
51 |
apply (cases "x = 0", simp_all) |
|
52 |
using sqrt_divide_self_eq[of x] |
|
53 |
apply (simp add: inverse_eq_divide field_simps) |
|
54 |
done |
|
55 |
||
56 |
text{* Hence derive more interesting properties of the norm. *} |
|
57 |
||
58 |
lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (inner x x = (0::real))" |
|
44666 | 59 |
by simp (* TODO: delete *) |
44133 | 60 |
|
61 |
lemma norm_cauchy_schwarz: |
|
44666 | 62 |
(* TODO: move to Inner_Product.thy *) |
44133 | 63 |
shows "inner x y <= norm x * norm y" |
64 |
using Cauchy_Schwarz_ineq2[of x y] by auto |
|
65 |
||
66 |
lemma norm_triangle_sub: |
|
67 |
fixes x y :: "'a::real_normed_vector" |
|
68 |
shows "norm x \<le> norm y + norm (x - y)" |
|
69 |
using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps) |
|
70 |
||
71 |
lemma norm_le: "norm(x) <= norm(y) \<longleftrightarrow> x \<bullet> x <= y \<bullet> y" |
|
72 |
by (simp add: norm_eq_sqrt_inner) |
|
44666 | 73 |
|
44133 | 74 |
lemma norm_lt: "norm(x) < norm(y) \<longleftrightarrow> x \<bullet> x < y \<bullet> y" |
75 |
by (simp add: norm_eq_sqrt_inner) |
|
44666 | 76 |
|
44133 | 77 |
lemma norm_eq: "norm(x) = norm (y) \<longleftrightarrow> x \<bullet> x = y \<bullet> y" |
78 |
apply(subst order_eq_iff) unfolding norm_le by auto |
|
44666 | 79 |
|
44133 | 80 |
lemma norm_eq_1: "norm(x) = 1 \<longleftrightarrow> x \<bullet> x = 1" |
44666 | 81 |
by (simp add: norm_eq_sqrt_inner) |
44133 | 82 |
|
83 |
text{* Squaring equations and inequalities involving norms. *} |
|
84 |
||
85 |
lemma dot_square_norm: "x \<bullet> x = norm(x)^2" |
|
44666 | 86 |
by (simp only: power2_norm_eq_inner) (* TODO: move? *) |
44133 | 87 |
|
88 |
lemma norm_eq_square: "norm(x) = a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x = a^2" |
|
89 |
by (auto simp add: norm_eq_sqrt_inner) |
|
90 |
||
91 |
lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)^2 \<le> y^2" |
|
92 |
proof |
|
93 |
assume "\<bar>x\<bar> \<le> \<bar>y\<bar>" |
|
94 |
then have "\<bar>x\<bar>\<twosuperior> \<le> \<bar>y\<bar>\<twosuperior>" by (rule power_mono, simp) |
|
95 |
then show "x\<twosuperior> \<le> y\<twosuperior>" by simp |
|
96 |
next |
|
97 |
assume "x\<twosuperior> \<le> y\<twosuperior>" |
|
98 |
then have "sqrt (x\<twosuperior>) \<le> sqrt (y\<twosuperior>)" by (rule real_sqrt_le_mono) |
|
99 |
then show "\<bar>x\<bar> \<le> \<bar>y\<bar>" by simp |
|
100 |
qed |
|
101 |
||
102 |
lemma norm_le_square: "norm(x) <= a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x <= a^2" |
|
103 |
apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) |
|
104 |
using norm_ge_zero[of x] |
|
105 |
apply arith |
|
106 |
done |
|
107 |
||
108 |
lemma norm_ge_square: "norm(x) >= a \<longleftrightarrow> a <= 0 \<or> x \<bullet> x >= a ^ 2" |
|
109 |
apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) |
|
110 |
using norm_ge_zero[of x] |
|
111 |
apply arith |
|
112 |
done |
|
113 |
||
114 |
lemma norm_lt_square: "norm(x) < a \<longleftrightarrow> 0 < a \<and> x \<bullet> x < a^2" |
|
115 |
by (metis not_le norm_ge_square) |
|
116 |
lemma norm_gt_square: "norm(x) > a \<longleftrightarrow> a < 0 \<or> x \<bullet> x > a^2" |
|
117 |
by (metis norm_le_square not_less) |
|
118 |
||
119 |
text{* Dot product in terms of the norm rather than conversely. *} |
|
120 |
||
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44176
diff
changeset
|
121 |
lemmas inner_simps = inner_add_left inner_add_right inner_diff_right inner_diff_left |
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44176
diff
changeset
|
122 |
inner_scaleR_left inner_scaleR_right |
44133 | 123 |
|
124 |
lemma dot_norm: "x \<bullet> y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2" |
|
125 |
unfolding power2_norm_eq_inner inner_simps inner_commute by auto |
|
126 |
||
127 |
lemma dot_norm_neg: "x \<bullet> y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2" |
|
128 |
unfolding power2_norm_eq_inner inner_simps inner_commute by(auto simp add:algebra_simps) |
|
129 |
||
130 |
text{* Equality of vectors in terms of @{term "op \<bullet>"} products. *} |
|
131 |
||
132 |
lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x" (is "?lhs \<longleftrightarrow> ?rhs") |
|
133 |
proof |
|
134 |
assume ?lhs then show ?rhs by simp |
|
135 |
next |
|
136 |
assume ?rhs |
|
137 |
then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" by simp |
|
44454 | 138 |
hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" by (simp add: inner_diff inner_commute) |
139 |
then have "(x - y) \<bullet> (x - y) = 0" by (simp add: field_simps inner_diff inner_commute) |
|
44133 | 140 |
then show "x = y" by (simp) |
141 |
qed |
|
142 |
||
143 |
lemma norm_triangle_half_r: |
|
144 |
shows "norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e" |
|
145 |
using dist_triangle_half_r unfolding dist_norm[THEN sym] by auto |
|
146 |
||
147 |
lemma norm_triangle_half_l: assumes "norm (x - y) < e / 2" "norm (x' - (y)) < e / 2" |
|
148 |
shows "norm (x - x') < e" |
|
149 |
using dist_triangle_half_l[OF assms[unfolded dist_norm[THEN sym]]] |
|
150 |
unfolding dist_norm[THEN sym] . |
|
151 |
||
152 |
lemma norm_triangle_le: "norm(x) + norm y <= e ==> norm(x + y) <= e" |
|
44666 | 153 |
by (rule norm_triangle_ineq [THEN order_trans]) |
44133 | 154 |
|
155 |
lemma norm_triangle_lt: "norm(x) + norm(y) < e ==> norm(x + y) < e" |
|
44666 | 156 |
by (rule norm_triangle_ineq [THEN le_less_trans]) |
44133 | 157 |
|
158 |
lemma setsum_clauses: |
|
159 |
shows "setsum f {} = 0" |
|
160 |
and "finite S \<Longrightarrow> setsum f (insert x S) = |
|
161 |
(if x \<in> S then setsum f S else f x + setsum f S)" |
|
162 |
by (auto simp add: insert_absorb) |
|
163 |
||
164 |
lemma setsum_norm_le: |
|
165 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" |
|
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
166 |
assumes fg: "\<forall>x \<in> S. norm (f x) \<le> g x" |
44133 | 167 |
shows "norm (setsum f S) \<le> setsum g S" |
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
168 |
by (rule order_trans [OF norm_setsum setsum_mono], simp add: fg) |
44133 | 169 |
|
170 |
lemma setsum_norm_bound: |
|
171 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" |
|
172 |
assumes fS: "finite S" |
|
173 |
and K: "\<forall>x \<in> S. norm (f x) \<le> K" |
|
174 |
shows "norm (setsum f S) \<le> of_nat (card S) * K" |
|
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
175 |
using setsum_norm_le[OF K] setsum_constant[symmetric] |
44133 | 176 |
by simp |
177 |
||
178 |
lemma setsum_group: |
|
179 |
assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T" |
|
180 |
shows "setsum (\<lambda>y. setsum g {x. x\<in> S \<and> f x = y}) T = setsum g S" |
|
181 |
apply (subst setsum_image_gen[OF fS, of g f]) |
|
182 |
apply (rule setsum_mono_zero_right[OF fT fST]) |
|
183 |
by (auto intro: setsum_0') |
|
184 |
||
185 |
lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z" |
|
186 |
proof |
|
187 |
assume "\<forall>x. x \<bullet> y = x \<bullet> z" |
|
44454 | 188 |
hence "\<forall>x. x \<bullet> (y - z) = 0" by (simp add: inner_diff) |
44133 | 189 |
hence "(y - z) \<bullet> (y - z) = 0" .. |
190 |
thus "y = z" by simp |
|
191 |
qed simp |
|
192 |
||
193 |
lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y" |
|
194 |
proof |
|
195 |
assume "\<forall>z. x \<bullet> z = y \<bullet> z" |
|
44454 | 196 |
hence "\<forall>z. (x - y) \<bullet> z = 0" by (simp add: inner_diff) |
44133 | 197 |
hence "(x - y) \<bullet> (x - y) = 0" .. |
198 |
thus "x = y" by simp |
|
199 |
qed simp |
|
200 |
||
201 |
subsection{* Orthogonality. *} |
|
202 |
||
203 |
context real_inner |
|
204 |
begin |
|
205 |
||
206 |
definition "orthogonal x y \<longleftrightarrow> (x \<bullet> y = 0)" |
|
207 |
||
208 |
lemma orthogonal_clauses: |
|
209 |
"orthogonal a 0" |
|
210 |
"orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)" |
|
211 |
"orthogonal a x \<Longrightarrow> orthogonal a (-x)" |
|
212 |
"orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)" |
|
213 |
"orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)" |
|
214 |
"orthogonal 0 a" |
|
215 |
"orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a" |
|
216 |
"orthogonal x a \<Longrightarrow> orthogonal (-x) a" |
|
217 |
"orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a" |
|
218 |
"orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a" |
|
44666 | 219 |
unfolding orthogonal_def inner_add inner_diff by auto |
220 |
||
44133 | 221 |
end |
222 |
||
223 |
lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x" |
|
224 |
by (simp add: orthogonal_def inner_commute) |
|
225 |
||
226 |
subsection{* Linear functions. *} |
|
227 |
||
228 |
definition |
|
229 |
linear :: "('a::real_vector \<Rightarrow> 'b::real_vector) \<Rightarrow> bool" where |
|
230 |
"linear f \<longleftrightarrow> (\<forall>x y. f(x + y) = f x + f y) \<and> (\<forall>c x. f(c *\<^sub>R x) = c *\<^sub>R f x)" |
|
231 |
||
232 |
lemma linearI: assumes "\<And>x y. f (x + y) = f x + f y" "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" |
|
233 |
shows "linear f" using assms unfolding linear_def by auto |
|
234 |
||
235 |
lemma linear_compose_cmul: "linear f ==> linear (\<lambda>x. c *\<^sub>R f x)" |
|
236 |
by (simp add: linear_def algebra_simps) |
|
237 |
||
238 |
lemma linear_compose_neg: "linear f ==> linear (\<lambda>x. -(f(x)))" |
|
239 |
by (simp add: linear_def) |
|
240 |
||
241 |
lemma linear_compose_add: "linear f \<Longrightarrow> linear g ==> linear (\<lambda>x. f(x) + g(x))" |
|
242 |
by (simp add: linear_def algebra_simps) |
|
243 |
||
244 |
lemma linear_compose_sub: "linear f \<Longrightarrow> linear g ==> linear (\<lambda>x. f x - g x)" |
|
245 |
by (simp add: linear_def algebra_simps) |
|
246 |
||
247 |
lemma linear_compose: "linear f \<Longrightarrow> linear g ==> linear (g o f)" |
|
248 |
by (simp add: linear_def) |
|
249 |
||
250 |
lemma linear_id: "linear id" by (simp add: linear_def id_def) |
|
251 |
||
252 |
lemma linear_zero: "linear (\<lambda>x. 0)" by (simp add: linear_def) |
|
253 |
||
254 |
lemma linear_compose_setsum: |
|
255 |
assumes fS: "finite S" and lS: "\<forall>a \<in> S. linear (f a)" |
|
256 |
shows "linear(\<lambda>x. setsum (\<lambda>a. f a x) S)" |
|
257 |
using lS |
|
258 |
apply (induct rule: finite_induct[OF fS]) |
|
259 |
by (auto simp add: linear_zero intro: linear_compose_add) |
|
260 |
||
261 |
lemma linear_0: "linear f \<Longrightarrow> f 0 = 0" |
|
262 |
unfolding linear_def |
|
263 |
apply clarsimp |
|
264 |
apply (erule allE[where x="0::'a"]) |
|
265 |
apply simp |
|
266 |
done |
|
267 |
||
268 |
lemma linear_cmul: "linear f ==> f(c *\<^sub>R x) = c *\<^sub>R f x" by (simp add: linear_def) |
|
269 |
||
270 |
lemma linear_neg: "linear f ==> f (-x) = - f x" |
|
271 |
using linear_cmul [where c="-1"] by simp |
|
272 |
||
273 |
lemma linear_add: "linear f ==> f(x + y) = f x + f y" by (metis linear_def) |
|
274 |
||
275 |
lemma linear_sub: "linear f ==> f(x - y) = f x - f y" |
|
276 |
by (simp add: diff_minus linear_add linear_neg) |
|
277 |
||
278 |
lemma linear_setsum: |
|
279 |
assumes lf: "linear f" and fS: "finite S" |
|
280 |
shows "f (setsum g S) = setsum (f o g) S" |
|
281 |
proof (induct rule: finite_induct[OF fS]) |
|
282 |
case 1 thus ?case by (simp add: linear_0[OF lf]) |
|
283 |
next |
|
284 |
case (2 x F) |
|
285 |
have "f (setsum g (insert x F)) = f (g x + setsum g F)" using "2.hyps" |
|
286 |
by simp |
|
287 |
also have "\<dots> = f (g x) + f (setsum g F)" using linear_add[OF lf] by simp |
|
288 |
also have "\<dots> = setsum (f o g) (insert x F)" using "2.hyps" by simp |
|
289 |
finally show ?case . |
|
290 |
qed |
|
291 |
||
292 |
lemma linear_setsum_mul: |
|
293 |
assumes lf: "linear f" and fS: "finite S" |
|
294 |
shows "f (setsum (\<lambda>i. c i *\<^sub>R v i) S) = setsum (\<lambda>i. c i *\<^sub>R f (v i)) S" |
|
295 |
using linear_setsum[OF lf fS, of "\<lambda>i. c i *\<^sub>R v i" , unfolded o_def] |
|
296 |
linear_cmul[OF lf] by simp |
|
297 |
||
298 |
lemma linear_injective_0: |
|
299 |
assumes lf: "linear f" |
|
300 |
shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)" |
|
301 |
proof- |
|
302 |
have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)" by (simp add: inj_on_def) |
|
303 |
also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)" by simp |
|
304 |
also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)" |
|
305 |
by (simp add: linear_sub[OF lf]) |
|
306 |
also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)" by auto |
|
307 |
finally show ?thesis . |
|
308 |
qed |
|
309 |
||
310 |
subsection{* Bilinear functions. *} |
|
311 |
||
312 |
definition "bilinear f \<longleftrightarrow> (\<forall>x. linear(\<lambda>y. f x y)) \<and> (\<forall>y. linear(\<lambda>x. f x y))" |
|
313 |
||
314 |
lemma bilinear_ladd: "bilinear h ==> h (x + y) z = (h x z) + (h y z)" |
|
315 |
by (simp add: bilinear_def linear_def) |
|
316 |
lemma bilinear_radd: "bilinear h ==> h x (y + z) = (h x y) + (h x z)" |
|
317 |
by (simp add: bilinear_def linear_def) |
|
318 |
||
319 |
lemma bilinear_lmul: "bilinear h ==> h (c *\<^sub>R x) y = c *\<^sub>R (h x y)" |
|
320 |
by (simp add: bilinear_def linear_def) |
|
321 |
||
322 |
lemma bilinear_rmul: "bilinear h ==> h x (c *\<^sub>R y) = c *\<^sub>R (h x y)" |
|
323 |
by (simp add: bilinear_def linear_def) |
|
324 |
||
325 |
lemma bilinear_lneg: "bilinear h ==> h (- x) y = -(h x y)" |
|
326 |
by (simp only: scaleR_minus1_left [symmetric] bilinear_lmul) |
|
327 |
||
328 |
lemma bilinear_rneg: "bilinear h ==> h x (- y) = - h x y" |
|
329 |
by (simp only: scaleR_minus1_left [symmetric] bilinear_rmul) |
|
330 |
||
331 |
lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0" |
|
332 |
using add_imp_eq[of x y 0] by auto |
|
333 |
||
334 |
lemma bilinear_lzero: |
|
335 |
assumes bh: "bilinear h" shows "h 0 x = 0" |
|
336 |
using bilinear_ladd[OF bh, of 0 0 x] |
|
337 |
by (simp add: eq_add_iff field_simps) |
|
338 |
||
339 |
lemma bilinear_rzero: |
|
340 |
assumes bh: "bilinear h" shows "h x 0 = 0" |
|
341 |
using bilinear_radd[OF bh, of x 0 0 ] |
|
342 |
by (simp add: eq_add_iff field_simps) |
|
343 |
||
344 |
lemma bilinear_lsub: "bilinear h ==> h (x - y) z = h x z - h y z" |
|
345 |
by (simp add: diff_minus bilinear_ladd bilinear_lneg) |
|
346 |
||
347 |
lemma bilinear_rsub: "bilinear h ==> h z (x - y) = h z x - h z y" |
|
348 |
by (simp add: diff_minus bilinear_radd bilinear_rneg) |
|
349 |
||
350 |
lemma bilinear_setsum: |
|
351 |
assumes bh: "bilinear h" and fS: "finite S" and fT: "finite T" |
|
352 |
shows "h (setsum f S) (setsum g T) = setsum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) " |
|
353 |
proof- |
|
354 |
have "h (setsum f S) (setsum g T) = setsum (\<lambda>x. h (f x) (setsum g T)) S" |
|
355 |
apply (rule linear_setsum[unfolded o_def]) |
|
356 |
using bh fS by (auto simp add: bilinear_def) |
|
357 |
also have "\<dots> = setsum (\<lambda>x. setsum (\<lambda>y. h (f x) (g y)) T) S" |
|
358 |
apply (rule setsum_cong, simp) |
|
359 |
apply (rule linear_setsum[unfolded o_def]) |
|
360 |
using bh fT by (auto simp add: bilinear_def) |
|
361 |
finally show ?thesis unfolding setsum_cartesian_product . |
|
362 |
qed |
|
363 |
||
364 |
subsection{* Adjoints. *} |
|
365 |
||
366 |
definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)" |
|
367 |
||
368 |
lemma adjoint_unique: |
|
369 |
assumes "\<forall>x y. inner (f x) y = inner x (g y)" |
|
370 |
shows "adjoint f = g" |
|
371 |
unfolding adjoint_def |
|
372 |
proof (rule some_equality) |
|
373 |
show "\<forall>x y. inner (f x) y = inner x (g y)" using assms . |
|
374 |
next |
|
375 |
fix h assume "\<forall>x y. inner (f x) y = inner x (h y)" |
|
376 |
hence "\<forall>x y. inner x (g y) = inner x (h y)" using assms by simp |
|
377 |
hence "\<forall>x y. inner x (g y - h y) = 0" by (simp add: inner_diff_right) |
|
378 |
hence "\<forall>y. inner (g y - h y) (g y - h y) = 0" by simp |
|
379 |
hence "\<forall>y. h y = g y" by simp |
|
380 |
thus "h = g" by (simp add: ext) |
|
381 |
qed |
|
382 |
||
383 |
lemma choice_iff: "(\<forall>x. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x. P x (f x))" by metis |
|
384 |
||
385 |
subsection{* Interlude: Some properties of real sets *} |
|
386 |
||
387 |
lemma seq_mono_lemma: assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n" and "\<forall>n \<ge> m. e n <= e m" |
|
388 |
shows "\<forall>n \<ge> m. d n < e m" |
|
389 |
using assms apply auto |
|
390 |
apply (erule_tac x="n" in allE) |
|
391 |
apply (erule_tac x="n" in allE) |
|
392 |
apply auto |
|
393 |
done |
|
394 |
||
395 |
||
396 |
lemma infinite_enumerate: assumes fS: "infinite S" |
|
397 |
shows "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> S)" |
|
398 |
unfolding subseq_def |
|
399 |
using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto |
|
400 |
||
401 |
lemma approachable_lt_le: "(\<exists>(d::real)>0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)" |
|
402 |
apply auto |
|
403 |
apply (rule_tac x="d/2" in exI) |
|
404 |
apply auto |
|
405 |
done |
|
406 |
||
407 |
||
408 |
lemma triangle_lemma: |
|
409 |
assumes x: "0 <= (x::real)" and y:"0 <= y" and z: "0 <= z" and xy: "x^2 <= y^2 + z^2" |
|
410 |
shows "x <= y + z" |
|
411 |
proof- |
|
412 |
have "y^2 + z^2 \<le> y^2 + 2*y*z + z^2" using z y by (simp add: mult_nonneg_nonneg) |
|
413 |
with xy have th: "x ^2 \<le> (y+z)^2" by (simp add: power2_eq_square field_simps) |
|
414 |
from y z have yz: "y + z \<ge> 0" by arith |
|
415 |
from power2_le_imp_le[OF th yz] show ?thesis . |
|
416 |
qed |
|
417 |
||
418 |
subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *} |
|
419 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
420 |
definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75) where |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
421 |
"S hull s = Inter {t. S t \<and> s \<subseteq> t}" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
422 |
|
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
423 |
lemma hull_same: "S s \<Longrightarrow> S hull s = s" |
44133 | 424 |
unfolding hull_def by auto |
425 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
426 |
lemma hull_in: "(\<And>T. Ball T S ==> S (Inter T)) ==> S (S hull s)" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
427 |
unfolding hull_def Ball_def by auto |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
428 |
|
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
429 |
lemma hull_eq: "(\<And>T. Ball T S ==> S (Inter T)) ==> (S hull s) = s \<longleftrightarrow> S s" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
430 |
using hull_same[of S s] hull_in[of S s] by metis |
44133 | 431 |
|
432 |
||
433 |
lemma hull_hull: "S hull (S hull s) = S hull s" |
|
434 |
unfolding hull_def by blast |
|
435 |
||
436 |
lemma hull_subset[intro]: "s \<subseteq> (S hull s)" |
|
437 |
unfolding hull_def by blast |
|
438 |
||
439 |
lemma hull_mono: " s \<subseteq> t ==> (S hull s) \<subseteq> (S hull t)" |
|
440 |
unfolding hull_def by blast |
|
441 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
442 |
lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x ==> (T hull s) \<subseteq> (S hull s)" |
44133 | 443 |
unfolding hull_def by blast |
444 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
445 |
lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t ==> (S hull s) \<subseteq> t" |
44133 | 446 |
unfolding hull_def by blast |
447 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
448 |
lemma subset_hull: "S t ==> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t" |
44133 | 449 |
unfolding hull_def by blast |
450 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
451 |
lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' ==> t \<subseteq> t') |
44133 | 452 |
==> (S hull s = t)" |
453 |
unfolding hull_def by auto |
|
454 |
||
455 |
lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x" |
|
456 |
using hull_minimal[of S "{x. P x}" Q] |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
457 |
by (auto simp add: subset_eq) |
44133 | 458 |
|
459 |
lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S" by (metis hull_subset subset_eq) |
|
460 |
||
461 |
lemma hull_union_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))" |
|
462 |
unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2) |
|
463 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
464 |
lemma hull_union: assumes T: "\<And>T. Ball T S ==> S (Inter T)" |
44133 | 465 |
shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)" |
466 |
apply rule |
|
467 |
apply (rule hull_mono) |
|
468 |
unfolding Un_subset_iff |
|
469 |
apply (metis hull_subset Un_upper1 Un_upper2 subset_trans) |
|
470 |
apply (rule hull_minimal) |
|
471 |
apply (metis hull_union_subset) |
|
472 |
apply (metis hull_in T) |
|
473 |
done |
|
474 |
||
475 |
lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> (S hull (insert a s) = S hull s)" |
|
476 |
unfolding hull_def by blast |
|
477 |
||
478 |
lemma hull_redundant: "a \<in> (S hull s) ==> (S hull (insert a s) = S hull s)" |
|
479 |
by (metis hull_redundant_eq) |
|
480 |
||
44666 | 481 |
subsection {* Archimedean properties and useful consequences *} |
44133 | 482 |
|
483 |
lemma real_arch_simple: "\<exists>n. x <= real (n::nat)" |
|
44666 | 484 |
unfolding real_of_nat_def by (rule ex_le_of_nat) |
44133 | 485 |
|
486 |
lemma real_arch_inv: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" |
|
487 |
using reals_Archimedean |
|
488 |
apply (auto simp add: field_simps) |
|
489 |
apply (subgoal_tac "inverse (real n) > 0") |
|
490 |
apply arith |
|
491 |
apply simp |
|
492 |
done |
|
493 |
||
494 |
lemma real_pow_lbound: "0 <= x ==> 1 + real n * x <= (1 + x) ^ n" |
|
495 |
proof(induct n) |
|
496 |
case 0 thus ?case by simp |
|
497 |
next |
|
498 |
case (Suc n) |
|
499 |
hence h: "1 + real n * x \<le> (1 + x) ^ n" by simp |
|
500 |
from h have p: "1 \<le> (1 + x) ^ n" using Suc.prems by simp |
|
501 |
from h have "1 + real n * x + x \<le> (1 + x) ^ n + x" by simp |
|
502 |
also have "\<dots> \<le> (1 + x) ^ Suc n" apply (subst diff_le_0_iff_le[symmetric]) |
|
503 |
apply (simp add: field_simps) |
|
504 |
using mult_left_mono[OF p Suc.prems] by simp |
|
505 |
finally show ?case by (simp add: real_of_nat_Suc field_simps) |
|
506 |
qed |
|
507 |
||
508 |
lemma real_arch_pow: assumes x: "1 < (x::real)" shows "\<exists>n. y < x^n" |
|
509 |
proof- |
|
510 |
from x have x0: "x - 1 > 0" by arith |
|
44666 | 511 |
from reals_Archimedean3[OF x0, rule_format, of y] |
44133 | 512 |
obtain n::nat where n:"y < real n * (x - 1)" by metis |
513 |
from x0 have x00: "x- 1 \<ge> 0" by arith |
|
514 |
from real_pow_lbound[OF x00, of n] n |
|
515 |
have "y < x^n" by auto |
|
516 |
then show ?thesis by metis |
|
517 |
qed |
|
518 |
||
519 |
lemma real_arch_pow2: "\<exists>n. (x::real) < 2^ n" |
|
520 |
using real_arch_pow[of 2 x] by simp |
|
521 |
||
522 |
lemma real_arch_pow_inv: assumes y: "(y::real) > 0" and x1: "x < 1" |
|
523 |
shows "\<exists>n. x^n < y" |
|
524 |
proof- |
|
525 |
{assume x0: "x > 0" |
|
526 |
from x0 x1 have ix: "1 < 1/x" by (simp add: field_simps) |
|
527 |
from real_arch_pow[OF ix, of "1/y"] |
|
528 |
obtain n where n: "1/y < (1/x)^n" by blast |
|
529 |
then |
|
530 |
have ?thesis using y x0 by (auto simp add: field_simps power_divide) } |
|
531 |
moreover |
|
532 |
{assume "\<not> x > 0" with y x1 have ?thesis apply auto by (rule exI[where x=1], auto)} |
|
533 |
ultimately show ?thesis by metis |
|
534 |
qed |
|
535 |
||
536 |
lemma forall_pos_mono: "(\<And>d e::real. d < e \<Longrightarrow> P d ==> P e) \<Longrightarrow> (\<And>n::nat. n \<noteq> 0 ==> P(inverse(real n))) \<Longrightarrow> (\<And>e. 0 < e ==> P e)" |
|
537 |
by (metis real_arch_inv) |
|
538 |
||
539 |
lemma forall_pos_mono_1: "(\<And>d e::real. d < e \<Longrightarrow> P d ==> P e) \<Longrightarrow> (\<And>n. P(inverse(real (Suc n)))) ==> 0 < e ==> P e" |
|
540 |
apply (rule forall_pos_mono) |
|
541 |
apply auto |
|
542 |
apply (atomize) |
|
543 |
apply (erule_tac x="n - 1" in allE) |
|
544 |
apply auto |
|
545 |
done |
|
546 |
||
547 |
lemma real_archimedian_rdiv_eq_0: assumes x0: "x \<ge> 0" and c: "c \<ge> 0" and xc: "\<forall>(m::nat)>0. real m * x \<le> c" |
|
548 |
shows "x = 0" |
|
549 |
proof- |
|
550 |
{assume "x \<noteq> 0" with x0 have xp: "x > 0" by arith |
|
44666 | 551 |
from reals_Archimedean3[OF xp, rule_format, of c] |
552 |
obtain n::nat where n: "c < real n * x" by blast |
|
44133 | 553 |
with xc[rule_format, of n] have "n = 0" by arith |
554 |
with n c have False by simp} |
|
555 |
then show ?thesis by blast |
|
556 |
qed |
|
557 |
||
558 |
subsection{* A bit of linear algebra. *} |
|
559 |
||
560 |
definition (in real_vector) |
|
561 |
subspace :: "'a set \<Rightarrow> bool" where |
|
562 |
"subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x\<in> S. \<forall>y \<in>S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in>S. c *\<^sub>R x \<in>S )" |
|
563 |
||
564 |
definition (in real_vector) "span S = (subspace hull S)" |
|
565 |
definition (in real_vector) "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span(S - {a}))" |
|
566 |
abbreviation (in real_vector) "independent s == ~(dependent s)" |
|
567 |
||
568 |
text {* Closure properties of subspaces. *} |
|
569 |
||
570 |
lemma subspace_UNIV[simp]: "subspace(UNIV)" by (simp add: subspace_def) |
|
571 |
||
572 |
lemma (in real_vector) subspace_0: "subspace S ==> 0 \<in> S" by (metis subspace_def) |
|
573 |
||
574 |
lemma (in real_vector) subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S ==> x + y \<in> S" |
|
575 |
by (metis subspace_def) |
|
576 |
||
577 |
lemma (in real_vector) subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *\<^sub>R x \<in> S" |
|
578 |
by (metis subspace_def) |
|
579 |
||
580 |
lemma subspace_neg: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> - x \<in> S" |
|
581 |
by (metis scaleR_minus1_left subspace_mul) |
|
582 |
||
583 |
lemma subspace_sub: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S" |
|
584 |
by (metis diff_minus subspace_add subspace_neg) |
|
585 |
||
586 |
lemma (in real_vector) subspace_setsum: |
|
587 |
assumes sA: "subspace A" and fB: "finite B" |
|
588 |
and f: "\<forall>x\<in> B. f x \<in> A" |
|
589 |
shows "setsum f B \<in> A" |
|
590 |
using fB f sA |
|
591 |
apply(induct rule: finite_induct[OF fB]) |
|
592 |
by (simp add: subspace_def sA, auto simp add: sA subspace_add) |
|
593 |
||
594 |
lemma subspace_linear_image: |
|
595 |
assumes lf: "linear f" and sS: "subspace S" |
|
596 |
shows "subspace(f ` S)" |
|
597 |
using lf sS linear_0[OF lf] |
|
598 |
unfolding linear_def subspace_def |
|
599 |
apply (auto simp add: image_iff) |
|
600 |
apply (rule_tac x="x + y" in bexI, auto) |
|
601 |
apply (rule_tac x="c *\<^sub>R x" in bexI, auto) |
|
602 |
done |
|
603 |
||
44521 | 604 |
lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)" |
605 |
by (auto simp add: subspace_def linear_def linear_0[of f]) |
|
606 |
||
44133 | 607 |
lemma subspace_linear_preimage: "linear f ==> subspace S ==> subspace {x. f x \<in> S}" |
608 |
by (auto simp add: subspace_def linear_def linear_0[of f]) |
|
609 |
||
610 |
lemma subspace_trivial: "subspace {0}" |
|
611 |
by (simp add: subspace_def) |
|
612 |
||
613 |
lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B ==> subspace (A \<inter> B)" |
|
614 |
by (simp add: subspace_def) |
|
615 |
||
44521 | 616 |
lemma subspace_Times: "\<lbrakk>subspace A; subspace B\<rbrakk> \<Longrightarrow> subspace (A \<times> B)" |
617 |
unfolding subspace_def zero_prod_def by simp |
|
618 |
||
619 |
text {* Properties of span. *} |
|
620 |
||
44133 | 621 |
lemma (in real_vector) span_mono: "A \<subseteq> B ==> span A \<subseteq> span B" |
622 |
by (metis span_def hull_mono) |
|
623 |
||
624 |
lemma (in real_vector) subspace_span: "subspace(span S)" |
|
625 |
unfolding span_def |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
626 |
apply (rule hull_in) |
44133 | 627 |
apply (simp only: subspace_def Inter_iff Int_iff subset_eq) |
628 |
apply auto |
|
629 |
done |
|
630 |
||
631 |
lemma (in real_vector) span_clauses: |
|
632 |
"a \<in> S ==> a \<in> span S" |
|
633 |
"0 \<in> span S" |
|
634 |
"x\<in> span S \<Longrightarrow> y \<in> span S ==> x + y \<in> span S" |
|
635 |
"x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S" |
|
636 |
by (metis span_def hull_subset subset_eq) |
|
637 |
(metis subspace_span subspace_def)+ |
|
638 |
||
44521 | 639 |
lemma span_unique: |
640 |
"\<lbrakk>S \<subseteq> T; subspace T; \<And>T'. \<lbrakk>S \<subseteq> T'; subspace T'\<rbrakk> \<Longrightarrow> T \<subseteq> T'\<rbrakk> \<Longrightarrow> span S = T" |
|
641 |
unfolding span_def by (rule hull_unique) |
|
642 |
||
643 |
lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T" |
|
644 |
unfolding span_def by (rule hull_minimal) |
|
645 |
||
646 |
lemma (in real_vector) span_induct: |
|
647 |
assumes x: "x \<in> span S" and P: "subspace P" and SP: "\<And>x. x \<in> S ==> x \<in> P" |
|
648 |
shows "x \<in> P" |
|
44133 | 649 |
proof- |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
650 |
from SP have SP': "S \<subseteq> P" by (simp add: subset_eq) |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
651 |
from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]] |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
652 |
show "x \<in> P" by (metis subset_eq) |
44133 | 653 |
qed |
654 |
||
655 |
lemma span_empty[simp]: "span {} = {0}" |
|
656 |
apply (simp add: span_def) |
|
657 |
apply (rule hull_unique) |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
658 |
apply (auto simp add: subspace_def) |
44133 | 659 |
done |
660 |
||
661 |
lemma (in real_vector) independent_empty[intro]: "independent {}" |
|
662 |
by (simp add: dependent_def) |
|
663 |
||
664 |
lemma dependent_single[simp]: |
|
665 |
"dependent {x} \<longleftrightarrow> x = 0" |
|
666 |
unfolding dependent_def by auto |
|
667 |
||
668 |
lemma (in real_vector) independent_mono: "independent A \<Longrightarrow> B \<subseteq> A ==> independent B" |
|
669 |
apply (clarsimp simp add: dependent_def span_mono) |
|
670 |
apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})") |
|
671 |
apply force |
|
672 |
apply (rule span_mono) |
|
673 |
apply auto |
|
674 |
done |
|
675 |
||
676 |
lemma (in real_vector) span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow> subspace B \<Longrightarrow> span A = B" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
677 |
by (metis order_antisym span_def hull_minimal) |
44133 | 678 |
|
679 |
lemma (in real_vector) span_induct': assumes SP: "\<forall>x \<in> S. P x" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
680 |
and P: "subspace {x. P x}" shows "\<forall>x \<in> span S. P x" |
44133 | 681 |
using span_induct SP P by blast |
682 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
683 |
inductive_set (in real_vector) span_induct_alt_help for S:: "'a set" |
44133 | 684 |
where |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
685 |
span_induct_alt_help_0: "0 \<in> span_induct_alt_help S" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
686 |
| span_induct_alt_help_S: "x \<in> S \<Longrightarrow> z \<in> span_induct_alt_help S \<Longrightarrow> (c *\<^sub>R x + z) \<in> span_induct_alt_help S" |
44133 | 687 |
|
688 |
lemma span_induct_alt': |
|
689 |
assumes h0: "h 0" and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" shows "\<forall>x \<in> span S. h x" |
|
690 |
proof- |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
691 |
{fix x:: "'a" assume x: "x \<in> span_induct_alt_help S" |
44133 | 692 |
have "h x" |
693 |
apply (rule span_induct_alt_help.induct[OF x]) |
|
694 |
apply (rule h0) |
|
695 |
apply (rule hS, assumption, assumption) |
|
696 |
done} |
|
697 |
note th0 = this |
|
698 |
{fix x assume x: "x \<in> span S" |
|
699 |
||
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
700 |
have "x \<in> span_induct_alt_help S" |
44133 | 701 |
proof(rule span_induct[where x=x and S=S]) |
702 |
show "x \<in> span S" using x . |
|
703 |
next |
|
704 |
fix x assume xS : "x \<in> S" |
|
705 |
from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1] |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
706 |
show "x \<in> span_induct_alt_help S" by simp |
44133 | 707 |
next |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
708 |
have "0 \<in> span_induct_alt_help S" by (rule span_induct_alt_help_0) |
44133 | 709 |
moreover |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
710 |
{fix x y assume h: "x \<in> span_induct_alt_help S" "y \<in> span_induct_alt_help S" |
44133 | 711 |
from h |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
712 |
have "(x + y) \<in> span_induct_alt_help S" |
44133 | 713 |
apply (induct rule: span_induct_alt_help.induct) |
714 |
apply simp |
|
715 |
unfolding add_assoc |
|
716 |
apply (rule span_induct_alt_help_S) |
|
717 |
apply assumption |
|
718 |
apply simp |
|
719 |
done} |
|
720 |
moreover |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
721 |
{fix c x assume xt: "x \<in> span_induct_alt_help S" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
722 |
then have "(c *\<^sub>R x) \<in> span_induct_alt_help S" |
44133 | 723 |
apply (induct rule: span_induct_alt_help.induct) |
724 |
apply (simp add: span_induct_alt_help_0) |
|
725 |
apply (simp add: scaleR_right_distrib) |
|
726 |
apply (rule span_induct_alt_help_S) |
|
727 |
apply assumption |
|
728 |
apply simp |
|
729 |
done |
|
730 |
} |
|
731 |
ultimately show "subspace (span_induct_alt_help S)" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
732 |
unfolding subspace_def Ball_def by blast |
44133 | 733 |
qed} |
734 |
with th0 show ?thesis by blast |
|
735 |
qed |
|
736 |
||
737 |
lemma span_induct_alt: |
|
738 |
assumes h0: "h 0" and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" and x: "x \<in> span S" |
|
739 |
shows "h x" |
|
740 |
using span_induct_alt'[of h S] h0 hS x by blast |
|
741 |
||
742 |
text {* Individual closure properties. *} |
|
743 |
||
744 |
lemma span_span: "span (span A) = span A" |
|
745 |
unfolding span_def hull_hull .. |
|
746 |
||
747 |
lemma (in real_vector) span_superset: "x \<in> S ==> x \<in> span S" by (metis span_clauses(1)) |
|
748 |
||
749 |
lemma (in real_vector) span_0: "0 \<in> span S" by (metis subspace_span subspace_0) |
|
750 |
||
751 |
lemma span_inc: "S \<subseteq> span S" |
|
752 |
by (metis subset_eq span_superset) |
|
753 |
||
754 |
lemma (in real_vector) dependent_0: assumes "0\<in>A" shows "dependent A" |
|
755 |
unfolding dependent_def apply(rule_tac x=0 in bexI) |
|
756 |
using assms span_0 by auto |
|
757 |
||
758 |
lemma (in real_vector) span_add: "x \<in> span S \<Longrightarrow> y \<in> span S ==> x + y \<in> span S" |
|
759 |
by (metis subspace_add subspace_span) |
|
760 |
||
761 |
lemma (in real_vector) span_mul: "x \<in> span S ==> (c *\<^sub>R x) \<in> span S" |
|
762 |
by (metis subspace_span subspace_mul) |
|
763 |
||
764 |
lemma span_neg: "x \<in> span S ==> - x \<in> span S" |
|
765 |
by (metis subspace_neg subspace_span) |
|
766 |
||
767 |
lemma span_sub: "x \<in> span S \<Longrightarrow> y \<in> span S ==> x - y \<in> span S" |
|
768 |
by (metis subspace_span subspace_sub) |
|
769 |
||
770 |
lemma (in real_vector) span_setsum: "finite A \<Longrightarrow> \<forall>x \<in> A. f x \<in> span S ==> setsum f A \<in> span S" |
|
771 |
by (rule subspace_setsum, rule subspace_span) |
|
772 |
||
773 |
lemma span_add_eq: "x \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S" |
|
774 |
apply (auto simp only: span_add span_sub) |
|
775 |
apply (subgoal_tac "(x + y) - x \<in> span S", simp) |
|
776 |
by (simp only: span_add span_sub) |
|
777 |
||
778 |
text {* Mapping under linear image. *} |
|
779 |
||
44521 | 780 |
lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B" |
781 |
by auto (* TODO: move *) |
|
782 |
||
783 |
lemma span_linear_image: |
|
784 |
assumes lf: "linear f" |
|
44133 | 785 |
shows "span (f ` S) = f ` (span S)" |
44521 | 786 |
proof (rule span_unique) |
787 |
show "f ` S \<subseteq> f ` span S" |
|
788 |
by (intro image_mono span_inc) |
|
789 |
show "subspace (f ` span S)" |
|
790 |
using lf subspace_span by (rule subspace_linear_image) |
|
791 |
next |
|
792 |
fix T assume "f ` S \<subseteq> T" and "subspace T" thus "f ` span S \<subseteq> T" |
|
793 |
unfolding image_subset_iff_subset_vimage |
|
794 |
by (intro span_minimal subspace_linear_vimage lf) |
|
795 |
qed |
|
796 |
||
797 |
lemma span_union: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)" |
|
798 |
proof (rule span_unique) |
|
799 |
show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)" |
|
800 |
by safe (force intro: span_clauses)+ |
|
801 |
next |
|
802 |
have "linear (\<lambda>(a, b). a + b)" |
|
803 |
by (simp add: linear_def scaleR_add_right) |
|
804 |
moreover have "subspace (span A \<times> span B)" |
|
805 |
by (intro subspace_Times subspace_span) |
|
806 |
ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))" |
|
807 |
by (rule subspace_linear_image) |
|
808 |
next |
|
809 |
fix T assume "A \<union> B \<subseteq> T" and "subspace T" |
|
810 |
thus "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T" |
|
811 |
by (auto intro!: subspace_add elim: span_induct) |
|
44133 | 812 |
qed |
813 |
||
814 |
text {* The key breakdown property. *} |
|
815 |
||
44521 | 816 |
lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)" |
817 |
proof (rule span_unique) |
|
818 |
show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)" |
|
819 |
by (fast intro: scaleR_one [symmetric]) |
|
820 |
show "subspace (range (\<lambda>k. k *\<^sub>R x))" |
|
821 |
unfolding subspace_def |
|
822 |
by (auto intro: scaleR_add_left [symmetric]) |
|
823 |
fix T assume "{x} \<subseteq> T" and "subspace T" thus "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T" |
|
824 |
unfolding subspace_def by auto |
|
825 |
qed |
|
826 |
||
827 |
lemma span_insert: |
|
828 |
"span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}" |
|
829 |
proof - |
|
830 |
have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}" |
|
831 |
unfolding span_union span_singleton |
|
832 |
apply safe |
|
833 |
apply (rule_tac x=k in exI, simp) |
|
834 |
apply (erule rev_image_eqI [OF SigmaI [OF rangeI]]) |
|
835 |
apply simp |
|
836 |
apply (rule right_minus) |
|
837 |
done |
|
838 |
thus ?thesis by simp |
|
839 |
qed |
|
840 |
||
44133 | 841 |
lemma span_breakdown: |
842 |
assumes bS: "b \<in> S" and aS: "a \<in> span S" |
|
44521 | 843 |
shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})" |
844 |
using assms span_insert [of b "S - {b}"] |
|
845 |
by (simp add: insert_absorb) |
|
44133 | 846 |
|
847 |
lemma span_breakdown_eq: |
|
44521 | 848 |
"x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. (x - k *\<^sub>R a) \<in> span S)" |
849 |
by (simp add: span_insert) |
|
44133 | 850 |
|
851 |
text {* Hence some "reversal" results. *} |
|
852 |
||
853 |
lemma in_span_insert: |
|
854 |
assumes a: "a \<in> span (insert b S)" and na: "a \<notin> span S" |
|
855 |
shows "b \<in> span (insert a S)" |
|
856 |
proof- |
|
857 |
from span_breakdown[of b "insert b S" a, OF insertI1 a] |
|
858 |
obtain k where k: "a - k*\<^sub>R b \<in> span (S - {b})" by auto |
|
859 |
{assume k0: "k = 0" |
|
860 |
with k have "a \<in> span S" |
|
861 |
apply (simp) |
|
862 |
apply (rule set_rev_mp) |
|
863 |
apply assumption |
|
864 |
apply (rule span_mono) |
|
865 |
apply blast |
|
866 |
done |
|
867 |
with na have ?thesis by blast} |
|
868 |
moreover |
|
869 |
{assume k0: "k \<noteq> 0" |
|
870 |
have eq: "b = (1/k) *\<^sub>R a - ((1/k) *\<^sub>R a - b)" by simp |
|
871 |
from k0 have eq': "(1/k) *\<^sub>R (a - k*\<^sub>R b) = (1/k) *\<^sub>R a - b" |
|
872 |
by (simp add: algebra_simps) |
|
873 |
from k have "(1/k) *\<^sub>R (a - k*\<^sub>R b) \<in> span (S - {b})" |
|
874 |
by (rule span_mul) |
|
875 |
hence th: "(1/k) *\<^sub>R a - b \<in> span (S - {b})" |
|
876 |
unfolding eq' . |
|
877 |
||
878 |
from k |
|
879 |
have ?thesis |
|
880 |
apply (subst eq) |
|
881 |
apply (rule span_sub) |
|
882 |
apply (rule span_mul) |
|
883 |
apply (rule span_superset) |
|
884 |
apply blast |
|
885 |
apply (rule set_rev_mp) |
|
886 |
apply (rule th) |
|
887 |
apply (rule span_mono) |
|
888 |
using na by blast} |
|
889 |
ultimately show ?thesis by blast |
|
890 |
qed |
|
891 |
||
892 |
lemma in_span_delete: |
|
893 |
assumes a: "a \<in> span S" |
|
894 |
and na: "a \<notin> span (S-{b})" |
|
895 |
shows "b \<in> span (insert a (S - {b}))" |
|
896 |
apply (rule in_span_insert) |
|
897 |
apply (rule set_rev_mp) |
|
898 |
apply (rule a) |
|
899 |
apply (rule span_mono) |
|
900 |
apply blast |
|
901 |
apply (rule na) |
|
902 |
done |
|
903 |
||
904 |
text {* Transitivity property. *} |
|
905 |
||
44521 | 906 |
lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S" |
907 |
unfolding span_def by (rule hull_redundant) |
|
908 |
||
44133 | 909 |
lemma span_trans: |
910 |
assumes x: "x \<in> span S" and y: "y \<in> span (insert x S)" |
|
911 |
shows "y \<in> span S" |
|
44521 | 912 |
using assms by (simp only: span_redundant) |
44133 | 913 |
|
914 |
lemma span_insert_0[simp]: "span (insert 0 S) = span S" |
|
44521 | 915 |
by (simp only: span_redundant span_0) |
44133 | 916 |
|
917 |
text {* An explicit expansion is sometimes needed. *} |
|
918 |
||
919 |
lemma span_explicit: |
|
920 |
"span P = {y. \<exists>S u. finite S \<and> S \<subseteq> P \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = y}" |
|
921 |
(is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}") |
|
922 |
proof- |
|
923 |
{fix x assume x: "x \<in> ?E" |
|
924 |
then obtain S u where fS: "finite S" and SP: "S\<subseteq>P" and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = x" |
|
925 |
by blast |
|
926 |
have "x \<in> span P" |
|
927 |
unfolding u[symmetric] |
|
928 |
apply (rule span_setsum[OF fS]) |
|
929 |
using span_mono[OF SP] |
|
930 |
by (auto intro: span_superset span_mul)} |
|
931 |
moreover |
|
932 |
have "\<forall>x \<in> span P. x \<in> ?E" |
|
933 |
proof(rule span_induct_alt') |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
934 |
show "0 \<in> Collect ?h" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
935 |
unfolding mem_Collect_eq |
44133 | 936 |
apply (rule exI[where x="{}"]) by simp |
937 |
next |
|
938 |
fix c x y |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
939 |
assume x: "x \<in> P" and hy: "y \<in> Collect ?h" |
44133 | 940 |
from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P" |
941 |
and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" by blast |
|
942 |
let ?S = "insert x S" |
|
943 |
let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c) |
|
944 |
else u y" |
|
945 |
from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P" by blast+ |
|
946 |
{assume xS: "x \<in> S" |
|
947 |
have S1: "S = (S - {x}) \<union> {x}" |
|
948 |
and Sss:"finite (S - {x})" "finite {x}" "(S -{x}) \<inter> {x} = {}" using xS fS by auto |
|
949 |
have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S =(\<Sum>v\<in>S - {x}. u v *\<^sub>R v) + (u x + c) *\<^sub>R x" |
|
950 |
using xS |
|
951 |
by (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]] |
|
952 |
setsum_clauses(2)[OF fS] cong del: if_weak_cong) |
|
953 |
also have "\<dots> = (\<Sum>v\<in>S. u v *\<^sub>R v) + c *\<^sub>R x" |
|
954 |
apply (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]]) |
|
955 |
by (simp add: algebra_simps) |
|
956 |
also have "\<dots> = c*\<^sub>R x + y" |
|
957 |
by (simp add: add_commute u) |
|
958 |
finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = c*\<^sub>R x + y" . |
|
959 |
then have "?Q ?S ?u (c*\<^sub>R x + y)" using th0 by blast} |
|
960 |
moreover |
|
961 |
{assume xS: "x \<notin> S" |
|
962 |
have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *\<^sub>R v) = y" |
|
963 |
unfolding u[symmetric] |
|
964 |
apply (rule setsum_cong2) |
|
965 |
using xS by auto |
|
966 |
have "?Q ?S ?u (c*\<^sub>R x + y)" using fS xS th0 |
|
967 |
by (simp add: th00 setsum_clauses add_commute cong del: if_weak_cong)} |
|
968 |
ultimately have "?Q ?S ?u (c*\<^sub>R x + y)" |
|
969 |
by (cases "x \<in> S", simp, simp) |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
970 |
then show "(c*\<^sub>R x + y) \<in> Collect ?h" |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
971 |
unfolding mem_Collect_eq |
44133 | 972 |
apply - |
973 |
apply (rule exI[where x="?S"]) |
|
974 |
apply (rule exI[where x="?u"]) by metis |
|
975 |
qed |
|
976 |
ultimately show ?thesis by blast |
|
977 |
qed |
|
978 |
||
979 |
lemma dependent_explicit: |
|
980 |
"dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>v\<in>S. u v \<noteq> 0 \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = 0))" (is "?lhs = ?rhs") |
|
981 |
proof- |
|
982 |
{assume dP: "dependent P" |
|
983 |
then obtain a S u where aP: "a \<in> P" and fS: "finite S" |
|
984 |
and SP: "S \<subseteq> P - {a}" and ua: "setsum (\<lambda>v. u v *\<^sub>R v) S = a" |
|
985 |
unfolding dependent_def span_explicit by blast |
|
986 |
let ?S = "insert a S" |
|
987 |
let ?u = "\<lambda>y. if y = a then - 1 else u y" |
|
988 |
let ?v = a |
|
989 |
from aP SP have aS: "a \<notin> S" by blast |
|
990 |
from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0" by auto |
|
991 |
have s0: "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = 0" |
|
992 |
using fS aS |
|
993 |
apply (simp add: setsum_clauses field_simps) |
|
994 |
apply (subst (2) ua[symmetric]) |
|
995 |
apply (rule setsum_cong2) |
|
996 |
by auto |
|
997 |
with th0 have ?rhs |
|
998 |
apply - |
|
999 |
apply (rule exI[where x= "?S"]) |
|
1000 |
apply (rule exI[where x= "?u"]) |
|
1001 |
by clarsimp} |
|
1002 |
moreover |
|
1003 |
{fix S u v assume fS: "finite S" |
|
1004 |
and SP: "S \<subseteq> P" and vS: "v \<in> S" and uv: "u v \<noteq> 0" |
|
1005 |
and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = 0" |
|
1006 |
let ?a = v |
|
1007 |
let ?S = "S - {v}" |
|
1008 |
let ?u = "\<lambda>i. (- u i) / u v" |
|
1009 |
have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P" using fS SP vS by auto |
|
1010 |
have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = setsum (\<lambda>v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v" |
|
1011 |
using fS vS uv |
|
1012 |
by (simp add: setsum_diff1 divide_inverse field_simps) |
|
1013 |
also have "\<dots> = ?a" |
|
1014 |
unfolding scaleR_right.setsum [symmetric] u |
|
1015 |
using uv by simp |
|
1016 |
finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = ?a" . |
|
1017 |
with th0 have ?lhs |
|
1018 |
unfolding dependent_def span_explicit |
|
1019 |
apply - |
|
1020 |
apply (rule bexI[where x= "?a"]) |
|
1021 |
apply (simp_all del: scaleR_minus_left) |
|
1022 |
apply (rule exI[where x= "?S"]) |
|
1023 |
by (auto simp del: scaleR_minus_left)} |
|
1024 |
ultimately show ?thesis by blast |
|
1025 |
qed |
|
1026 |
||
1027 |
||
1028 |
lemma span_finite: |
|
1029 |
assumes fS: "finite S" |
|
1030 |
shows "span S = {y. \<exists>u. setsum (\<lambda>v. u v *\<^sub>R v) S = y}" |
|
1031 |
(is "_ = ?rhs") |
|
1032 |
proof- |
|
1033 |
{fix y assume y: "y \<in> span S" |
|
1034 |
from y obtain S' u where fS': "finite S'" and SS': "S' \<subseteq> S" and |
|
1035 |
u: "setsum (\<lambda>v. u v *\<^sub>R v) S' = y" unfolding span_explicit by blast |
|
1036 |
let ?u = "\<lambda>x. if x \<in> S' then u x else 0" |
|
1037 |
have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = setsum (\<lambda>v. u v *\<^sub>R v) S'" |
|
1038 |
using SS' fS by (auto intro!: setsum_mono_zero_cong_right) |
|
1039 |
hence "setsum (\<lambda>v. ?u v *\<^sub>R v) S = y" by (metis u) |
|
1040 |
hence "y \<in> ?rhs" by auto} |
|
1041 |
moreover |
|
1042 |
{fix y u assume u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" |
|
1043 |
then have "y \<in> span S" using fS unfolding span_explicit by auto} |
|
1044 |
ultimately show ?thesis by blast |
|
1045 |
qed |
|
1046 |
||
1047 |
text {* This is useful for building a basis step-by-step. *} |
|
1048 |
||
1049 |
lemma independent_insert: |
|
1050 |
"independent(insert a S) \<longleftrightarrow> |
|
1051 |
(if a \<in> S then independent S |
|
1052 |
else independent S \<and> a \<notin> span S)" (is "?lhs \<longleftrightarrow> ?rhs") |
|
1053 |
proof- |
|
1054 |
{assume aS: "a \<in> S" |
|
1055 |
hence ?thesis using insert_absorb[OF aS] by simp} |
|
1056 |
moreover |
|
1057 |
{assume aS: "a \<notin> S" |
|
1058 |
{assume i: ?lhs |
|
1059 |
then have ?rhs using aS |
|
1060 |
apply simp |
|
1061 |
apply (rule conjI) |
|
1062 |
apply (rule independent_mono) |
|
1063 |
apply assumption |
|
1064 |
apply blast |
|
1065 |
by (simp add: dependent_def)} |
|
1066 |
moreover |
|
1067 |
{assume i: ?rhs |
|
1068 |
have ?lhs using i aS |
|
1069 |
apply simp |
|
1070 |
apply (auto simp add: dependent_def) |
|
1071 |
apply (case_tac "aa = a", auto) |
|
1072 |
apply (subgoal_tac "insert a S - {aa} = insert a (S - {aa})") |
|
1073 |
apply simp |
|
1074 |
apply (subgoal_tac "a \<in> span (insert aa (S - {aa}))") |
|
1075 |
apply (subgoal_tac "insert aa (S - {aa}) = S") |
|
1076 |
apply simp |
|
1077 |
apply blast |
|
1078 |
apply (rule in_span_insert) |
|
1079 |
apply assumption |
|
1080 |
apply blast |
|
1081 |
apply blast |
|
1082 |
done} |
|
1083 |
ultimately have ?thesis by blast} |
|
1084 |
ultimately show ?thesis by blast |
|
1085 |
qed |
|
1086 |
||
1087 |
text {* The degenerate case of the Exchange Lemma. *} |
|
1088 |
||
1089 |
lemma mem_delete: "x \<in> (A - {a}) \<longleftrightarrow> x \<noteq> a \<and> x \<in> A" |
|
1090 |
by blast |
|
1091 |
||
1092 |
lemma spanning_subset_independent: |
|
1093 |
assumes BA: "B \<subseteq> A" and iA: "independent A" |
|
1094 |
and AsB: "A \<subseteq> span B" |
|
1095 |
shows "A = B" |
|
1096 |
proof |
|
1097 |
from BA show "B \<subseteq> A" . |
|
1098 |
next |
|
1099 |
from span_mono[OF BA] span_mono[OF AsB] |
|
1100 |
have sAB: "span A = span B" unfolding span_span by blast |
|
1101 |
||
1102 |
{fix x assume x: "x \<in> A" |
|
1103 |
from iA have th0: "x \<notin> span (A - {x})" |
|
1104 |
unfolding dependent_def using x by blast |
|
1105 |
from x have xsA: "x \<in> span A" by (blast intro: span_superset) |
|
1106 |
have "A - {x} \<subseteq> A" by blast |
|
1107 |
hence th1:"span (A - {x}) \<subseteq> span A" by (metis span_mono) |
|
1108 |
{assume xB: "x \<notin> B" |
|
1109 |
from xB BA have "B \<subseteq> A -{x}" by blast |
|
1110 |
hence "span B \<subseteq> span (A - {x})" by (metis span_mono) |
|
1111 |
with th1 th0 sAB have "x \<notin> span A" by blast |
|
1112 |
with x have False by (metis span_superset)} |
|
1113 |
then have "x \<in> B" by blast} |
|
1114 |
then show "A \<subseteq> B" by blast |
|
1115 |
qed |
|
1116 |
||
1117 |
text {* The general case of the Exchange Lemma, the key to what follows. *} |
|
1118 |
||
1119 |
lemma exchange_lemma: |
|
1120 |
assumes f:"finite t" and i: "independent s" |
|
1121 |
and sp:"s \<subseteq> span t" |
|
1122 |
shows "\<exists>t'. (card t' = card t) \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" |
|
1123 |
using f i sp |
|
1124 |
proof(induct "card (t - s)" arbitrary: s t rule: less_induct) |
|
1125 |
case less |
|
1126 |
note ft = `finite t` and s = `independent s` and sp = `s \<subseteq> span t` |
|
1127 |
let ?P = "\<lambda>t'. (card t' = card t) \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" |
|
1128 |
let ?ths = "\<exists>t'. ?P t'" |
|
1129 |
{assume st: "s \<subseteq> t" |
|
1130 |
from st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t]) |
|
1131 |
by (auto intro: span_superset)} |
|
1132 |
moreover |
|
1133 |
{assume st: "t \<subseteq> s" |
|
1134 |
||
1135 |
from spanning_subset_independent[OF st s sp] |
|
1136 |
st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t]) |
|
1137 |
by (auto intro: span_superset)} |
|
1138 |
moreover |
|
1139 |
{assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s" |
|
1140 |
from st(2) obtain b where b: "b \<in> t" "b \<notin> s" by blast |
|
1141 |
from b have "t - {b} - s \<subset> t - s" by blast |
|
1142 |
then have cardlt: "card (t - {b} - s) < card (t - s)" using ft |
|
1143 |
by (auto intro: psubset_card_mono) |
|
1144 |
from b ft have ct0: "card t \<noteq> 0" by auto |
|
1145 |
{assume stb: "s \<subseteq> span(t -{b})" |
|
1146 |
from ft have ftb: "finite (t -{b})" by auto |
|
1147 |
from less(1)[OF cardlt ftb s stb] |
|
1148 |
obtain u where u: "card u = card (t-{b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u" and fu: "finite u" by blast |
|
1149 |
let ?w = "insert b u" |
|
1150 |
have th0: "s \<subseteq> insert b u" using u by blast |
|
1151 |
from u(3) b have "u \<subseteq> s \<union> t" by blast |
|
1152 |
then have th1: "insert b u \<subseteq> s \<union> t" using u b by blast |
|
1153 |
have bu: "b \<notin> u" using b u by blast |
|
1154 |
from u(1) ft b have "card u = (card t - 1)" by auto |
|
1155 |
then |
|
1156 |
have th2: "card (insert b u) = card t" |
|
1157 |
using card_insert_disjoint[OF fu bu] ct0 by auto |
|
1158 |
from u(4) have "s \<subseteq> span u" . |
|
1159 |
also have "\<dots> \<subseteq> span (insert b u)" apply (rule span_mono) by blast |
|
1160 |
finally have th3: "s \<subseteq> span (insert b u)" . |
|
1161 |
from th0 th1 th2 th3 fu have th: "?P ?w" by blast |
|
1162 |
from th have ?ths by blast} |
|
1163 |
moreover |
|
1164 |
{assume stb: "\<not> s \<subseteq> span(t -{b})" |
|
1165 |
from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})" by blast |
|
1166 |
have ab: "a \<noteq> b" using a b by blast |
|
1167 |
have at: "a \<notin> t" using a ab span_superset[of a "t- {b}"] by auto |
|
1168 |
have mlt: "card ((insert a (t - {b})) - s) < card (t - s)" |
|
1169 |
using cardlt ft a b by auto |
|
1170 |
have ft': "finite (insert a (t - {b}))" using ft by auto |
|
1171 |
{fix x assume xs: "x \<in> s" |
|
1172 |
have t: "t \<subseteq> (insert b (insert a (t -{b})))" using b by auto |
|
1173 |
from b(1) have "b \<in> span t" by (simp add: span_superset) |
|
1174 |
have bs: "b \<in> span (insert a (t - {b}))" apply(rule in_span_delete) |
|
1175 |
using a sp unfolding subset_eq by auto |
|
1176 |
from xs sp have "x \<in> span t" by blast |
|
1177 |
with span_mono[OF t] |
|
1178 |
have x: "x \<in> span (insert b (insert a (t - {b})))" .. |
|
1179 |
from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" .} |
|
1180 |
then have sp': "s \<subseteq> span (insert a (t - {b}))" by blast |
|
1181 |
||
1182 |
from less(1)[OF mlt ft' s sp'] obtain u where |
|
1183 |
u: "card u = card (insert a (t -{b}))" "finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t -{b})" |
|
1184 |
"s \<subseteq> span u" by blast |
|
1185 |
from u a b ft at ct0 have "?P u" by auto |
|
1186 |
then have ?ths by blast } |
|
1187 |
ultimately have ?ths by blast |
|
1188 |
} |
|
1189 |
ultimately |
|
1190 |
show ?ths by blast |
|
1191 |
qed |
|
1192 |
||
1193 |
text {* This implies corresponding size bounds. *} |
|
1194 |
||
1195 |
lemma independent_span_bound: |
|
1196 |
assumes f: "finite t" and i: "independent s" and sp:"s \<subseteq> span t" |
|
1197 |
shows "finite s \<and> card s \<le> card t" |
|
1198 |
by (metis exchange_lemma[OF f i sp] finite_subset card_mono) |
|
1199 |
||
1200 |
||
1201 |
lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}" |
|
1202 |
proof- |
|
1203 |
have eq: "{f x |x. x\<in> UNIV} = f ` UNIV" by auto |
|
1204 |
show ?thesis unfolding eq |
|
1205 |
apply (rule finite_imageI) |
|
1206 |
apply (rule finite) |
|
1207 |
done |
|
1208 |
qed |
|
1209 |
||
1210 |
subsection{* Euclidean Spaces as Typeclass*} |
|
1211 |
||
1212 |
lemma independent_eq_inj_on: |
|
1213 |
fixes D :: nat and f :: "nat \<Rightarrow> 'c::real_vector" assumes *: "inj_on f {..<D}" |
|
1214 |
shows "independent (f ` {..<D}) \<longleftrightarrow> (\<forall>a u. a < D \<longrightarrow> (\<Sum>i\<in>{..<D}-{a}. u (f i) *\<^sub>R f i) \<noteq> f a)" |
|
1215 |
proof - |
|
1216 |
from * have eq: "\<And>i. i < D \<Longrightarrow> f ` {..<D} - {f i} = f`({..<D} - {i})" |
|
1217 |
and inj: "\<And>i. inj_on f ({..<D} - {i})" |
|
1218 |
by (auto simp: inj_on_def) |
|
1219 |
have *: "\<And>i. finite (f ` {..<D} - {i})" by simp |
|
1220 |
show ?thesis unfolding dependent_def span_finite[OF *] |
|
1221 |
by (auto simp: eq setsum_reindex[OF inj]) |
|
1222 |
qed |
|
1223 |
||
1224 |
lemma independent_basis: |
|
1225 |
"independent (basis ` {..<DIM('a)} :: 'a::euclidean_space set)" |
|
1226 |
unfolding independent_eq_inj_on [OF basis_inj] |
|
1227 |
apply clarify |
|
1228 |
apply (drule_tac f="inner (basis a)" in arg_cong) |
|
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44176
diff
changeset
|
1229 |
apply (simp add: inner_setsum_right dot_basis) |
44133 | 1230 |
done |
1231 |
||
1232 |
lemma (in euclidean_space) range_basis: |
|
1233 |
"range basis = insert 0 (basis ` {..<DIM('a)})" |
|
1234 |
proof - |
|
1235 |
have *: "UNIV = {..<DIM('a)} \<union> {DIM('a)..}" by auto |
|
1236 |
show ?thesis unfolding * image_Un basis_finite by auto |
|
1237 |
qed |
|
1238 |
||
1239 |
lemma (in euclidean_space) range_basis_finite[intro]: |
|
1240 |
"finite (range basis)" |
|
1241 |
unfolding range_basis by auto |
|
1242 |
||
1243 |
lemma span_basis: "span (range basis) = (UNIV :: 'a::euclidean_space set)" |
|
1244 |
proof - |
|
1245 |
{ fix x :: 'a |
|
1246 |
have "(\<Sum>i<DIM('a). (x $$ i) *\<^sub>R basis i) \<in> span (range basis :: 'a set)" |
|
1247 |
by (simp add: span_setsum span_mul span_superset) |
|
1248 |
hence "x \<in> span (range basis)" |
|
1249 |
by (simp only: euclidean_representation [symmetric]) |
|
1250 |
} thus ?thesis by auto |
|
1251 |
qed |
|
1252 |
||
1253 |
lemma basis_representation: |
|
1254 |
"\<exists>u. x = (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R (v\<Colon>'a\<Colon>euclidean_space))" |
|
1255 |
proof - |
|
1256 |
have "x\<in>UNIV" by auto from this[unfolded span_basis[THEN sym]] |
|
1257 |
have "\<exists>u. (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R v) = x" |
|
1258 |
unfolding range_basis span_insert_0 apply(subst (asm) span_finite) by auto |
|
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44750
diff
changeset
|
1259 |
thus ?thesis by fastforce |
44133 | 1260 |
qed |
1261 |
||
1262 |
lemma span_basis'[simp]:"span ((basis::nat=>'a) ` {..<DIM('a::euclidean_space)}) = UNIV" |
|
1263 |
apply(subst span_basis[symmetric]) unfolding range_basis by auto |
|
1264 |
||
1265 |
lemma card_basis[simp]:"card ((basis::nat=>'a) ` {..<DIM('a::euclidean_space)}) = DIM('a)" |
|
1266 |
apply(subst card_image) using basis_inj by auto |
|
1267 |
||
1268 |
lemma in_span_basis: "(x::'a::euclidean_space) \<in> span (basis ` {..<DIM('a)})" |
|
1269 |
unfolding span_basis' .. |
|
1270 |
||
1271 |
lemma norm_bound_component_le: "norm (x::'a::euclidean_space) \<le> e \<Longrightarrow> \<bar>x$$i\<bar> <= e" |
|
1272 |
by (metis component_le_norm order_trans) |
|
1273 |
||
1274 |
lemma norm_bound_component_lt: "norm (x::'a::euclidean_space) < e \<Longrightarrow> \<bar>x$$i\<bar> < e" |
|
1275 |
by (metis component_le_norm basic_trans_rules(21)) |
|
1276 |
||
1277 |
lemma norm_le_l1: "norm (x::'a::euclidean_space) \<le> (\<Sum>i<DIM('a). \<bar>x $$ i\<bar>)" |
|
1278 |
apply (subst euclidean_representation[of x]) |
|
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
1279 |
apply (rule order_trans[OF norm_setsum]) |
44133 | 1280 |
by (auto intro!: setsum_mono) |
1281 |
||
1282 |
lemma setsum_norm_allsubsets_bound: |
|
1283 |
fixes f:: "'a \<Rightarrow> 'n::euclidean_space" |
|
1284 |
assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e" |
|
1285 |
shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real DIM('n) * e" |
|
1286 |
proof- |
|
1287 |
let ?d = "real DIM('n)" |
|
1288 |
let ?nf = "\<lambda>x. norm (f x)" |
|
1289 |
let ?U = "{..<DIM('n)}" |
|
1290 |
have th0: "setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $$ i\<bar>) ?U) P = setsum (\<lambda>i. setsum (\<lambda>x. \<bar>f x $$ i\<bar>) P) ?U" |
|
1291 |
by (rule setsum_commute) |
|
1292 |
have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def) |
|
1293 |
have "setsum ?nf P \<le> setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $$ i\<bar>) ?U) P" |
|
1294 |
apply (rule setsum_mono) by (rule norm_le_l1) |
|
1295 |
also have "\<dots> \<le> 2 * ?d * e" |
|
1296 |
unfolding th0 th1 |
|
1297 |
proof(rule setsum_bounded) |
|
1298 |
fix i assume i: "i \<in> ?U" |
|
1299 |
let ?Pp = "{x. x\<in> P \<and> f x $$ i \<ge> 0}" |
|
1300 |
let ?Pn = "{x. x \<in> P \<and> f x $$ i < 0}" |
|
1301 |
have thp: "P = ?Pp \<union> ?Pn" by auto |
|
1302 |
have thp0: "?Pp \<inter> ?Pn ={}" by auto |
|
1303 |
have PpP: "?Pp \<subseteq> P" and PnP: "?Pn \<subseteq> P" by blast+ |
|
1304 |
have Ppe:"setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pp \<le> e" |
|
1305 |
using component_le_norm[of "setsum (\<lambda>x. f x) ?Pp" i] fPs[OF PpP] |
|
44457
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
huffman
parents:
44454
diff
changeset
|
1306 |
by(auto intro: abs_le_D1) |
44133 | 1307 |
have Pne: "setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pn \<le> e" |
1308 |
using component_le_norm[of "setsum (\<lambda>x. - f x) ?Pn" i] fPs[OF PnP] |
|
1309 |
by(auto simp add: setsum_negf intro: abs_le_D1) |
|
1310 |
have "setsum (\<lambda>x. \<bar>f x $$ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pn" |
|
1311 |
apply (subst thp) |
|
1312 |
apply (rule setsum_Un_zero) |
|
1313 |
using fP thp0 by auto |
|
1314 |
also have "\<dots> \<le> 2*e" using Pne Ppe by arith |
|
1315 |
finally show "setsum (\<lambda>x. \<bar>f x $$ i\<bar>) P \<le> 2*e" . |
|
1316 |
qed |
|
1317 |
finally show ?thesis . |
|
1318 |
qed |
|
1319 |
||
1320 |
lemma choice_iff': "(\<forall>x<d. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x<d. P x (f x))" by metis |
|
1321 |
||
1322 |
lemma lambda_skolem': "(\<forall>i<DIM('a::euclidean_space). \<exists>x. P i x) \<longleftrightarrow> |
|
1323 |
(\<exists>x::'a. \<forall>i<DIM('a). P i (x$$i))" (is "?lhs \<longleftrightarrow> ?rhs") |
|
1324 |
proof- |
|
1325 |
let ?S = "{..<DIM('a)}" |
|
1326 |
{assume H: "?rhs" |
|
1327 |
then have ?lhs by auto} |
|
1328 |
moreover |
|
1329 |
{assume H: "?lhs" |
|
1330 |
then obtain f where f:"\<forall>i<DIM('a). P i (f i)" unfolding choice_iff' by metis |
|
1331 |
let ?x = "(\<chi>\<chi> i. (f i)) :: 'a" |
|
1332 |
{fix i assume i:"i<DIM('a)" |
|
1333 |
with f have "P i (f i)" by metis |
|
1334 |
then have "P i (?x$$i)" using i by auto |
|
1335 |
} |
|
1336 |
hence "\<forall>i<DIM('a). P i (?x$$i)" by metis |
|
1337 |
hence ?rhs by metis } |
|
1338 |
ultimately show ?thesis by metis |
|
1339 |
qed |
|
1340 |
||
1341 |
subsection {* Linearity and Bilinearity continued *} |
|
1342 |
||
1343 |
lemma linear_bounded: |
|
1344 |
fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
|
1345 |
assumes lf: "linear f" |
|
1346 |
shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" |
|
1347 |
proof- |
|
1348 |
let ?S = "{..<DIM('a)}" |
|
1349 |
let ?B = "setsum (\<lambda>i. norm(f(basis i))) ?S" |
|
1350 |
have fS: "finite ?S" by simp |
|
1351 |
{fix x:: "'a" |
|
1352 |
let ?g = "(\<lambda> i. (x$$i) *\<^sub>R (basis i) :: 'a)" |
|
1353 |
have "norm (f x) = norm (f (setsum (\<lambda>i. (x$$i) *\<^sub>R (basis i)) ?S))" |
|
1354 |
apply(subst euclidean_representation[of x]) .. |
|
1355 |
also have "\<dots> = norm (setsum (\<lambda> i. (x$$i) *\<^sub>R f (basis i)) ?S)" |
|
1356 |
using linear_setsum[OF lf fS, of ?g, unfolded o_def] linear_cmul[OF lf] by auto |
|
1357 |
finally have th0: "norm (f x) = norm (setsum (\<lambda>i. (x$$i) *\<^sub>R f (basis i))?S)" . |
|
1358 |
{fix i assume i: "i \<in> ?S" |
|
1359 |
from component_le_norm[of x i] |
|
1360 |
have "norm ((x$$i) *\<^sub>R f (basis i :: 'a)) \<le> norm (f (basis i)) * norm x" |
|
1361 |
unfolding norm_scaleR |
|
1362 |
apply (simp only: mult_commute) |
|
1363 |
apply (rule mult_mono) |
|
1364 |
by (auto simp add: field_simps) } |
|
1365 |
then have th: "\<forall>i\<in> ?S. norm ((x$$i) *\<^sub>R f (basis i :: 'a)) \<le> norm (f (basis i)) * norm x" by metis |
|
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
1366 |
from setsum_norm_le[of _ "\<lambda>i. (x$$i) *\<^sub>R (f (basis i))", OF th] |
44133 | 1367 |
have "norm (f x) \<le> ?B * norm x" unfolding th0 setsum_left_distrib by metis} |
1368 |
then show ?thesis by blast |
|
1369 |
qed |
|
1370 |
||
1371 |
lemma linear_bounded_pos: |
|
1372 |
fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
|
1373 |
assumes lf: "linear f" |
|
1374 |
shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x" |
|
1375 |
proof- |
|
1376 |
from linear_bounded[OF lf] obtain B where |
|
1377 |
B: "\<forall>x. norm (f x) \<le> B * norm x" by blast |
|
1378 |
let ?K = "\<bar>B\<bar> + 1" |
|
1379 |
have Kp: "?K > 0" by arith |
|
1380 |
{ assume C: "B < 0" |
|
1381 |
have "((\<chi>\<chi> i. 1)::'a) \<noteq> 0" unfolding euclidean_eq[where 'a='a] |
|
44286
8766839efb1b
declare euclidean_component_zero[simp] at the point it is proved
huffman
parents:
44282
diff
changeset
|
1382 |
by(auto intro!:exI[where x=0]) |
44133 | 1383 |
hence "norm ((\<chi>\<chi> i. 1)::'a) > 0" by auto |
1384 |
with C have "B * norm ((\<chi>\<chi> i. 1)::'a) < 0" |
|
1385 |
by (simp add: mult_less_0_iff) |
|
1386 |
with B[rule_format, of "(\<chi>\<chi> i. 1)::'a"] norm_ge_zero[of "f ((\<chi>\<chi> i. 1)::'a)"] have False by simp |
|
1387 |
} |
|
1388 |
then have Bp: "B \<ge> 0" by (metis not_leE) |
|
1389 |
{fix x::"'a" |
|
1390 |
have "norm (f x) \<le> ?K * norm x" |
|
1391 |
using B[rule_format, of x] norm_ge_zero[of x] norm_ge_zero[of "f x"] Bp |
|
1392 |
apply (auto simp add: field_simps split add: abs_split) |
|
1393 |
apply (erule order_trans, simp) |
|
1394 |
done |
|
1395 |
} |
|
1396 |
then show ?thesis using Kp by blast |
|
1397 |
qed |
|
1398 |
||
1399 |
lemma linear_conv_bounded_linear: |
|
1400 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
|
1401 |
shows "linear f \<longleftrightarrow> bounded_linear f" |
|
1402 |
proof |
|
1403 |
assume "linear f" |
|
1404 |
show "bounded_linear f" |
|
1405 |
proof |
|
1406 |
fix x y show "f (x + y) = f x + f y" |
|
1407 |
using `linear f` unfolding linear_def by simp |
|
1408 |
next |
|
1409 |
fix r x show "f (scaleR r x) = scaleR r (f x)" |
|
1410 |
using `linear f` unfolding linear_def by simp |
|
1411 |
next |
|
1412 |
have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" |
|
1413 |
using `linear f` by (rule linear_bounded) |
|
1414 |
thus "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" |
|
1415 |
by (simp add: mult_commute) |
|
1416 |
qed |
|
1417 |
next |
|
1418 |
assume "bounded_linear f" |
|
1419 |
then interpret f: bounded_linear f . |
|
1420 |
show "linear f" |
|
1421 |
by (simp add: f.add f.scaleR linear_def) |
|
1422 |
qed |
|
1423 |
||
1424 |
lemma bounded_linearI': fixes f::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
|
1425 |
assumes "\<And>x y. f (x + y) = f x + f y" "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" |
|
1426 |
shows "bounded_linear f" unfolding linear_conv_bounded_linear[THEN sym] |
|
1427 |
by(rule linearI[OF assms]) |
|
1428 |
||
1429 |
||
1430 |
lemma bilinear_bounded: |
|
1431 |
fixes h:: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector" |
|
1432 |
assumes bh: "bilinear h" |
|
1433 |
shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" |
|
1434 |
proof- |
|
1435 |
let ?M = "{..<DIM('m)}" |
|
1436 |
let ?N = "{..<DIM('n)}" |
|
1437 |
let ?B = "setsum (\<lambda>(i,j). norm (h (basis i) (basis j))) (?M \<times> ?N)" |
|
1438 |
have fM: "finite ?M" and fN: "finite ?N" by simp_all |
|
1439 |
{fix x:: "'m" and y :: "'n" |
|
1440 |
have "norm (h x y) = norm (h (setsum (\<lambda>i. (x$$i) *\<^sub>R basis i) ?M) (setsum (\<lambda>i. (y$$i) *\<^sub>R basis i) ?N))" |
|
1441 |
apply(subst euclidean_representation[where 'a='m]) |
|
1442 |
apply(subst euclidean_representation[where 'a='n]) .. |
|
1443 |
also have "\<dots> = norm (setsum (\<lambda> (i,j). h ((x$$i) *\<^sub>R basis i) ((y$$j) *\<^sub>R basis j)) (?M \<times> ?N))" |
|
1444 |
unfolding bilinear_setsum[OF bh fM fN] .. |
|
1445 |
finally have th: "norm (h x y) = \<dots>" . |
|
1446 |
have "norm (h x y) \<le> ?B * norm x * norm y" |
|
1447 |
apply (simp add: setsum_left_distrib th) |
|
1448 |
apply (rule setsum_norm_le) |
|
1449 |
using fN fM |
|
1450 |
apply simp |
|
1451 |
apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh] field_simps simp del: scaleR_scaleR) |
|
1452 |
apply (rule mult_mono) |
|
1453 |
apply (auto simp add: zero_le_mult_iff component_le_norm) |
|
1454 |
apply (rule mult_mono) |
|
1455 |
apply (auto simp add: zero_le_mult_iff component_le_norm) |
|
1456 |
done} |
|
1457 |
then show ?thesis by metis |
|
1458 |
qed |
|
1459 |
||
1460 |
lemma bilinear_bounded_pos: |
|
1461 |
fixes h:: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" |
|
1462 |
assumes bh: "bilinear h" |
|
1463 |
shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" |
|
1464 |
proof- |
|
1465 |
from bilinear_bounded[OF bh] obtain B where |
|
1466 |
B: "\<forall>x y. norm (h x y) \<le> B * norm x * norm y" by blast |
|
1467 |
let ?K = "\<bar>B\<bar> + 1" |
|
1468 |
have Kp: "?K > 0" by arith |
|
1469 |
have KB: "B < ?K" by arith |
|
1470 |
{fix x::'a and y::'b |
|
1471 |
from KB Kp |
|
1472 |
have "B * norm x * norm y \<le> ?K * norm x * norm y" |
|
1473 |
apply - |
|
1474 |
apply (rule mult_right_mono, rule mult_right_mono) |
|
1475 |
by auto |
|
1476 |
then have "norm (h x y) \<le> ?K * norm x * norm y" |
|
1477 |
using B[rule_format, of x y] by simp} |
|
1478 |
with Kp show ?thesis by blast |
|
1479 |
qed |
|
1480 |
||
1481 |
lemma bilinear_conv_bounded_bilinear: |
|
1482 |
fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" |
|
1483 |
shows "bilinear h \<longleftrightarrow> bounded_bilinear h" |
|
1484 |
proof |
|
1485 |
assume "bilinear h" |
|
1486 |
show "bounded_bilinear h" |
|
1487 |
proof |
|
1488 |
fix x y z show "h (x + y) z = h x z + h y z" |
|
1489 |
using `bilinear h` unfolding bilinear_def linear_def by simp |
|
1490 |
next |
|
1491 |
fix x y z show "h x (y + z) = h x y + h x z" |
|
1492 |
using `bilinear h` unfolding bilinear_def linear_def by simp |
|
1493 |
next |
|
1494 |
fix r x y show "h (scaleR r x) y = scaleR r (h x y)" |
|
1495 |
using `bilinear h` unfolding bilinear_def linear_def |
|
1496 |
by simp |
|
1497 |
next |
|
1498 |
fix r x y show "h x (scaleR r y) = scaleR r (h x y)" |
|
1499 |
using `bilinear h` unfolding bilinear_def linear_def |
|
1500 |
by simp |
|
1501 |
next |
|
1502 |
have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" |
|
1503 |
using `bilinear h` by (rule bilinear_bounded) |
|
1504 |
thus "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K" |
|
1505 |
by (simp add: mult_ac) |
|
1506 |
qed |
|
1507 |
next |
|
1508 |
assume "bounded_bilinear h" |
|
1509 |
then interpret h: bounded_bilinear h . |
|
1510 |
show "bilinear h" |
|
1511 |
unfolding bilinear_def linear_conv_bounded_linear |
|
1512 |
using h.bounded_linear_left h.bounded_linear_right |
|
1513 |
by simp |
|
1514 |
qed |
|
1515 |
||
1516 |
subsection {* We continue. *} |
|
1517 |
||
1518 |
lemma independent_bound: |
|
1519 |
fixes S:: "('a::euclidean_space) set" |
|
1520 |
shows "independent S \<Longrightarrow> finite S \<and> card S <= DIM('a::euclidean_space)" |
|
1521 |
using independent_span_bound[of "(basis::nat=>'a) ` {..<DIM('a)}" S] by auto |
|
1522 |
||
1523 |
lemma dependent_biggerset: "(finite (S::('a::euclidean_space) set) ==> card S > DIM('a)) ==> dependent S" |
|
1524 |
by (metis independent_bound not_less) |
|
1525 |
||
1526 |
text {* Hence we can create a maximal independent subset. *} |
|
1527 |
||
1528 |
lemma maximal_independent_subset_extend: |
|
1529 |
assumes sv: "(S::('a::euclidean_space) set) \<subseteq> V" and iS: "independent S" |
|
1530 |
shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" |
|
1531 |
using sv iS |
|
1532 |
proof(induct "DIM('a) - card S" arbitrary: S rule: less_induct) |
|
1533 |
case less |
|
1534 |
note sv = `S \<subseteq> V` and i = `independent S` |
|
1535 |
let ?P = "\<lambda>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" |
|
1536 |
let ?ths = "\<exists>x. ?P x" |
|
1537 |
let ?d = "DIM('a)" |
|
1538 |
{assume "V \<subseteq> span S" |
|
1539 |
then have ?ths using sv i by blast } |
|
1540 |
moreover |
|
1541 |
{assume VS: "\<not> V \<subseteq> span S" |
|
1542 |
from VS obtain a where a: "a \<in> V" "a \<notin> span S" by blast |
|
1543 |
from a have aS: "a \<notin> S" by (auto simp add: span_superset) |
|
1544 |
have th0: "insert a S \<subseteq> V" using a sv by blast |
|
1545 |
from independent_insert[of a S] i a |
|
1546 |
have th1: "independent (insert a S)" by auto |
|
1547 |
have mlt: "?d - card (insert a S) < ?d - card S" |
|
1548 |
using aS a independent_bound[OF th1] |
|
1549 |
by auto |
|
1550 |
||
1551 |
from less(1)[OF mlt th0 th1] |
|
1552 |
obtain B where B: "insert a S \<subseteq> B" "B \<subseteq> V" "independent B" " V \<subseteq> span B" |
|
1553 |
by blast |
|
1554 |
from B have "?P B" by auto |
|
1555 |
then have ?ths by blast} |
|
1556 |
ultimately show ?ths by blast |
|
1557 |
qed |
|
1558 |
||
1559 |
lemma maximal_independent_subset: |
|
1560 |
"\<exists>(B:: ('a::euclidean_space) set). B\<subseteq> V \<and> independent B \<and> V \<subseteq> span B" |
|
1561 |
by (metis maximal_independent_subset_extend[of "{}:: ('a::euclidean_space) set"] empty_subsetI independent_empty) |
|
1562 |
||
1563 |
||
1564 |
text {* Notion of dimension. *} |
|
1565 |
||
1566 |
definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n))" |
|
1567 |
||
1568 |
lemma basis_exists: "\<exists>B. (B :: ('a::euclidean_space) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = dim V)" |
|
1569 |
unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n)"] |
|
1570 |
using maximal_independent_subset[of V] independent_bound |
|
1571 |
by auto |
|
1572 |
||
1573 |
text {* Consequences of independence or spanning for cardinality. *} |
|
1574 |
||
1575 |
lemma independent_card_le_dim: |
|
1576 |
assumes "(B::('a::euclidean_space) set) \<subseteq> V" and "independent B" shows "card B \<le> dim V" |
|
1577 |
proof - |
|
1578 |
from basis_exists[of V] `B \<subseteq> V` |
|
1579 |
obtain B' where "independent B'" and "B \<subseteq> span B'" and "card B' = dim V" by blast |
|
1580 |
with independent_span_bound[OF _ `independent B` `B \<subseteq> span B'`] independent_bound[of B'] |
|
1581 |
show ?thesis by auto |
|
1582 |
qed |
|
1583 |
||
1584 |
lemma span_card_ge_dim: "(B::('a::euclidean_space) set) \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B" |
|
1585 |
by (metis basis_exists[of V] independent_span_bound subset_trans) |
|
1586 |
||
1587 |
lemma basis_card_eq_dim: |
|
1588 |
"B \<subseteq> (V:: ('a::euclidean_space) set) \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V" |
|
1589 |
by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_bound) |
|
1590 |
||
1591 |
lemma dim_unique: "(B::('a::euclidean_space) set) \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n" |
|
1592 |
by (metis basis_card_eq_dim) |
|
1593 |
||
1594 |
text {* More lemmas about dimension. *} |
|
1595 |
||
1596 |
lemma dim_UNIV: "dim (UNIV :: ('a::euclidean_space) set) = DIM('a)" |
|
1597 |
apply (rule dim_unique[of "(basis::nat=>'a) ` {..<DIM('a)}"]) |
|
1598 |
using independent_basis by auto |
|
1599 |
||
1600 |
lemma dim_subset: |
|
1601 |
"(S:: ('a::euclidean_space) set) \<subseteq> T \<Longrightarrow> dim S \<le> dim T" |
|
1602 |
using basis_exists[of T] basis_exists[of S] |
|
1603 |
by (metis independent_card_le_dim subset_trans) |
|
1604 |
||
1605 |
lemma dim_subset_UNIV: "dim (S:: ('a::euclidean_space) set) \<le> DIM('a)" |
|
1606 |
by (metis dim_subset subset_UNIV dim_UNIV) |
|
1607 |
||
1608 |
text {* Converses to those. *} |
|
1609 |
||
1610 |
lemma card_ge_dim_independent: |
|
1611 |
assumes BV:"(B::('a::euclidean_space) set) \<subseteq> V" and iB:"independent B" and dVB:"dim V \<le> card B" |
|
1612 |
shows "V \<subseteq> span B" |
|
1613 |
proof- |
|
1614 |
{fix a assume aV: "a \<in> V" |
|
1615 |
{assume aB: "a \<notin> span B" |
|
1616 |
then have iaB: "independent (insert a B)" using iB aV BV by (simp add: independent_insert) |
|
1617 |
from aV BV have th0: "insert a B \<subseteq> V" by blast |
|
1618 |
from aB have "a \<notin>B" by (auto simp add: span_superset) |
|
1619 |
with independent_card_le_dim[OF th0 iaB] dVB independent_bound[OF iB] have False by auto } |
|
1620 |
then have "a \<in> span B" by blast} |
|
1621 |
then show ?thesis by blast |
|
1622 |
qed |
|
1623 |
||
1624 |
lemma card_le_dim_spanning: |
|
1625 |
assumes BV: "(B:: ('a::euclidean_space) set) \<subseteq> V" and VB: "V \<subseteq> span B" |
|
1626 |
and fB: "finite B" and dVB: "dim V \<ge> card B" |
|
1627 |
shows "independent B" |
|
1628 |
proof- |
|
1629 |
{fix a assume a: "a \<in> B" "a \<in> span (B -{a})" |
|
1630 |
from a fB have c0: "card B \<noteq> 0" by auto |
|
1631 |
from a fB have cb: "card (B -{a}) = card B - 1" by auto |
|
1632 |
from BV a have th0: "B -{a} \<subseteq> V" by blast |
|
1633 |
{fix x assume x: "x \<in> V" |
|
1634 |
from a have eq: "insert a (B -{a}) = B" by blast |
|
1635 |
from x VB have x': "x \<in> span B" by blast |
|
1636 |
from span_trans[OF a(2), unfolded eq, OF x'] |
|
1637 |
have "x \<in> span (B -{a})" . } |
|
1638 |
then have th1: "V \<subseteq> span (B -{a})" by blast |
|
1639 |
have th2: "finite (B -{a})" using fB by auto |
|
1640 |
from span_card_ge_dim[OF th0 th1 th2] |
|
1641 |
have c: "dim V \<le> card (B -{a})" . |
|
1642 |
from c c0 dVB cb have False by simp} |
|
1643 |
then show ?thesis unfolding dependent_def by blast |
|
1644 |
qed |
|
1645 |
||
1646 |
lemma card_eq_dim: "(B:: ('a::euclidean_space) set) \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B" |
|
1647 |
by (metis order_eq_iff card_le_dim_spanning |
|
1648 |
card_ge_dim_independent) |
|
1649 |
||
1650 |
text {* More general size bound lemmas. *} |
|
1651 |
||
1652 |
lemma independent_bound_general: |
|
1653 |
"independent (S:: ('a::euclidean_space) set) \<Longrightarrow> finite S \<and> card S \<le> dim S" |
|
1654 |
by (metis independent_card_le_dim independent_bound subset_refl) |
|
1655 |
||
1656 |
lemma dependent_biggerset_general: "(finite (S:: ('a::euclidean_space) set) \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S" |
|
1657 |
using independent_bound_general[of S] by (metis linorder_not_le) |
|
1658 |
||
1659 |
lemma dim_span: "dim (span (S:: ('a::euclidean_space) set)) = dim S" |
|
1660 |
proof- |
|
1661 |
have th0: "dim S \<le> dim (span S)" |
|
1662 |
by (auto simp add: subset_eq intro: dim_subset span_superset) |
|
1663 |
from basis_exists[of S] |
|
1664 |
obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast |
|
1665 |
from B have fB: "finite B" "card B = dim S" using independent_bound by blast+ |
|
1666 |
have bSS: "B \<subseteq> span S" using B(1) by (metis subset_eq span_inc) |
|
1667 |
have sssB: "span S \<subseteq> span B" using span_mono[OF B(3)] by (simp add: span_span) |
|
1668 |
from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis |
|
1669 |
using fB(2) by arith |
|
1670 |
qed |
|
1671 |
||
1672 |
lemma subset_le_dim: "(S:: ('a::euclidean_space) set) \<subseteq> span T \<Longrightarrow> dim S \<le> dim T" |
|
1673 |
by (metis dim_span dim_subset) |
|
1674 |
||
1675 |
lemma span_eq_dim: "span (S:: ('a::euclidean_space) set) = span T ==> dim S = dim T" |
|
1676 |
by (metis dim_span) |
|
1677 |
||
1678 |
lemma spans_image: |
|
1679 |
assumes lf: "linear f" and VB: "V \<subseteq> span B" |
|
1680 |
shows "f ` V \<subseteq> span (f ` B)" |
|
1681 |
unfolding span_linear_image[OF lf] |
|
1682 |
by (metis VB image_mono) |
|
1683 |
||
1684 |
lemma dim_image_le: |
|
1685 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
|
1686 |
assumes lf: "linear f" shows "dim (f ` S) \<le> dim (S)" |
|
1687 |
proof- |
|
1688 |
from basis_exists[of S] obtain B where |
|
1689 |
B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast |
|
1690 |
from B have fB: "finite B" "card B = dim S" using independent_bound by blast+ |
|
1691 |
have "dim (f ` S) \<le> card (f ` B)" |
|
1692 |
apply (rule span_card_ge_dim) |
|
1693 |
using lf B fB by (auto simp add: span_linear_image spans_image subset_image_iff) |
|
1694 |
also have "\<dots> \<le> dim S" using card_image_le[OF fB(1)] fB by simp |
|
1695 |
finally show ?thesis . |
|
1696 |
qed |
|
1697 |
||
1698 |
text {* Relation between bases and injectivity/surjectivity of map. *} |
|
1699 |
||
1700 |
lemma spanning_surjective_image: |
|
1701 |
assumes us: "UNIV \<subseteq> span S" |
|
1702 |
and lf: "linear f" and sf: "surj f" |
|
1703 |
shows "UNIV \<subseteq> span (f ` S)" |
|
1704 |
proof- |
|
1705 |
have "UNIV \<subseteq> f ` UNIV" using sf by (auto simp add: surj_def) |
|
1706 |
also have " \<dots> \<subseteq> span (f ` S)" using spans_image[OF lf us] . |
|
1707 |
finally show ?thesis . |
|
1708 |
qed |
|
1709 |
||
1710 |
lemma independent_injective_image: |
|
1711 |
assumes iS: "independent S" and lf: "linear f" and fi: "inj f" |
|
1712 |
shows "independent (f ` S)" |
|
1713 |
proof- |
|
1714 |
{fix a assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})" |
|
1715 |
have eq: "f ` S - {f a} = f ` (S - {a})" using fi |
|
1716 |
by (auto simp add: inj_on_def) |
|
1717 |
from a have "f a \<in> f ` span (S -{a})" |
|
1718 |
unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast |
|
1719 |
hence "a \<in> span (S -{a})" using fi by (auto simp add: inj_on_def) |
|
1720 |
with a(1) iS have False by (simp add: dependent_def) } |
|
1721 |
then show ?thesis unfolding dependent_def by blast |
|
1722 |
qed |
|
1723 |
||
1724 |
text {* Picking an orthogonal replacement for a spanning set. *} |
|
1725 |
||
1726 |
(* FIXME : Move to some general theory ?*) |
|
1727 |
definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)" |
|
1728 |
||
1729 |
lemma vector_sub_project_orthogonal: "(b::'a::euclidean_space) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0" |
|
1730 |
unfolding inner_simps by auto |
|
1731 |
||
44528 | 1732 |
lemma pairwise_orthogonal_insert: |
1733 |
assumes "pairwise orthogonal S" |
|
1734 |
assumes "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y" |
|
1735 |
shows "pairwise orthogonal (insert x S)" |
|
1736 |
using assms unfolding pairwise_def |
|
1737 |
by (auto simp add: orthogonal_commute) |
|
1738 |
||
44133 | 1739 |
lemma basis_orthogonal: |
44528 | 1740 |
fixes B :: "('a::real_inner) set" |
44133 | 1741 |
assumes fB: "finite B" |
1742 |
shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C" |
|
1743 |
(is " \<exists>C. ?P B C") |
|
1744 |
proof(induct rule: finite_induct[OF fB]) |
|
1745 |
case 1 thus ?case apply (rule exI[where x="{}"]) by (auto simp add: pairwise_def) |
|
1746 |
next |
|
1747 |
case (2 a B) |
|
1748 |
note fB = `finite B` and aB = `a \<notin> B` |
|
1749 |
from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C` |
|
1750 |
obtain C where C: "finite C" "card C \<le> card B" |
|
1751 |
"span C = span B" "pairwise orthogonal C" by blast |
|
1752 |
let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C" |
|
1753 |
let ?C = "insert ?a C" |
|
1754 |
from C(1) have fC: "finite ?C" by simp |
|
1755 |
from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" by (simp add: card_insert_if) |
|
1756 |
{fix x k |
|
1757 |
have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)" by (simp add: field_simps) |
|
1758 |
have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C" |
|
1759 |
apply (simp only: scaleR_right_diff_distrib th0) |
|
1760 |
apply (rule span_add_eq) |
|
1761 |
apply (rule span_mul) |
|
1762 |
apply (rule span_setsum[OF C(1)]) |
|
1763 |
apply clarify |
|
1764 |
apply (rule span_mul) |
|
1765 |
by (rule span_superset)} |
|
1766 |
then have SC: "span ?C = span (insert a B)" |
|
1767 |
unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto |
|
44528 | 1768 |
{ fix y assume yC: "y \<in> C" |
1769 |
hence Cy: "C = insert y (C - {y})" by blast |
|
1770 |
have fth: "finite (C - {y})" using C by simp |
|
1771 |
have "orthogonal ?a y" |
|
1772 |
unfolding orthogonal_def |
|
1773 |
unfolding inner_diff inner_setsum_left diff_eq_0_iff_eq |
|
1774 |
unfolding setsum_diff1' [OF `finite C` `y \<in> C`] |
|
1775 |
apply (clarsimp simp add: inner_commute[of y a]) |
|
1776 |
apply (rule setsum_0') |
|
1777 |
apply clarsimp |
|
1778 |
apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format]) |
|
1779 |
using `y \<in> C` by auto } |
|
1780 |
with `pairwise orthogonal C` have CPO: "pairwise orthogonal ?C" |
|
1781 |
by (rule pairwise_orthogonal_insert) |
|
44133 | 1782 |
from fC cC SC CPO have "?P (insert a B) ?C" by blast |
1783 |
then show ?case by blast |
|
1784 |
qed |
|
1785 |
||
1786 |
lemma orthogonal_basis_exists: |
|
1787 |
fixes V :: "('a::euclidean_space) set" |
|
1788 |
shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (card B = dim V) \<and> pairwise orthogonal B" |
|
1789 |
proof- |
|
1790 |
from basis_exists[of V] obtain B where B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V" by blast |
|
1791 |
from B have fB: "finite B" "card B = dim V" using independent_bound by auto |
|
1792 |
from basis_orthogonal[OF fB(1)] obtain C where |
|
1793 |
C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C" by blast |
|
1794 |
from C B |
|
1795 |
have CSV: "C \<subseteq> span V" by (metis span_inc span_mono subset_trans) |
|
1796 |
from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C" by (simp add: span_span) |
|
1797 |
from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB |
|
1798 |
have iC: "independent C" by (simp add: dim_span) |
|
1799 |
from C fB have "card C \<le> dim V" by simp |
|
1800 |
moreover have "dim V \<le> card C" using span_card_ge_dim[OF CSV SVC C(1)] |
|
1801 |
by (simp add: dim_span) |
|
1802 |
ultimately have CdV: "card C = dim V" using C(1) by simp |
|
1803 |
from C B CSV CdV iC show ?thesis by auto |
|
1804 |
qed |
|
1805 |
||
1806 |
lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S" |
|
1807 |
using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"] |
|
1808 |
by(auto simp add: span_span) |
|
1809 |
||
1810 |
text {* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *} |
|
1811 |
||
1812 |
lemma span_not_univ_orthogonal: fixes S::"('a::euclidean_space) set" |
|
1813 |
assumes sU: "span S \<noteq> UNIV" |
|
1814 |
shows "\<exists>(a::'a). a \<noteq>0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)" |
|
1815 |
proof- |
|
1816 |
from sU obtain a where a: "a \<notin> span S" by blast |
|
1817 |
from orthogonal_basis_exists obtain B where |
|
1818 |
B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "card B = dim S" "pairwise orthogonal B" |
|
1819 |
by blast |
|
1820 |
from B have fB: "finite B" "card B = dim S" using independent_bound by auto |
|
1821 |
from span_mono[OF B(2)] span_mono[OF B(3)] |
|
1822 |
have sSB: "span S = span B" by (simp add: span_span) |
|
1823 |
let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B" |
|
1824 |
have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S" |
|
1825 |
unfolding sSB |
|
1826 |
apply (rule span_setsum[OF fB(1)]) |
|
1827 |
apply clarsimp |
|
1828 |
apply (rule span_mul) |
|
1829 |
by (rule span_superset) |
|
1830 |
with a have a0:"?a \<noteq> 0" by auto |
|
1831 |
have "\<forall>x\<in>span B. ?a \<bullet> x = 0" |
|
1832 |
proof(rule span_induct') |
|
44454 | 1833 |
show "subspace {x. ?a \<bullet> x = 0}" by (auto simp add: subspace_def inner_add) |
44133 | 1834 |
next |
1835 |
{fix x assume x: "x \<in> B" |
|
1836 |
from x have B': "B = insert x (B - {x})" by blast |
|
1837 |
have fth: "finite (B - {x})" using fB by simp |
|
1838 |
have "?a \<bullet> x = 0" |
|
1839 |
apply (subst B') using fB fth |
|
1840 |
unfolding setsum_clauses(2)[OF fth] |
|
1841 |
apply simp unfolding inner_simps |
|
44527
bf8014b4f933
remove dot_lsum and dot_rsum in favor of inner_setsum_{left,right}
huffman
parents:
44521
diff
changeset
|
1842 |
apply (clarsimp simp add: inner_add inner_setsum_left) |
44133 | 1843 |
apply (rule setsum_0', rule ballI) |
1844 |
unfolding inner_commute |
|
1845 |
by (auto simp add: x field_simps intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])} |
|
1846 |
then show "\<forall>x \<in> B. ?a \<bullet> x = 0" by blast |
|
1847 |
qed |
|
1848 |
with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"]) |
|
1849 |
qed |
|
1850 |
||
1851 |
lemma span_not_univ_subset_hyperplane: |
|
1852 |
assumes SU: "span S \<noteq> (UNIV ::('a::euclidean_space) set)" |
|
1853 |
shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}" |
|
1854 |
using span_not_univ_orthogonal[OF SU] by auto |
|
1855 |
||
1856 |
lemma lowdim_subset_hyperplane: fixes S::"('a::euclidean_space) set" |
|
1857 |
assumes d: "dim S < DIM('a)" |
|
1858 |
shows "\<exists>(a::'a). a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}" |
|
1859 |
proof- |
|
1860 |
{assume "span S = UNIV" |
|
1861 |
hence "dim (span S) = dim (UNIV :: ('a) set)" by simp |
|
1862 |
hence "dim S = DIM('a)" by (simp add: dim_span dim_UNIV) |
|
1863 |
with d have False by arith} |
|
1864 |
hence th: "span S \<noteq> UNIV" by blast |
|
1865 |
from span_not_univ_subset_hyperplane[OF th] show ?thesis . |
|
1866 |
qed |
|
1867 |
||
1868 |
text {* We can extend a linear basis-basis injection to the whole set. *} |
|
1869 |
||
1870 |
lemma linear_indep_image_lemma: |
|
1871 |
assumes lf: "linear f" and fB: "finite B" |
|
1872 |
and ifB: "independent (f ` B)" |
|
1873 |
and fi: "inj_on f B" and xsB: "x \<in> span B" |
|
1874 |
and fx: "f x = 0" |
|
1875 |
shows "x = 0" |
|
1876 |
using fB ifB fi xsB fx |
|
1877 |
proof(induct arbitrary: x rule: finite_induct[OF fB]) |
|
44142 | 1878 |
case 1 thus ?case by auto |
44133 | 1879 |
next |
1880 |
case (2 a b x) |
|
1881 |
have fb: "finite b" using "2.prems" by simp |
|
1882 |
have th0: "f ` b \<subseteq> f ` (insert a b)" |
|
1883 |
apply (rule image_mono) by blast |
|
1884 |
from independent_mono[ OF "2.prems"(2) th0] |
|
1885 |
have ifb: "independent (f ` b)" . |
|
1886 |
have fib: "inj_on f b" |
|
1887 |
apply (rule subset_inj_on [OF "2.prems"(3)]) |
|
1888 |
by blast |
|
1889 |
from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)] |
|
1890 |
obtain k where k: "x - k*\<^sub>R a \<in> span (b -{a})" by blast |
|
1891 |
have "f (x - k*\<^sub>R a) \<in> span (f ` b)" |
|
1892 |
unfolding span_linear_image[OF lf] |
|
1893 |
apply (rule imageI) |
|
1894 |
using k span_mono[of "b-{a}" b] by blast |
|
1895 |
hence "f x - k*\<^sub>R f a \<in> span (f ` b)" |
|
1896 |
by (simp add: linear_sub[OF lf] linear_cmul[OF lf]) |
|
1897 |
hence th: "-k *\<^sub>R f a \<in> span (f ` b)" |
|
1898 |
using "2.prems"(5) by simp |
|
1899 |
{assume k0: "k = 0" |
|
1900 |
from k0 k have "x \<in> span (b -{a})" by simp |
|
1901 |
then have "x \<in> span b" using span_mono[of "b-{a}" b] |
|
1902 |
by blast} |
|
1903 |
moreover |
|
1904 |
{assume k0: "k \<noteq> 0" |
|
1905 |
from span_mul[OF th, of "- 1/ k"] k0 |
|
1906 |
have th1: "f a \<in> span (f ` b)" |
|
1907 |
by auto |
|
1908 |
from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric] |
|
1909 |
have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast |
|
1910 |
from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"] |
|
1911 |
have "f a \<notin> span (f ` b)" using tha |
|
1912 |
using "2.hyps"(2) |
|
1913 |
"2.prems"(3) by auto |
|
1914 |
with th1 have False by blast |
|
1915 |
then have "x \<in> span b" by blast} |
|
1916 |
ultimately have xsb: "x \<in> span b" by blast |
|
1917 |
from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] |
|
1918 |
show "x = 0" . |
|
1919 |
qed |
|
1920 |
||
1921 |
text {* We can extend a linear mapping from basis. *} |
|
1922 |
||
1923 |
lemma linear_independent_extend_lemma: |
|
1924 |
fixes f :: "'a::real_vector \<Rightarrow> 'b::real_vector" |
|
1925 |
assumes fi: "finite B" and ib: "independent B" |
|
1926 |
shows "\<exists>g. (\<forall>x\<in> span B. \<forall>y\<in> span B. g (x + y) = g x + g y) |
|
1927 |
\<and> (\<forall>x\<in> span B. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) |
|
1928 |
\<and> (\<forall>x\<in> B. g x = f x)" |
|
1929 |
using ib fi |
|
1930 |
proof(induct rule: finite_induct[OF fi]) |
|
44142 | 1931 |
case 1 thus ?case by auto |
44133 | 1932 |
next |
1933 |
case (2 a b) |
|
1934 |
from "2.prems" "2.hyps" have ibf: "independent b" "finite b" |
|
1935 |
by (simp_all add: independent_insert) |
|
1936 |
from "2.hyps"(3)[OF ibf] obtain g where |
|
1937 |
g: "\<forall>x\<in>span b. \<forall>y\<in>span b. g (x + y) = g x + g y" |
|
1938 |
"\<forall>x\<in>span b. \<forall>c. g (c *\<^sub>R x) = c *\<^sub>R g x" "\<forall>x\<in>b. g x = f x" by blast |
|
1939 |
let ?h = "\<lambda>z. SOME k. (z - k *\<^sub>R a) \<in> span b" |
|
1940 |
{fix z assume z: "z \<in> span (insert a b)" |
|
1941 |
have th0: "z - ?h z *\<^sub>R a \<in> span b" |
|
1942 |
apply (rule someI_ex) |
|
1943 |
unfolding span_breakdown_eq[symmetric] |
|
1944 |
using z . |
|
1945 |
{fix k assume k: "z - k *\<^sub>R a \<in> span b" |
|
1946 |
have eq: "z - ?h z *\<^sub>R a - (z - k*\<^sub>R a) = (k - ?h z) *\<^sub>R a" |
|
1947 |
by (simp add: field_simps scaleR_left_distrib [symmetric]) |
|
1948 |
from span_sub[OF th0 k] |
|
1949 |
have khz: "(k - ?h z) *\<^sub>R a \<in> span b" by (simp add: eq) |
|
1950 |
{assume "k \<noteq> ?h z" hence k0: "k - ?h z \<noteq> 0" by simp |
|
1951 |
from k0 span_mul[OF khz, of "1 /(k - ?h z)"] |
|
1952 |
have "a \<in> span b" by simp |
|
1953 |
with "2.prems"(1) "2.hyps"(2) have False |
|
1954 |
by (auto simp add: dependent_def)} |
|
1955 |
then have "k = ?h z" by blast} |
|
1956 |
with th0 have "z - ?h z *\<^sub>R a \<in> span b \<and> (\<forall>k. z - k *\<^sub>R a \<in> span b \<longrightarrow> k = ?h z)" by blast} |
|
1957 |
note h = this |
|
1958 |
let ?g = "\<lambda>z. ?h z *\<^sub>R f a + g (z - ?h z *\<^sub>R a)" |
|
1959 |
{fix x y assume x: "x \<in> span (insert a b)" and y: "y \<in> span (insert a b)" |
|
1960 |
have tha: "\<And>(x::'a) y a k l. (x + y) - (k + l) *\<^sub>R a = (x - k *\<^sub>R a) + (y - l *\<^sub>R a)" |
|
1961 |
by (simp add: algebra_simps) |
|
1962 |
have addh: "?h (x + y) = ?h x + ?h y" |
|
1963 |
apply (rule conjunct2[OF h, rule_format, symmetric]) |
|
1964 |
apply (rule span_add[OF x y]) |
|
1965 |
unfolding tha |
|
1966 |
by (metis span_add x y conjunct1[OF h, rule_format]) |
|
1967 |
have "?g (x + y) = ?g x + ?g y" |
|
1968 |
unfolding addh tha |
|
1969 |
g(1)[rule_format,OF conjunct1[OF h, OF x] conjunct1[OF h, OF y]] |
|
1970 |
by (simp add: scaleR_left_distrib)} |
|
1971 |
moreover |
|
1972 |
{fix x:: "'a" and c:: real assume x: "x \<in> span (insert a b)" |
|
1973 |
have tha: "\<And>(x::'a) c k a. c *\<^sub>R x - (c * k) *\<^sub>R a = c *\<^sub>R (x - k *\<^sub>R a)" |
|
1974 |
by (simp add: algebra_simps) |
|
1975 |
have hc: "?h (c *\<^sub>R x) = c * ?h x" |
|
1976 |
apply (rule conjunct2[OF h, rule_format, symmetric]) |
|
1977 |
apply (metis span_mul x) |
|
1978 |
by (metis tha span_mul x conjunct1[OF h]) |
|
1979 |
have "?g (c *\<^sub>R x) = c*\<^sub>R ?g x" |
|
1980 |
unfolding hc tha g(2)[rule_format, OF conjunct1[OF h, OF x]] |
|
1981 |
by (simp add: algebra_simps)} |
|
1982 |
moreover |
|
1983 |
{fix x assume x: "x \<in> (insert a b)" |
|
1984 |
{assume xa: "x = a" |
|
1985 |
have ha1: "1 = ?h a" |
|
1986 |
apply (rule conjunct2[OF h, rule_format]) |
|
1987 |
apply (metis span_superset insertI1) |
|
1988 |
using conjunct1[OF h, OF span_superset, OF insertI1] |
|
1989 |
by (auto simp add: span_0) |
|
1990 |
||
1991 |
from xa ha1[symmetric] have "?g x = f x" |
|
1992 |
apply simp |
|
1993 |
using g(2)[rule_format, OF span_0, of 0] |
|
1994 |
by simp} |
|
1995 |
moreover |
|
1996 |
{assume xb: "x \<in> b" |
|
1997 |
have h0: "0 = ?h x" |
|
1998 |
apply (rule conjunct2[OF h, rule_format]) |
|
1999 |
apply (metis span_superset x) |
|
2000 |
apply simp |
|
2001 |
apply (metis span_superset xb) |
|
2002 |
done |
|
2003 |
have "?g x = f x" |
|
2004 |
by (simp add: h0[symmetric] g(3)[rule_format, OF xb])} |
|
2005 |
ultimately have "?g x = f x" using x by blast } |
|
2006 |
ultimately show ?case apply - apply (rule exI[where x="?g"]) by blast |
|
2007 |
qed |
|
2008 |
||
2009 |
lemma linear_independent_extend: |
|
2010 |
assumes iB: "independent (B:: ('a::euclidean_space) set)" |
|
2011 |
shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)" |
|
2012 |
proof- |
|
2013 |
from maximal_independent_subset_extend[of B UNIV] iB |
|
2014 |
obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" by auto |
|
2015 |
||
2016 |
from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f] |
|
2017 |
obtain g where g: "(\<forall>x\<in> span C. \<forall>y\<in> span C. g (x + y) = g x + g y) |
|
2018 |
\<and> (\<forall>x\<in> span C. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) |
|
2019 |
\<and> (\<forall>x\<in> C. g x = f x)" by blast |
|
2020 |
from g show ?thesis unfolding linear_def using C |
|
2021 |
apply clarsimp by blast |
|
2022 |
qed |
|
2023 |
||
2024 |
text {* Can construct an isomorphism between spaces of same dimension. *} |
|
2025 |
||
2026 |
lemma card_le_inj: assumes fA: "finite A" and fB: "finite B" |
|
2027 |
and c: "card A \<le> card B" shows "(\<exists>f. f ` A \<subseteq> B \<and> inj_on f A)" |
|
2028 |
using fB c |
|
2029 |
proof(induct arbitrary: B rule: finite_induct[OF fA]) |
|
2030 |
case 1 thus ?case by simp |
|
2031 |
next |
|
2032 |
case (2 x s t) |
|
2033 |
thus ?case |
|
2034 |
proof(induct rule: finite_induct[OF "2.prems"(1)]) |
|
2035 |
case 1 then show ?case by simp |
|
2036 |
next |
|
2037 |
case (2 y t) |
|
2038 |
from "2.prems"(1,2,5) "2.hyps"(1,2) have cst:"card s \<le> card t" by simp |
|
2039 |
from "2.prems"(3) [OF "2.hyps"(1) cst] obtain f where |
|
2040 |
f: "f ` s \<subseteq> t \<and> inj_on f s" by blast |
|
2041 |
from f "2.prems"(2) "2.hyps"(2) show ?case |
|
2042 |
apply - |
|
2043 |
apply (rule exI[where x = "\<lambda>z. if z = x then y else f z"]) |
|
2044 |
by (auto simp add: inj_on_def) |
|
2045 |
qed |
|
2046 |
qed |
|
2047 |
||
2048 |
lemma card_subset_eq: assumes fB: "finite B" and AB: "A \<subseteq> B" and |
|
2049 |
c: "card A = card B" |
|
2050 |
shows "A = B" |
|
2051 |
proof- |
|
2052 |
from fB AB have fA: "finite A" by (auto intro: finite_subset) |
|
2053 |
from fA fB have fBA: "finite (B - A)" by auto |
|
2054 |
have e: "A \<inter> (B - A) = {}" by blast |
|
2055 |
have eq: "A \<union> (B - A) = B" using AB by blast |
|
2056 |
from card_Un_disjoint[OF fA fBA e, unfolded eq c] |
|
2057 |
have "card (B - A) = 0" by arith |
|
2058 |
hence "B - A = {}" unfolding card_eq_0_iff using fA fB by simp |
|
2059 |
with AB show "A = B" by blast |
|
2060 |
qed |
|
2061 |
||
2062 |
lemma subspace_isomorphism: |
|
2063 |
assumes s: "subspace (S:: ('a::euclidean_space) set)" |
|
2064 |
and t: "subspace (T :: ('b::euclidean_space) set)" |
|
2065 |
and d: "dim S = dim T" |
|
2066 |
shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S" |
|
2067 |
proof- |
|
2068 |
from basis_exists[of S] independent_bound obtain B where |
|
2069 |
B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" and fB: "finite B" by blast |
|
2070 |
from basis_exists[of T] independent_bound obtain C where |
|
2071 |
C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "card C = dim T" and fC: "finite C" by blast |
|
2072 |
from B(4) C(4) card_le_inj[of B C] d obtain f where |
|
2073 |
f: "f ` B \<subseteq> C" "inj_on f B" using `finite B` `finite C` by auto |
|
2074 |
from linear_independent_extend[OF B(2)] obtain g where |
|
2075 |
g: "linear g" "\<forall>x\<in> B. g x = f x" by blast |
|
2076 |
from inj_on_iff_eq_card[OF fB, of f] f(2) |
|
2077 |
have "card (f ` B) = card B" by simp |
|
2078 |
with B(4) C(4) have ceq: "card (f ` B) = card C" using d |
|
2079 |
by simp |
|
2080 |
have "g ` B = f ` B" using g(2) |
|
2081 |
by (auto simp add: image_iff) |
|
2082 |
also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] . |
|
2083 |
finally have gBC: "g ` B = C" . |
|
2084 |
have gi: "inj_on g B" using f(2) g(2) |
|
2085 |
by (auto simp add: inj_on_def) |
|
2086 |
note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi] |
|
2087 |
{fix x y assume x: "x \<in> S" and y: "y \<in> S" and gxy:"g x = g y" |
|
2088 |
from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B" by blast+ |
|
2089 |
from gxy have th0: "g (x - y) = 0" by (simp add: linear_sub[OF g(1)]) |
|
2090 |
have th1: "x - y \<in> span B" using x' y' by (metis span_sub) |
|
2091 |
have "x=y" using g0[OF th1 th0] by simp } |
|
2092 |
then have giS: "inj_on g S" |
|
2093 |
unfolding inj_on_def by blast |
|
2094 |
from span_subspace[OF B(1,3) s] |
|
2095 |
have "g ` S = span (g ` B)" by (simp add: span_linear_image[OF g(1)]) |
|
2096 |
also have "\<dots> = span C" unfolding gBC .. |
|
2097 |
also have "\<dots> = T" using span_subspace[OF C(1,3) t] . |
|
2098 |
finally have gS: "g ` S = T" . |
|
2099 |
from g(1) gS giS show ?thesis by blast |
|
2100 |
qed |
|
2101 |
||
2102 |
text {* Linear functions are equal on a subspace if they are on a spanning set. *} |
|
2103 |
||
2104 |
lemma subspace_kernel: |
|
2105 |
assumes lf: "linear f" |
|
2106 |
shows "subspace {x. f x = 0}" |
|
2107 |
apply (simp add: subspace_def) |
|
2108 |
by (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf]) |
|
2109 |
||
2110 |
lemma linear_eq_0_span: |
|
2111 |
assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0" |
|
2112 |
shows "\<forall>x \<in> span B. f x = 0" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2113 |
using f0 subspace_kernel[OF lf] |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2114 |
by (rule span_induct') |
44133 | 2115 |
|
2116 |
lemma linear_eq_0: |
|
2117 |
assumes lf: "linear f" and SB: "S \<subseteq> span B" and f0: "\<forall>x\<in>B. f x = 0" |
|
2118 |
shows "\<forall>x \<in> S. f x = 0" |
|
2119 |
by (metis linear_eq_0_span[OF lf] subset_eq SB f0) |
|
2120 |
||
2121 |
lemma linear_eq: |
|
2122 |
assumes lf: "linear f" and lg: "linear g" and S: "S \<subseteq> span B" |
|
2123 |
and fg: "\<forall> x\<in> B. f x = g x" |
|
2124 |
shows "\<forall>x\<in> S. f x = g x" |
|
2125 |
proof- |
|
2126 |
let ?h = "\<lambda>x. f x - g x" |
|
2127 |
from fg have fg': "\<forall>x\<in> B. ?h x = 0" by simp |
|
2128 |
from linear_eq_0[OF linear_compose_sub[OF lf lg] S fg'] |
|
2129 |
show ?thesis by simp |
|
2130 |
qed |
|
2131 |
||
2132 |
lemma linear_eq_stdbasis: |
|
2133 |
assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> _)" and lg: "linear g" |
|
2134 |
and fg: "\<forall>i<DIM('a::euclidean_space). f (basis i) = g(basis i)" |
|
2135 |
shows "f = g" |
|
2136 |
proof- |
|
2137 |
let ?U = "{..<DIM('a)}" |
|
2138 |
let ?I = "(basis::nat=>'a) ` {..<DIM('a)}" |
|
2139 |
{fix x assume x: "x \<in> (UNIV :: 'a set)" |
|
2140 |
from equalityD2[OF span_basis'[where 'a='a]] |
|
2141 |
have IU: " (UNIV :: 'a set) \<subseteq> span ?I" by blast |
|
2142 |
have "f x = g x" apply(rule linear_eq[OF lf lg IU,rule_format]) using fg x by auto } |
|
44454 | 2143 |
then show ?thesis by auto |
44133 | 2144 |
qed |
2145 |
||
2146 |
text {* Similar results for bilinear functions. *} |
|
2147 |
||
2148 |
lemma bilinear_eq: |
|
2149 |
assumes bf: "bilinear f" |
|
2150 |
and bg: "bilinear g" |
|
2151 |
and SB: "S \<subseteq> span B" and TC: "T \<subseteq> span C" |
|
2152 |
and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y" |
|
2153 |
shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y " |
|
2154 |
proof- |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2155 |
let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}" |
44133 | 2156 |
from bf bg have sp: "subspace ?P" |
2157 |
unfolding bilinear_def linear_def subspace_def bf bg |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2158 |
by(auto simp add: span_0 bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf]) |
44133 | 2159 |
|
2160 |
have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2161 |
apply (rule span_induct' [OF _ sp]) |
44133 | 2162 |
apply (rule ballI) |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2163 |
apply (rule span_induct') |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2164 |
apply (simp add: fg) |
44133 | 2165 |
apply (auto simp add: subspace_def) |
2166 |
using bf bg unfolding bilinear_def linear_def |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2167 |
by(auto simp add: span_0 bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf]) |
44454 | 2168 |
then show ?thesis using SB TC by auto |
44133 | 2169 |
qed |
2170 |
||
2171 |
lemma bilinear_eq_stdbasis: fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _" |
|
2172 |
assumes bf: "bilinear f" |
|
2173 |
and bg: "bilinear g" |
|
2174 |
and fg: "\<forall>i<DIM('a). \<forall>j<DIM('b). f (basis i) (basis j) = g (basis i) (basis j)" |
|
2175 |
shows "f = g" |
|
2176 |
proof- |
|
2177 |
from fg have th: "\<forall>x \<in> (basis ` {..<DIM('a)}). \<forall>y\<in> (basis ` {..<DIM('b)}). f x y = g x y" by blast |
|
2178 |
from bilinear_eq[OF bf bg equalityD2[OF span_basis'] equalityD2[OF span_basis'] th] |
|
44454 | 2179 |
show ?thesis by blast |
44133 | 2180 |
qed |
2181 |
||
2182 |
text {* Detailed theorems about left and right invertibility in general case. *} |
|
2183 |
||
2184 |
lemma linear_injective_left_inverse: fixes f::"'a::euclidean_space => 'b::euclidean_space" |
|
2185 |
assumes lf: "linear f" and fi: "inj f" |
|
2186 |
shows "\<exists>g. linear g \<and> g o f = id" |
|
2187 |
proof- |
|
2188 |
from linear_independent_extend[OF independent_injective_image, OF independent_basis, OF lf fi] |
|
2189 |
obtain h:: "'b => 'a" where h: "linear h" |
|
2190 |
" \<forall>x \<in> f ` basis ` {..<DIM('a)}. h x = inv f x" by blast |
|
2191 |
from h(2) |
|
2192 |
have th: "\<forall>i<DIM('a). (h \<circ> f) (basis i) = id (basis i)" |
|
2193 |
using inv_o_cancel[OF fi, unfolded fun_eq_iff id_def o_def] |
|
2194 |
by auto |
|
2195 |
||
2196 |
from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th] |
|
2197 |
have "h o f = id" . |
|
2198 |
then show ?thesis using h(1) by blast |
|
2199 |
qed |
|
2200 |
||
2201 |
lemma linear_surjective_right_inverse: fixes f::"'a::euclidean_space => 'b::euclidean_space" |
|
2202 |
assumes lf: "linear f" and sf: "surj f" |
|
2203 |
shows "\<exists>g. linear g \<and> f o g = id" |
|
2204 |
proof- |
|
2205 |
from linear_independent_extend[OF independent_basis[where 'a='b],of "inv f"] |
|
2206 |
obtain h:: "'b \<Rightarrow> 'a" where |
|
2207 |
h: "linear h" "\<forall> x\<in> basis ` {..<DIM('b)}. h x = inv f x" by blast |
|
2208 |
from h(2) |
|
2209 |
have th: "\<forall>i<DIM('b). (f o h) (basis i) = id (basis i)" |
|
2210 |
using sf by(auto simp add: surj_iff_all) |
|
2211 |
from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th] |
|
2212 |
have "f o h = id" . |
|
2213 |
then show ?thesis using h(1) by blast |
|
2214 |
qed |
|
2215 |
||
2216 |
text {* An injective map @{typ "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"} is also surjective. *} |
|
2217 |
||
2218 |
lemma linear_injective_imp_surjective: fixes f::"'a::euclidean_space => 'a::euclidean_space" |
|
2219 |
assumes lf: "linear f" and fi: "inj f" |
|
2220 |
shows "surj f" |
|
2221 |
proof- |
|
2222 |
let ?U = "UNIV :: 'a set" |
|
2223 |
from basis_exists[of ?U] obtain B |
|
2224 |
where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "card B = dim ?U" |
|
2225 |
by blast |
|
2226 |
from B(4) have d: "dim ?U = card B" by simp |
|
2227 |
have th: "?U \<subseteq> span (f ` B)" |
|
2228 |
apply (rule card_ge_dim_independent) |
|
2229 |
apply blast |
|
2230 |
apply (rule independent_injective_image[OF B(2) lf fi]) |
|
2231 |
apply (rule order_eq_refl) |
|
2232 |
apply (rule sym) |
|
2233 |
unfolding d |
|
2234 |
apply (rule card_image) |
|
2235 |
apply (rule subset_inj_on[OF fi]) |
|
2236 |
by blast |
|
2237 |
from th show ?thesis |
|
2238 |
unfolding span_linear_image[OF lf] surj_def |
|
2239 |
using B(3) by blast |
|
2240 |
qed |
|
2241 |
||
2242 |
text {* And vice versa. *} |
|
2243 |
||
2244 |
lemma surjective_iff_injective_gen: |
|
2245 |
assumes fS: "finite S" and fT: "finite T" and c: "card S = card T" |
|
2246 |
and ST: "f ` S \<subseteq> T" |
|
2247 |
shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S" (is "?lhs \<longleftrightarrow> ?rhs") |
|
2248 |
proof- |
|
2249 |
{assume h: "?lhs" |
|
2250 |
{fix x y assume x: "x \<in> S" and y: "y \<in> S" and f: "f x = f y" |
|
2251 |
from x fS have S0: "card S \<noteq> 0" by auto |
|
2252 |
{assume xy: "x \<noteq> y" |
|
2253 |
have th: "card S \<le> card (f ` (S - {y}))" |
|
2254 |
unfolding c |
|
2255 |
apply (rule card_mono) |
|
2256 |
apply (rule finite_imageI) |
|
2257 |
using fS apply simp |
|
2258 |
using h xy x y f unfolding subset_eq image_iff |
|
2259 |
apply auto |
|
2260 |
apply (case_tac "xa = f x") |
|
2261 |
apply (rule bexI[where x=x]) |
|
2262 |
apply auto |
|
2263 |
done |
|
2264 |
also have " \<dots> \<le> card (S -{y})" |
|
2265 |
apply (rule card_image_le) |
|
2266 |
using fS by simp |
|
2267 |
also have "\<dots> \<le> card S - 1" using y fS by simp |
|
2268 |
finally have False using S0 by arith } |
|
2269 |
then have "x = y" by blast} |
|
2270 |
then have ?rhs unfolding inj_on_def by blast} |
|
2271 |
moreover |
|
2272 |
{assume h: ?rhs |
|
2273 |
have "f ` S = T" |
|
2274 |
apply (rule card_subset_eq[OF fT ST]) |
|
2275 |
unfolding card_image[OF h] using c . |
|
2276 |
then have ?lhs by blast} |
|
2277 |
ultimately show ?thesis by blast |
|
2278 |
qed |
|
2279 |
||
2280 |
lemma linear_surjective_imp_injective: fixes f::"'a::euclidean_space => 'a::euclidean_space" |
|
2281 |
assumes lf: "linear f" and sf: "surj f" |
|
2282 |
shows "inj f" |
|
2283 |
proof- |
|
2284 |
let ?U = "UNIV :: 'a set" |
|
2285 |
from basis_exists[of ?U] obtain B |
|
2286 |
where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U" |
|
2287 |
by blast |
|
2288 |
{fix x assume x: "x \<in> span B" and fx: "f x = 0" |
|
2289 |
from B(2) have fB: "finite B" using independent_bound by auto |
|
2290 |
have fBi: "independent (f ` B)" |
|
2291 |
apply (rule card_le_dim_spanning[of "f ` B" ?U]) |
|
2292 |
apply blast |
|
2293 |
using sf B(3) |
|
2294 |
unfolding span_linear_image[OF lf] surj_def subset_eq image_iff |
|
2295 |
apply blast |
|
2296 |
using fB apply blast |
|
2297 |
unfolding d[symmetric] |
|
2298 |
apply (rule card_image_le) |
|
2299 |
apply (rule fB) |
|
2300 |
done |
|
2301 |
have th0: "dim ?U \<le> card (f ` B)" |
|
2302 |
apply (rule span_card_ge_dim) |
|
2303 |
apply blast |
|
2304 |
unfolding span_linear_image[OF lf] |
|
2305 |
apply (rule subset_trans[where B = "f ` UNIV"]) |
|
2306 |
using sf unfolding surj_def apply blast |
|
2307 |
apply (rule image_mono) |
|
2308 |
apply (rule B(3)) |
|
2309 |
apply (metis finite_imageI fB) |
|
2310 |
done |
|
2311 |
||
2312 |
moreover have "card (f ` B) \<le> card B" |
|
2313 |
by (rule card_image_le, rule fB) |
|
2314 |
ultimately have th1: "card B = card (f ` B)" unfolding d by arith |
|
2315 |
have fiB: "inj_on f B" |
|
2316 |
unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric] by blast |
|
2317 |
from linear_indep_image_lemma[OF lf fB fBi fiB x] fx |
|
2318 |
have "x = 0" by blast} |
|
2319 |
note th = this |
|
2320 |
from th show ?thesis unfolding linear_injective_0[OF lf] |
|
2321 |
using B(3) by blast |
|
2322 |
qed |
|
2323 |
||
2324 |
text {* Hence either is enough for isomorphism. *} |
|
2325 |
||
2326 |
lemma left_right_inverse_eq: |
|
2327 |
assumes fg: "f o g = id" and gh: "g o h = id" |
|
2328 |
shows "f = h" |
|
2329 |
proof- |
|
2330 |
have "f = f o (g o h)" unfolding gh by simp |
|
2331 |
also have "\<dots> = (f o g) o h" by (simp add: o_assoc) |
|
2332 |
finally show "f = h" unfolding fg by simp |
|
2333 |
qed |
|
2334 |
||
2335 |
lemma isomorphism_expand: |
|
2336 |
"f o g = id \<and> g o f = id \<longleftrightarrow> (\<forall>x. f(g x) = x) \<and> (\<forall>x. g(f x) = x)" |
|
2337 |
by (simp add: fun_eq_iff o_def id_def) |
|
2338 |
||
2339 |
lemma linear_injective_isomorphism: fixes f::"'a::euclidean_space => 'a::euclidean_space" |
|
2340 |
assumes lf: "linear f" and fi: "inj f" |
|
2341 |
shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" |
|
2342 |
unfolding isomorphism_expand[symmetric] |
|
2343 |
using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]] linear_injective_left_inverse[OF lf fi] |
|
2344 |
by (metis left_right_inverse_eq) |
|
2345 |
||
2346 |
lemma linear_surjective_isomorphism: fixes f::"'a::euclidean_space => 'a::euclidean_space" |
|
2347 |
assumes lf: "linear f" and sf: "surj f" |
|
2348 |
shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" |
|
2349 |
unfolding isomorphism_expand[symmetric] |
|
2350 |
using linear_surjective_right_inverse[OF lf sf] linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]] |
|
2351 |
by (metis left_right_inverse_eq) |
|
2352 |
||
2353 |
text {* Left and right inverses are the same for @{typ "'a::euclidean_space => 'a::euclidean_space"}. *} |
|
2354 |
||
2355 |
lemma linear_inverse_left: fixes f::"'a::euclidean_space => 'a::euclidean_space" |
|
2356 |
assumes lf: "linear f" and lf': "linear f'" |
|
2357 |
shows "f o f' = id \<longleftrightarrow> f' o f = id" |
|
2358 |
proof- |
|
2359 |
{fix f f':: "'a => 'a" |
|
2360 |
assume lf: "linear f" "linear f'" and f: "f o f' = id" |
|
2361 |
from f have sf: "surj f" |
|
2362 |
apply (auto simp add: o_def id_def surj_def) |
|
2363 |
by metis |
|
2364 |
from linear_surjective_isomorphism[OF lf(1) sf] lf f |
|
2365 |
have "f' o f = id" unfolding fun_eq_iff o_def id_def |
|
2366 |
by metis} |
|
2367 |
then show ?thesis using lf lf' by metis |
|
2368 |
qed |
|
2369 |
||
2370 |
text {* Moreover, a one-sided inverse is automatically linear. *} |
|
2371 |
||
2372 |
lemma left_inverse_linear: fixes f::"'a::euclidean_space => 'a::euclidean_space" |
|
2373 |
assumes lf: "linear f" and gf: "g o f = id" |
|
2374 |
shows "linear g" |
|
2375 |
proof- |
|
2376 |
from gf have fi: "inj f" apply (auto simp add: inj_on_def o_def id_def fun_eq_iff) |
|
2377 |
by metis |
|
2378 |
from linear_injective_isomorphism[OF lf fi] |
|
2379 |
obtain h:: "'a \<Rightarrow> 'a" where |
|
2380 |
h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" by blast |
|
2381 |
have "h = g" apply (rule ext) using gf h(2,3) |
|
2382 |
apply (simp add: o_def id_def fun_eq_iff) |
|
2383 |
by metis |
|
2384 |
with h(1) show ?thesis by blast |
|
2385 |
qed |
|
2386 |
||
2387 |
subsection {* Infinity norm *} |
|
2388 |
||
2389 |
definition "infnorm (x::'a::euclidean_space) = Sup {abs(x$$i) |i. i<DIM('a)}" |
|
2390 |
||
2391 |
lemma numseg_dimindex_nonempty: "\<exists>i. i \<in> (UNIV :: 'n set)" |
|
2392 |
by auto |
|
2393 |
||
2394 |
lemma infnorm_set_image: |
|
2395 |
"{abs((x::'a::euclidean_space)$$i) |i. i<DIM('a)} = |
|
2396 |
(\<lambda>i. abs(x$$i)) ` {..<DIM('a)}" by blast |
|
2397 |
||
2398 |
lemma infnorm_set_lemma: |
|
2399 |
shows "finite {abs((x::'a::euclidean_space)$$i) |i. i<DIM('a)}" |
|
2400 |
and "{abs(x$$i) |i. i<DIM('a::euclidean_space)} \<noteq> {}" |
|
2401 |
unfolding infnorm_set_image |
|
2402 |
by auto |
|
2403 |
||
2404 |
lemma infnorm_pos_le: "0 \<le> infnorm (x::'a::euclidean_space)" |
|
2405 |
unfolding infnorm_def |
|
2406 |
unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma] |
|
2407 |
unfolding infnorm_set_image |
|
2408 |
by auto |
|
2409 |
||
2410 |
lemma infnorm_triangle: "infnorm ((x::'a::euclidean_space) + y) \<le> infnorm x + infnorm y" |
|
2411 |
proof- |
|
2412 |
have th: "\<And>x y (z::real). x - y <= z \<longleftrightarrow> x - z <= y" by arith |
|
2413 |
have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast |
|
2414 |
have th2: "\<And>x (y::real). abs(x + y) - abs(x) <= abs(y)" by arith |
|
2415 |
have *:"\<And>i. i \<in> {..<DIM('a)} \<longleftrightarrow> i <DIM('a)" by auto |
|
2416 |
show ?thesis |
|
2417 |
unfolding infnorm_def unfolding Sup_finite_le_iff[ OF infnorm_set_lemma[where 'a='a]] |
|
2418 |
apply (subst diff_le_eq[symmetric]) |
|
2419 |
unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma] |
|
2420 |
unfolding infnorm_set_image bex_simps |
|
2421 |
apply (subst th) |
|
2422 |
unfolding th1 * |
|
2423 |
unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma[where 'a='a]] |
|
2424 |
unfolding infnorm_set_image ball_simps bex_simps |
|
2425 |
unfolding euclidean_simps by (metis th2) |
|
2426 |
qed |
|
2427 |
||
2428 |
lemma infnorm_eq_0: "infnorm x = 0 \<longleftrightarrow> (x::_::euclidean_space) = 0" |
|
2429 |
proof- |
|
2430 |
have "infnorm x <= 0 \<longleftrightarrow> x = 0" |
|
2431 |
unfolding infnorm_def |
|
2432 |
unfolding Sup_finite_le_iff[OF infnorm_set_lemma] |
|
2433 |
unfolding infnorm_set_image ball_simps |
|
44457
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
huffman
parents:
44454
diff
changeset
|
2434 |
apply(subst (1) euclidean_eq) |
44133 | 2435 |
by auto |
2436 |
then show ?thesis using infnorm_pos_le[of x] by simp |
|
2437 |
qed |
|
2438 |
||
2439 |
lemma infnorm_0: "infnorm 0 = 0" |
|
2440 |
by (simp add: infnorm_eq_0) |
|
2441 |
||
2442 |
lemma infnorm_neg: "infnorm (- x) = infnorm x" |
|
2443 |
unfolding infnorm_def |
|
2444 |
apply (rule cong[of "Sup" "Sup"]) |
|
44457
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
huffman
parents:
44454
diff
changeset
|
2445 |
apply blast by auto |
44133 | 2446 |
|
2447 |
lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)" |
|
2448 |
proof- |
|
2449 |
have "y - x = - (x - y)" by simp |
|
2450 |
then show ?thesis by (metis infnorm_neg) |
|
2451 |
qed |
|
2452 |
||
2453 |
lemma real_abs_sub_infnorm: "\<bar> infnorm x - infnorm y\<bar> \<le> infnorm (x - y)" |
|
2454 |
proof- |
|
2455 |
have th: "\<And>(nx::real) n ny. nx <= n + ny \<Longrightarrow> ny <= n + nx ==> \<bar>nx - ny\<bar> <= n" |
|
2456 |
by arith |
|
2457 |
from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"] |
|
2458 |
have ths: "infnorm x \<le> infnorm (x - y) + infnorm y" |
|
2459 |
"infnorm y \<le> infnorm (x - y) + infnorm x" |
|
44454 | 2460 |
by (simp_all add: field_simps infnorm_neg) |
44133 | 2461 |
from th[OF ths] show ?thesis . |
2462 |
qed |
|
2463 |
||
2464 |
lemma real_abs_infnorm: " \<bar>infnorm x\<bar> = infnorm x" |
|
2465 |
using infnorm_pos_le[of x] by arith |
|
2466 |
||
2467 |
lemma component_le_infnorm: |
|
2468 |
shows "\<bar>x$$i\<bar> \<le> infnorm (x::'a::euclidean_space)" |
|
2469 |
proof(cases "i<DIM('a)") |
|
2470 |
case False thus ?thesis using infnorm_pos_le by auto |
|
2471 |
next case True |
|
2472 |
let ?U = "{..<DIM('a)}" |
|
2473 |
let ?S = "{\<bar>x$$i\<bar> |i. i<DIM('a)}" |
|
2474 |
have fS: "finite ?S" unfolding image_Collect[symmetric] |
|
2475 |
apply (rule finite_imageI) by simp |
|
2476 |
have S0: "?S \<noteq> {}" by blast |
|
2477 |
have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast |
|
2478 |
show ?thesis unfolding infnorm_def |
|
2479 |
apply(subst Sup_finite_ge_iff) using Sup_finite_in[OF fS S0] |
|
2480 |
using infnorm_set_image using True by auto |
|
2481 |
qed |
|
2482 |
||
2483 |
lemma infnorm_mul_lemma: "infnorm(a *\<^sub>R x) <= \<bar>a\<bar> * infnorm x" |
|
2484 |
apply (subst infnorm_def) |
|
2485 |
unfolding Sup_finite_le_iff[OF infnorm_set_lemma] |
|
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
44176
diff
changeset
|
2486 |
unfolding infnorm_set_image ball_simps euclidean_component_scaleR abs_mult |
44133 | 2487 |
using component_le_infnorm[of x] by(auto intro: mult_mono) |
2488 |
||
2489 |
lemma infnorm_mul: "infnorm(a *\<^sub>R x) = abs a * infnorm x" |
|
2490 |
proof- |
|
2491 |
{assume a0: "a = 0" hence ?thesis by (simp add: infnorm_0) } |
|
2492 |
moreover |
|
2493 |
{assume a0: "a \<noteq> 0" |
|
2494 |
from a0 have th: "(1/a) *\<^sub>R (a *\<^sub>R x) = x" by simp |
|
2495 |
from a0 have ap: "\<bar>a\<bar> > 0" by arith |
|
2496 |
from infnorm_mul_lemma[of "1/a" "a *\<^sub>R x"] |
|
2497 |
have "infnorm x \<le> 1/\<bar>a\<bar> * infnorm (a*\<^sub>R x)" |
|
2498 |
unfolding th by simp |
|
2499 |
with ap have "\<bar>a\<bar> * infnorm x \<le> \<bar>a\<bar> * (1/\<bar>a\<bar> * infnorm (a *\<^sub>R x))" by (simp add: field_simps) |
|
2500 |
then have "\<bar>a\<bar> * infnorm x \<le> infnorm (a*\<^sub>R x)" |
|
2501 |
using ap by (simp add: field_simps) |
|
2502 |
with infnorm_mul_lemma[of a x] have ?thesis by arith } |
|
2503 |
ultimately show ?thesis by blast |
|
2504 |
qed |
|
2505 |
||
2506 |
lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0" |
|
2507 |
using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith |
|
2508 |
||
2509 |
text {* Prove that it differs only up to a bound from Euclidean norm. *} |
|
2510 |
||
2511 |
lemma infnorm_le_norm: "infnorm x \<le> norm x" |
|
2512 |
unfolding infnorm_def Sup_finite_le_iff[OF infnorm_set_lemma] |
|
2513 |
unfolding infnorm_set_image ball_simps |
|
2514 |
by (metis component_le_norm) |
|
2515 |
||
2516 |
lemma norm_le_infnorm: "norm(x) <= sqrt(real DIM('a)) * infnorm(x::'a::euclidean_space)" |
|
2517 |
proof- |
|
2518 |
let ?d = "DIM('a)" |
|
2519 |
have "real ?d \<ge> 0" by simp |
|
2520 |
hence d2: "(sqrt (real ?d))^2 = real ?d" |
|
2521 |
by (auto intro: real_sqrt_pow2) |
|
2522 |
have th: "sqrt (real ?d) * infnorm x \<ge> 0" |
|
2523 |
by (simp add: zero_le_mult_iff infnorm_pos_le) |
|
2524 |
have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)^2" |
|
2525 |
unfolding power_mult_distrib d2 |
|
2526 |
unfolding real_of_nat_def apply(subst euclidean_inner) |
|
2527 |
apply (subst power2_abs[symmetric]) |
|
2528 |
apply(rule order_trans[OF setsum_bounded[where K="\<bar>infnorm x\<bar>\<twosuperior>"]]) |
|
2529 |
apply(auto simp add: power2_eq_square[symmetric]) |
|
2530 |
apply (subst power2_abs[symmetric]) |
|
2531 |
apply (rule power_mono) |
|
2532 |
unfolding infnorm_def Sup_finite_ge_iff[OF infnorm_set_lemma] |
|
2533 |
unfolding infnorm_set_image bex_simps apply(rule_tac x=i in bexI) by auto |
|
2534 |
from real_le_lsqrt[OF inner_ge_zero th th1] |
|
2535 |
show ?thesis unfolding norm_eq_sqrt_inner id_def . |
|
2536 |
qed |
|
2537 |
||
44646 | 2538 |
lemma tendsto_infnorm [tendsto_intros]: |
2539 |
assumes "(f ---> a) F" shows "((\<lambda>x. infnorm (f x)) ---> infnorm a) F" |
|
2540 |
proof (rule tendsto_compose [OF LIM_I assms]) |
|
2541 |
fix r :: real assume "0 < r" |
|
2542 |
thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r" |
|
2543 |
by (metis real_norm_def le_less_trans real_abs_sub_infnorm infnorm_le_norm) |
|
2544 |
qed |
|
2545 |
||
44133 | 2546 |
text {* Equality in Cauchy-Schwarz and triangle inequalities. *} |
2547 |
||
2548 |
lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" (is "?lhs \<longleftrightarrow> ?rhs") |
|
2549 |
proof- |
|
2550 |
{assume h: "x = 0" |
|
2551 |
hence ?thesis by simp} |
|
2552 |
moreover |
|
2553 |
{assume h: "y = 0" |
|
2554 |
hence ?thesis by simp} |
|
2555 |
moreover |
|
2556 |
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0" |
|
2557 |
from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"] |
|
2558 |
have "?rhs \<longleftrightarrow> (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) = 0)" |
|
2559 |
using x y |
|
2560 |
unfolding inner_simps |
|
2561 |
unfolding power2_norm_eq_inner[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: inner_commute) |
|
2562 |
apply (simp add: field_simps) by metis |
|
2563 |
also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y |
|
2564 |
by (simp add: field_simps inner_commute) |
|
2565 |
also have "\<dots> \<longleftrightarrow> ?lhs" using x y |
|
2566 |
apply simp |
|
2567 |
by metis |
|
2568 |
finally have ?thesis by blast} |
|
2569 |
ultimately show ?thesis by blast |
|
2570 |
qed |
|
2571 |
||
2572 |
lemma norm_cauchy_schwarz_abs_eq: |
|
2573 |
shows "abs(x \<bullet> y) = norm x * norm y \<longleftrightarrow> |
|
2574 |
norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm(x) *\<^sub>R y = - norm y *\<^sub>R x" (is "?lhs \<longleftrightarrow> ?rhs") |
|
2575 |
proof- |
|
2576 |
have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> abs x = a \<longleftrightarrow> x = a \<or> x = - a" by arith |
|
2577 |
have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)" |
|
2578 |
by simp |
|
2579 |
also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or> |
|
2580 |
(-x) \<bullet> y = norm x * norm y)" |
|
2581 |
unfolding norm_cauchy_schwarz_eq[symmetric] |
|
2582 |
unfolding norm_minus_cancel norm_scaleR .. |
|
2583 |
also have "\<dots> \<longleftrightarrow> ?lhs" |
|
2584 |
unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps by auto |
|
2585 |
finally show ?thesis .. |
|
2586 |
qed |
|
2587 |
||
2588 |
lemma norm_triangle_eq: |
|
2589 |
fixes x y :: "'a::real_inner" |
|
2590 |
shows "norm(x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" |
|
2591 |
proof- |
|
2592 |
{assume x: "x =0 \<or> y =0" |
|
2593 |
hence ?thesis by (cases "x=0", simp_all)} |
|
2594 |
moreover |
|
2595 |
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0" |
|
2596 |
hence "norm x \<noteq> 0" "norm y \<noteq> 0" |
|
2597 |
by simp_all |
|
2598 |
hence n: "norm x > 0" "norm y > 0" |
|
2599 |
using norm_ge_zero[of x] norm_ge_zero[of y] |
|
2600 |
by arith+ |
|
2601 |
have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 ==> (a = b + c \<longleftrightarrow> a^2 = (b + c)^2)" by algebra |
|
2602 |
have "norm(x + y) = norm x + norm y \<longleftrightarrow> norm(x + y)^ 2 = (norm x + norm y) ^2" |
|
2603 |
apply (rule th) using n norm_ge_zero[of "x + y"] |
|
2604 |
by arith |
|
2605 |
also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" |
|
2606 |
unfolding norm_cauchy_schwarz_eq[symmetric] |
|
2607 |
unfolding power2_norm_eq_inner inner_simps |
|
2608 |
by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps) |
|
2609 |
finally have ?thesis .} |
|
2610 |
ultimately show ?thesis by blast |
|
2611 |
qed |
|
2612 |
||
2613 |
subsection {* Collinearity *} |
|
2614 |
||
2615 |
definition |
|
2616 |
collinear :: "'a::real_vector set \<Rightarrow> bool" where |
|
2617 |
"collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)" |
|
2618 |
||
2619 |
lemma collinear_empty: "collinear {}" by (simp add: collinear_def) |
|
2620 |
||
2621 |
lemma collinear_sing: "collinear {x}" |
|
2622 |
by (simp add: collinear_def) |
|
2623 |
||
2624 |
lemma collinear_2: "collinear {x, y}" |
|
2625 |
apply (simp add: collinear_def) |
|
2626 |
apply (rule exI[where x="x - y"]) |
|
2627 |
apply auto |
|
2628 |
apply (rule exI[where x=1], simp) |
|
2629 |
apply (rule exI[where x="- 1"], simp) |
|
2630 |
done |
|
2631 |
||
2632 |
lemma collinear_lemma: "collinear {0,x,y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)" (is "?lhs \<longleftrightarrow> ?rhs") |
|
2633 |
proof- |
|
2634 |
{assume "x=0 \<or> y = 0" hence ?thesis |
|
2635 |
by (cases "x = 0", simp_all add: collinear_2 insert_commute)} |
|
2636 |
moreover |
|
2637 |
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0" |
|
2638 |
{assume h: "?lhs" |
|
2639 |
then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u" unfolding collinear_def by blast |
|
2640 |
from u[rule_format, of x 0] u[rule_format, of y 0] |
|
2641 |
obtain cx and cy where |
|
2642 |
cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u" |
|
2643 |
by auto |
|
2644 |
from cx x have cx0: "cx \<noteq> 0" by auto |
|
2645 |
from cy y have cy0: "cy \<noteq> 0" by auto |
|
2646 |
let ?d = "cy / cx" |
|
2647 |
from cx cy cx0 have "y = ?d *\<^sub>R x" |
|
2648 |
by simp |
|
2649 |
hence ?rhs using x y by blast} |
|
2650 |
moreover |
|
2651 |
{assume h: "?rhs" |
|
2652 |
then obtain c where c: "y = c *\<^sub>R x" using x y by blast |
|
2653 |
have ?lhs unfolding collinear_def c |
|
2654 |
apply (rule exI[where x=x]) |
|
2655 |
apply auto |
|
2656 |
apply (rule exI[where x="- 1"], simp) |
|
2657 |
apply (rule exI[where x= "-c"], simp) |
|
2658 |
apply (rule exI[where x=1], simp) |
|
2659 |
apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib) |
|
2660 |
apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib) |
|
2661 |
done} |
|
2662 |
ultimately have ?thesis by blast} |
|
2663 |
ultimately show ?thesis by blast |
|
2664 |
qed |
|
2665 |
||
2666 |
lemma norm_cauchy_schwarz_equal: |
|
2667 |
shows "abs(x \<bullet> y) = norm x * norm y \<longleftrightarrow> collinear {0,x,y}" |
|
2668 |
unfolding norm_cauchy_schwarz_abs_eq |
|
2669 |
apply (cases "x=0", simp_all add: collinear_2) |
|
2670 |
apply (cases "y=0", simp_all add: collinear_2 insert_commute) |
|
2671 |
unfolding collinear_lemma |
|
2672 |
apply simp |
|
2673 |
apply (subgoal_tac "norm x \<noteq> 0") |
|
2674 |
apply (subgoal_tac "norm y \<noteq> 0") |
|
2675 |
apply (rule iffI) |
|
2676 |
apply (cases "norm x *\<^sub>R y = norm y *\<^sub>R x") |
|
2677 |
apply (rule exI[where x="(1/norm x) * norm y"]) |
|
2678 |
apply (drule sym) |
|
2679 |
unfolding scaleR_scaleR[symmetric] |
|
2680 |
apply (simp add: field_simps) |
|
2681 |
apply (rule exI[where x="(1/norm x) * - norm y"]) |
|
2682 |
apply clarify |
|
2683 |
apply (drule sym) |
|
2684 |
unfolding scaleR_scaleR[symmetric] |
|
2685 |
apply (simp add: field_simps) |
|
2686 |
apply (erule exE) |
|
2687 |
apply (erule ssubst) |
|
2688 |
unfolding scaleR_scaleR |
|
2689 |
unfolding norm_scaleR |
|
2690 |
apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x") |
|
2691 |
apply (case_tac "c <= 0", simp add: field_simps) |
|
2692 |
apply (simp add: field_simps) |
|
2693 |
apply (case_tac "c <= 0", simp add: field_simps) |
|
2694 |
apply (simp add: field_simps) |
|
2695 |
apply simp |
|
2696 |
apply simp |
|
2697 |
done |
|
2698 |
||
44529
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2699 |
subsection {* An ordering on euclidean spaces that will allow us to talk about intervals *} |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2700 |
|
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2701 |
class ordered_euclidean_space = ord + euclidean_space + |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2702 |
assumes eucl_le: "x \<le> y \<longleftrightarrow> (\<forall>i < DIM('a). x $$ i \<le> y $$ i)" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2703 |
and eucl_less: "x < y \<longleftrightarrow> (\<forall>i < DIM('a). x $$ i < y $$ i)" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2704 |
|
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2705 |
lemma eucl_less_not_refl[simp, intro!]: "\<not> x < (x::'a::ordered_euclidean_space)" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2706 |
unfolding eucl_less[where 'a='a] by auto |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2707 |
|
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2708 |
lemma euclidean_trans[trans]: |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2709 |
fixes x y z :: "'a::ordered_euclidean_space" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2710 |
shows "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2711 |
and "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2712 |
and "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2713 |
unfolding eucl_less[where 'a='a] eucl_le[where 'a='a] |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2714 |
by (fast intro: less_trans, fast intro: le_less_trans, |
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
huffman
parents:
44528
diff
changeset
|
2715 |
fast intro: order_trans) |
44133 | 2716 |
|
2717 |
lemma basis_real_range: "basis ` {..<1} = {1::real}" by auto |
|
2718 |
||
2719 |
instance real::ordered_euclidean_space |
|
2720 |
by default (auto simp add: euclidean_component_def) |
|
2721 |
||
2722 |
lemma Eucl_real_simps[simp]: |
|
2723 |
"(x::real) $$ 0 = x" |
|
2724 |
"(\<chi>\<chi> i. f i) = ((f 0)::real)" |
|
2725 |
"\<And>i. i > 0 \<Longrightarrow> x $$ i = 0" |
|
2726 |
defer apply(subst euclidean_eq) apply safe |
|
2727 |
unfolding euclidean_lambda_beta' |
|
2728 |
unfolding euclidean_component_def by auto |
|
2729 |
||
2730 |
lemma complex_basis[simp]: |
|
2731 |
shows "basis 0 = (1::complex)" and "basis 1 = ii" and "basis (Suc 0) = ii" |
|
2732 |
unfolding basis_complex_def by auto |
|
2733 |
||
2734 |
lemma DIM_prod[simp]: "DIM('a \<times> 'b) = DIM('b::euclidean_space) + DIM('a::euclidean_space)" |
|
2735 |
(* FIXME: why this orientation? Why not "DIM('a) + DIM('b)" ? *) |
|
2736 |
unfolding dimension_prod_def by (rule add_commute) |
|
2737 |
||
2738 |
instantiation prod :: (ordered_euclidean_space, ordered_euclidean_space) ordered_euclidean_space |
|
2739 |
begin |
|
2740 |
||
2741 |
definition "x \<le> (y::('a\<times>'b)) \<longleftrightarrow> (\<forall>i<DIM('a\<times>'b). x $$ i \<le> y $$ i)" |
|
2742 |
definition "x < (y::('a\<times>'b)) \<longleftrightarrow> (\<forall>i<DIM('a\<times>'b). x $$ i < y $$ i)" |
|
2743 |
||
2744 |
instance proof qed (auto simp: less_prod_def less_eq_prod_def) |
|
2745 |
end |
|
2746 |
||
2747 |
end |