| author | nipkow | 
| Sun, 15 Feb 2009 16:25:16 +0100 | |
| changeset 29923 | 24f56736c56f | 
| parent 29252 | ea97aa6aeba2 | 
| permissions | -rw-r--r-- | 
| 7917 | 1  | 
(* Title: HOL/Real/HahnBanach/VectorSpace.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Gertrud Bauer, TU Munich  | 
|
4  | 
*)  | 
|
5  | 
||
| 9035 | 6  | 
header {* Vector spaces *}
 | 
| 7917 | 7  | 
|
| 27612 | 8  | 
theory VectorSpace  | 
9  | 
imports Real Bounds Zorn  | 
|
10  | 
begin  | 
|
| 7917 | 11  | 
|
| 9035 | 12  | 
subsection {* Signature *}
 | 
| 7917 | 13  | 
|
| 10687 | 14  | 
text {*
 | 
15  | 
  For the definition of real vector spaces a type @{typ 'a} of the
 | 
|
16  | 
  sort @{text "{plus, minus, zero}"} is considered, on which a real
 | 
|
17  | 
  scalar multiplication @{text \<cdot>} is declared.
 | 
|
18  | 
*}  | 
|
| 7917 | 19  | 
|
20  | 
consts  | 
|
| 10687 | 21  | 
  prod  :: "real \<Rightarrow> 'a::{plus, minus, zero} \<Rightarrow> 'a"     (infixr "'(*')" 70)
 | 
| 7917 | 22  | 
|
| 21210 | 23  | 
notation (xsymbols)  | 
| 19736 | 24  | 
prod (infixr "\<cdot>" 70)  | 
| 21210 | 25  | 
notation (HTML output)  | 
| 19736 | 26  | 
prod (infixr "\<cdot>" 70)  | 
| 7917 | 27  | 
|
28  | 
||
| 9035 | 29  | 
subsection {* Vector space laws *}
 | 
| 7917 | 30  | 
|
| 10687 | 31  | 
text {*
 | 
32  | 
  A \emph{vector space} is a non-empty set @{text V} of elements from
 | 
|
33  | 
  @{typ 'a} with the following vector space laws: The set @{text V} is
 | 
|
34  | 
closed under addition and scalar multiplication, addition is  | 
|
35  | 
  associative and commutative; @{text "- x"} is the inverse of @{text
 | 
|
36  | 
  x} w.~r.~t.~addition and @{text 0} is the neutral element of
 | 
|
37  | 
addition. Addition and multiplication are distributive; scalar  | 
|
| 
12018
 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 
paulson 
parents: 
11704 
diff
changeset
 | 
38  | 
  multiplication is associative and the real number @{text "1"} is
 | 
| 10687 | 39  | 
the neutral element of scalar multiplication.  | 
| 9035 | 40  | 
*}  | 
| 7917 | 41  | 
|
| 29234 | 42  | 
locale var_V = fixes V  | 
43  | 
||
44  | 
locale vectorspace = var_V +  | 
|
| 13515 | 45  | 
  assumes non_empty [iff, intro?]: "V \<noteq> {}"
 | 
46  | 
and add_closed [iff]: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y \<in> V"  | 
|
47  | 
and mult_closed [iff]: "x \<in> V \<Longrightarrow> a \<cdot> x \<in> V"  | 
|
48  | 
and add_assoc: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + y) + z = x + (y + z)"  | 
|
49  | 
and add_commute: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y = y + x"  | 
|
50  | 
and diff_self [simp]: "x \<in> V \<Longrightarrow> x - x = 0"  | 
|
51  | 
and add_zero_left [simp]: "x \<in> V \<Longrightarrow> 0 + x = x"  | 
|
52  | 
and add_mult_distrib1: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y"  | 
|
53  | 
and add_mult_distrib2: "x \<in> V \<Longrightarrow> (a + b) \<cdot> x = a \<cdot> x + b \<cdot> x"  | 
|
54  | 
and mult_assoc: "x \<in> V \<Longrightarrow> (a * b) \<cdot> x = a \<cdot> (b \<cdot> x)"  | 
|
55  | 
and mult_1 [simp]: "x \<in> V \<Longrightarrow> 1 \<cdot> x = x"  | 
|
56  | 
and negate_eq1: "x \<in> V \<Longrightarrow> - x = (- 1) \<cdot> x"  | 
|
57  | 
and diff_eq1: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y = x + - y"  | 
|
| 7917 | 58  | 
|
| 13515 | 59  | 
lemma (in vectorspace) negate_eq2: "x \<in> V \<Longrightarrow> (- 1) \<cdot> x = - x"  | 
60  | 
by (rule negate_eq1 [symmetric])  | 
|
| 
9013
 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 
fleuriot 
parents: 
8703 
diff
changeset
 | 
61  | 
|
| 13515 | 62  | 
lemma (in vectorspace) negate_eq2a: "x \<in> V \<Longrightarrow> -1 \<cdot> x = - x"  | 
63  | 
by (simp add: negate_eq1)  | 
|
| 7917 | 64  | 
|
| 13515 | 65  | 
lemma (in vectorspace) diff_eq2: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + - y = x - y"  | 
66  | 
by (rule diff_eq1 [symmetric])  | 
|
| 7917 | 67  | 
|
| 13515 | 68  | 
lemma (in vectorspace) diff_closed [iff]: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y \<in> V"  | 
| 9035 | 69  | 
by (simp add: diff_eq1 negate_eq1)  | 
| 7917 | 70  | 
|
| 13515 | 71  | 
lemma (in vectorspace) neg_closed [iff]: "x \<in> V \<Longrightarrow> - x \<in> V"  | 
| 9035 | 72  | 
by (simp add: negate_eq1)  | 
| 7917 | 73  | 
|
| 13515 | 74  | 
lemma (in vectorspace) add_left_commute:  | 
75  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> x + (y + z) = y + (x + z)"  | 
|
| 9035 | 76  | 
proof -  | 
| 13515 | 77  | 
assume xyz: "x \<in> V" "y \<in> V" "z \<in> V"  | 
| 27612 | 78  | 
then have "x + (y + z) = (x + y) + z"  | 
| 13515 | 79  | 
by (simp only: add_assoc)  | 
| 27612 | 80  | 
also from xyz have "\<dots> = (y + x) + z" by (simp only: add_commute)  | 
81  | 
also from xyz have "\<dots> = y + (x + z)" by (simp only: add_assoc)  | 
|
| 9035 | 82  | 
finally show ?thesis .  | 
83  | 
qed  | 
|
| 7917 | 84  | 
|
| 13515 | 85  | 
theorems (in vectorspace) add_ac =  | 
86  | 
add_assoc add_commute add_left_commute  | 
|
| 7917 | 87  | 
|
88  | 
||
| 7978 | 89  | 
text {* The existence of the zero element of a vector space
 | 
| 13515 | 90  | 
follows from the non-emptiness of carrier set. *}  | 
| 7917 | 91  | 
|
| 13515 | 92  | 
lemma (in vectorspace) zero [iff]: "0 \<in> V"  | 
| 10687 | 93  | 
proof -  | 
| 13515 | 94  | 
from non_empty obtain x where x: "x \<in> V" by blast  | 
95  | 
then have "0 = x - x" by (rule diff_self [symmetric])  | 
|
| 27612 | 96  | 
also from x x have "\<dots> \<in> V" by (rule diff_closed)  | 
| 11472 | 97  | 
finally show ?thesis .  | 
| 9035 | 98  | 
qed  | 
| 7917 | 99  | 
|
| 13515 | 100  | 
lemma (in vectorspace) add_zero_right [simp]:  | 
101  | 
"x \<in> V \<Longrightarrow> x + 0 = x"  | 
|
| 9035 | 102  | 
proof -  | 
| 13515 | 103  | 
assume x: "x \<in> V"  | 
104  | 
from this and zero have "x + 0 = 0 + x" by (rule add_commute)  | 
|
| 27612 | 105  | 
also from x have "\<dots> = x" by (rule add_zero_left)  | 
| 9035 | 106  | 
finally show ?thesis .  | 
107  | 
qed  | 
|
| 7917 | 108  | 
|
| 13515 | 109  | 
lemma (in vectorspace) mult_assoc2:  | 
110  | 
"x \<in> V \<Longrightarrow> a \<cdot> b \<cdot> x = (a * b) \<cdot> x"  | 
|
111  | 
by (simp only: mult_assoc)  | 
|
| 7917 | 112  | 
|
| 13515 | 113  | 
lemma (in vectorspace) diff_mult_distrib1:  | 
114  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<cdot> (x - y) = a \<cdot> x - a \<cdot> y"  | 
|
115  | 
by (simp add: diff_eq1 negate_eq1 add_mult_distrib1 mult_assoc2)  | 
|
| 7917 | 116  | 
|
| 13515 | 117  | 
lemma (in vectorspace) diff_mult_distrib2:  | 
118  | 
"x \<in> V \<Longrightarrow> (a - b) \<cdot> x = a \<cdot> x - (b \<cdot> x)"  | 
|
| 9035 | 119  | 
proof -  | 
| 13515 | 120  | 
assume x: "x \<in> V"  | 
| 10687 | 121  | 
have " (a - b) \<cdot> x = (a + - b) \<cdot> x"  | 
| 13515 | 122  | 
by (simp add: real_diff_def)  | 
| 27612 | 123  | 
also from x have "\<dots> = a \<cdot> x + (- b) \<cdot> x"  | 
| 13515 | 124  | 
by (rule add_mult_distrib2)  | 
| 27612 | 125  | 
also from x have "\<dots> = a \<cdot> x + - (b \<cdot> x)"  | 
| 13515 | 126  | 
by (simp add: negate_eq1 mult_assoc2)  | 
| 27612 | 127  | 
also from x have "\<dots> = a \<cdot> x - (b \<cdot> x)"  | 
| 13515 | 128  | 
by (simp add: diff_eq1)  | 
| 9035 | 129  | 
finally show ?thesis .  | 
130  | 
qed  | 
|
| 7917 | 131  | 
|
| 13515 | 132  | 
lemmas (in vectorspace) distrib =  | 
133  | 
add_mult_distrib1 add_mult_distrib2  | 
|
134  | 
diff_mult_distrib1 diff_mult_distrib2  | 
|
135  | 
||
| 10687 | 136  | 
|
137  | 
text {* \medskip Further derived laws: *}
 | 
|
| 7917 | 138  | 
|
| 13515 | 139  | 
lemma (in vectorspace) mult_zero_left [simp]:  | 
140  | 
"x \<in> V \<Longrightarrow> 0 \<cdot> x = 0"  | 
|
| 9035 | 141  | 
proof -  | 
| 13515 | 142  | 
assume x: "x \<in> V"  | 
143  | 
have "0 \<cdot> x = (1 - 1) \<cdot> x" by simp  | 
|
| 27612 | 144  | 
also have "\<dots> = (1 + - 1) \<cdot> x" by simp  | 
145  | 
also from x have "\<dots> = 1 \<cdot> x + (- 1) \<cdot> x"  | 
|
| 13515 | 146  | 
by (rule add_mult_distrib2)  | 
| 27612 | 147  | 
also from x have "\<dots> = x + (- 1) \<cdot> x" by simp  | 
148  | 
also from x have "\<dots> = x + - x" by (simp add: negate_eq2a)  | 
|
149  | 
also from x have "\<dots> = x - x" by (simp add: diff_eq2)  | 
|
150  | 
also from x have "\<dots> = 0" by simp  | 
|
| 9035 | 151  | 
finally show ?thesis .  | 
152  | 
qed  | 
|
| 7917 | 153  | 
|
| 13515 | 154  | 
lemma (in vectorspace) mult_zero_right [simp]:  | 
155  | 
"a \<cdot> 0 = (0::'a)"  | 
|
| 9035 | 156  | 
proof -  | 
| 13515 | 157  | 
have "a \<cdot> 0 = a \<cdot> (0 - (0::'a))" by simp  | 
| 27612 | 158  | 
also have "\<dots> = a \<cdot> 0 - a \<cdot> 0"  | 
| 13515 | 159  | 
by (rule diff_mult_distrib1) simp_all  | 
| 27612 | 160  | 
also have "\<dots> = 0" by simp  | 
| 9035 | 161  | 
finally show ?thesis .  | 
162  | 
qed  | 
|
| 7917 | 163  | 
|
| 13515 | 164  | 
lemma (in vectorspace) minus_mult_cancel [simp]:  | 
165  | 
"x \<in> V \<Longrightarrow> (- a) \<cdot> - x = a \<cdot> x"  | 
|
166  | 
by (simp add: negate_eq1 mult_assoc2)  | 
|
| 7917 | 167  | 
|
| 13515 | 168  | 
lemma (in vectorspace) add_minus_left_eq_diff:  | 
169  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - x + y = y - x"  | 
|
| 10687 | 170  | 
proof -  | 
| 13515 | 171  | 
assume xy: "x \<in> V" "y \<in> V"  | 
| 27612 | 172  | 
then have "- x + y = y + - x" by (simp add: add_commute)  | 
173  | 
also from xy have "\<dots> = y - x" by (simp add: diff_eq1)  | 
|
| 9035 | 174  | 
finally show ?thesis .  | 
175  | 
qed  | 
|
| 7917 | 176  | 
|
| 13515 | 177  | 
lemma (in vectorspace) add_minus [simp]:  | 
178  | 
"x \<in> V \<Longrightarrow> x + - x = 0"  | 
|
179  | 
by (simp add: diff_eq2)  | 
|
| 7917 | 180  | 
|
| 13515 | 181  | 
lemma (in vectorspace) add_minus_left [simp]:  | 
182  | 
"x \<in> V \<Longrightarrow> - x + x = 0"  | 
|
183  | 
by (simp add: diff_eq2 add_commute)  | 
|
| 7917 | 184  | 
|
| 13515 | 185  | 
lemma (in vectorspace) minus_minus [simp]:  | 
186  | 
"x \<in> V \<Longrightarrow> - (- x) = x"  | 
|
187  | 
by (simp add: negate_eq1 mult_assoc2)  | 
|
188  | 
||
189  | 
lemma (in vectorspace) minus_zero [simp]:  | 
|
190  | 
"- (0::'a) = 0"  | 
|
| 9035 | 191  | 
by (simp add: negate_eq1)  | 
| 7917 | 192  | 
|
| 13515 | 193  | 
lemma (in vectorspace) minus_zero_iff [simp]:  | 
194  | 
"x \<in> V \<Longrightarrow> (- x = 0) = (x = 0)"  | 
|
195  | 
proof  | 
|
196  | 
assume x: "x \<in> V"  | 
|
197  | 
  {
 | 
|
198  | 
from x have "x = - (- x)" by (simp add: minus_minus)  | 
|
199  | 
also assume "- x = 0"  | 
|
| 27612 | 200  | 
also have "- \<dots> = 0" by (rule minus_zero)  | 
| 13515 | 201  | 
finally show "x = 0" .  | 
202  | 
next  | 
|
203  | 
assume "x = 0"  | 
|
204  | 
then show "- x = 0" by simp  | 
|
205  | 
}  | 
|
| 9035 | 206  | 
qed  | 
| 7917 | 207  | 
|
| 13515 | 208  | 
lemma (in vectorspace) add_minus_cancel [simp]:  | 
209  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + (- x + y) = y"  | 
|
210  | 
by (simp add: add_assoc [symmetric] del: add_commute)  | 
|
| 7917 | 211  | 
|
| 13515 | 212  | 
lemma (in vectorspace) minus_add_cancel [simp]:  | 
213  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - x + (x + y) = y"  | 
|
214  | 
by (simp add: add_assoc [symmetric] del: add_commute)  | 
|
| 7917 | 215  | 
|
| 13515 | 216  | 
lemma (in vectorspace) minus_add_distrib [simp]:  | 
217  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - (x + y) = - x + - y"  | 
|
218  | 
by (simp add: negate_eq1 add_mult_distrib1)  | 
|
| 7917 | 219  | 
|
| 13515 | 220  | 
lemma (in vectorspace) diff_zero [simp]:  | 
221  | 
"x \<in> V \<Longrightarrow> x - 0 = x"  | 
|
222  | 
by (simp add: diff_eq1)  | 
|
223  | 
||
224  | 
lemma (in vectorspace) diff_zero_right [simp]:  | 
|
225  | 
"x \<in> V \<Longrightarrow> 0 - x = - x"  | 
|
| 10687 | 226  | 
by (simp add: diff_eq1)  | 
| 7917 | 227  | 
|
| 13515 | 228  | 
lemma (in vectorspace) add_left_cancel:  | 
229  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + y = x + z) = (y = z)"  | 
|
| 9035 | 230  | 
proof  | 
| 13515 | 231  | 
assume x: "x \<in> V" and y: "y \<in> V" and z: "z \<in> V"  | 
232  | 
  {
 | 
|
233  | 
from y have "y = 0 + y" by simp  | 
|
| 27612 | 234  | 
also from x y have "\<dots> = (- x + x) + y" by simp  | 
235  | 
also from x y have "\<dots> = - x + (x + y)"  | 
|
| 13515 | 236  | 
by (simp add: add_assoc neg_closed)  | 
237  | 
also assume "x + y = x + z"  | 
|
238  | 
also from x z have "- x + (x + z) = - x + x + z"  | 
|
239  | 
by (simp add: add_assoc [symmetric] neg_closed)  | 
|
| 27612 | 240  | 
also from x z have "\<dots> = z" by simp  | 
| 13515 | 241  | 
finally show "y = z" .  | 
242  | 
next  | 
|
243  | 
assume "y = z"  | 
|
244  | 
then show "x + y = x + z" by (simp only:)  | 
|
245  | 
}  | 
|
246  | 
qed  | 
|
| 7917 | 247  | 
|
| 13515 | 248  | 
lemma (in vectorspace) add_right_cancel:  | 
249  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (y + x = z + x) = (y = z)"  | 
|
250  | 
by (simp only: add_commute add_left_cancel)  | 
|
| 7917 | 251  | 
|
| 13515 | 252  | 
lemma (in vectorspace) add_assoc_cong:  | 
253  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x' \<in> V \<Longrightarrow> y' \<in> V \<Longrightarrow> z \<in> V  | 
|
254  | 
\<Longrightarrow> x + y = x' + y' \<Longrightarrow> x + (y + z) = x' + (y' + z)"  | 
|
255  | 
by (simp only: add_assoc [symmetric])  | 
|
| 7917 | 256  | 
|
| 13515 | 257  | 
lemma (in vectorspace) mult_left_commute:  | 
258  | 
"x \<in> V \<Longrightarrow> a \<cdot> b \<cdot> x = b \<cdot> a \<cdot> x"  | 
|
259  | 
by (simp add: real_mult_commute mult_assoc2)  | 
|
| 7917 | 260  | 
|
| 13515 | 261  | 
lemma (in vectorspace) mult_zero_uniq:  | 
262  | 
"x \<in> V \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> a \<cdot> x = 0 \<Longrightarrow> a = 0"  | 
|
| 9035 | 263  | 
proof (rule classical)  | 
| 13515 | 264  | 
assume a: "a \<noteq> 0"  | 
265  | 
assume x: "x \<in> V" "x \<noteq> 0" and ax: "a \<cdot> x = 0"  | 
|
266  | 
from x a have "x = (inverse a * a) \<cdot> x" by simp  | 
|
| 27612 | 267  | 
also from `x \<in> V` have "\<dots> = inverse a \<cdot> (a \<cdot> x)" by (rule mult_assoc)  | 
268  | 
also from ax have "\<dots> = inverse a \<cdot> 0" by simp  | 
|
269  | 
also have "\<dots> = 0" by simp  | 
|
| 9374 | 270  | 
finally have "x = 0" .  | 
| 23378 | 271  | 
with `x \<noteq> 0` show "a = 0" by contradiction  | 
| 9035 | 272  | 
qed  | 
| 7917 | 273  | 
|
| 13515 | 274  | 
lemma (in vectorspace) mult_left_cancel:  | 
275  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (a \<cdot> x = a \<cdot> y) = (x = y)"  | 
|
| 9035 | 276  | 
proof  | 
| 13515 | 277  | 
assume x: "x \<in> V" and y: "y \<in> V" and a: "a \<noteq> 0"  | 
278  | 
from x have "x = 1 \<cdot> x" by simp  | 
|
| 27612 | 279  | 
also from a have "\<dots> = (inverse a * a) \<cdot> x" by simp  | 
280  | 
also from x have "\<dots> = inverse a \<cdot> (a \<cdot> x)"  | 
|
| 13515 | 281  | 
by (simp only: mult_assoc)  | 
282  | 
also assume "a \<cdot> x = a \<cdot> y"  | 
|
| 27612 | 283  | 
also from a y have "inverse a \<cdot> \<dots> = y"  | 
| 13515 | 284  | 
by (simp add: mult_assoc2)  | 
285  | 
finally show "x = y" .  | 
|
286  | 
next  | 
|
287  | 
assume "x = y"  | 
|
288  | 
then show "a \<cdot> x = a \<cdot> y" by (simp only:)  | 
|
289  | 
qed  | 
|
| 7917 | 290  | 
|
| 13515 | 291  | 
lemma (in vectorspace) mult_right_cancel:  | 
292  | 
"x \<in> V \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> (a \<cdot> x = b \<cdot> x) = (a = b)"  | 
|
| 9035 | 293  | 
proof  | 
| 13515 | 294  | 
assume x: "x \<in> V" and neq: "x \<noteq> 0"  | 
295  | 
  {
 | 
|
296  | 
from x have "(a - b) \<cdot> x = a \<cdot> x - b \<cdot> x"  | 
|
297  | 
by (simp add: diff_mult_distrib2)  | 
|
298  | 
also assume "a \<cdot> x = b \<cdot> x"  | 
|
299  | 
with x have "a \<cdot> x - b \<cdot> x = 0" by simp  | 
|
300  | 
finally have "(a - b) \<cdot> x = 0" .  | 
|
301  | 
with x neq have "a - b = 0" by (rule mult_zero_uniq)  | 
|
| 27612 | 302  | 
then show "a = b" by simp  | 
| 13515 | 303  | 
next  | 
304  | 
assume "a = b"  | 
|
305  | 
then show "a \<cdot> x = b \<cdot> x" by (simp only:)  | 
|
306  | 
}  | 
|
307  | 
qed  | 
|
| 7917 | 308  | 
|
| 13515 | 309  | 
lemma (in vectorspace) eq_diff_eq:  | 
310  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x = z - y) = (x + y = z)"  | 
|
311  | 
proof  | 
|
312  | 
assume x: "x \<in> V" and y: "y \<in> V" and z: "z \<in> V"  | 
|
313  | 
  {
 | 
|
314  | 
assume "x = z - y"  | 
|
| 27612 | 315  | 
then have "x + y = z - y + y" by simp  | 
316  | 
also from y z have "\<dots> = z + - y + y"  | 
|
| 13515 | 317  | 
by (simp add: diff_eq1)  | 
| 27612 | 318  | 
also have "\<dots> = z + (- y + y)"  | 
| 13515 | 319  | 
by (rule add_assoc) (simp_all add: y z)  | 
| 27612 | 320  | 
also from y z have "\<dots> = z + 0"  | 
| 13515 | 321  | 
by (simp only: add_minus_left)  | 
| 27612 | 322  | 
also from z have "\<dots> = z"  | 
| 13515 | 323  | 
by (simp only: add_zero_right)  | 
324  | 
finally show "x + y = z" .  | 
|
| 9035 | 325  | 
next  | 
| 13515 | 326  | 
assume "x + y = z"  | 
| 27612 | 327  | 
then have "z - y = (x + y) - y" by simp  | 
328  | 
also from x y have "\<dots> = x + y + - y"  | 
|
| 9035 | 329  | 
by (simp add: diff_eq1)  | 
| 27612 | 330  | 
also have "\<dots> = x + (y + - y)"  | 
| 13515 | 331  | 
by (rule add_assoc) (simp_all add: x y)  | 
| 27612 | 332  | 
also from x y have "\<dots> = x" by simp  | 
| 13515 | 333  | 
finally show "x = z - y" ..  | 
334  | 
}  | 
|
| 9035 | 335  | 
qed  | 
| 7917 | 336  | 
|
| 13515 | 337  | 
lemma (in vectorspace) add_minus_eq_minus:  | 
338  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y = 0 \<Longrightarrow> x = - y"  | 
|
| 9035 | 339  | 
proof -  | 
| 13515 | 340  | 
assume x: "x \<in> V" and y: "y \<in> V"  | 
341  | 
from x y have "x = (- y + y) + x" by simp  | 
|
| 27612 | 342  | 
also from x y have "\<dots> = - y + (x + y)" by (simp add: add_ac)  | 
| 9374 | 343  | 
also assume "x + y = 0"  | 
| 13515 | 344  | 
also from y have "- y + 0 = - y" by simp  | 
| 9035 | 345  | 
finally show "x = - y" .  | 
346  | 
qed  | 
|
| 7917 | 347  | 
|
| 13515 | 348  | 
lemma (in vectorspace) add_minus_eq:  | 
349  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y = 0 \<Longrightarrow> x = y"  | 
|
| 9035 | 350  | 
proof -  | 
| 13515 | 351  | 
assume x: "x \<in> V" and y: "y \<in> V"  | 
| 9374 | 352  | 
assume "x - y = 0"  | 
| 13515 | 353  | 
with x y have eq: "x + - y = 0" by (simp add: diff_eq1)  | 
354  | 
with _ _ have "x = - (- y)"  | 
|
355  | 
by (rule add_minus_eq_minus) (simp_all add: x y)  | 
|
356  | 
with x y show "x = y" by simp  | 
|
| 9035 | 357  | 
qed  | 
| 7917 | 358  | 
|
| 13515 | 359  | 
lemma (in vectorspace) add_diff_swap:  | 
360  | 
"a \<in> V \<Longrightarrow> b \<in> V \<Longrightarrow> c \<in> V \<Longrightarrow> d \<in> V \<Longrightarrow> a + b = c + d  | 
|
361  | 
\<Longrightarrow> a - c = d - b"  | 
|
| 10687 | 362  | 
proof -  | 
| 13515 | 363  | 
assume vs: "a \<in> V" "b \<in> V" "c \<in> V" "d \<in> V"  | 
| 9035 | 364  | 
and eq: "a + b = c + d"  | 
| 13515 | 365  | 
then have "- c + (a + b) = - c + (c + d)"  | 
366  | 
by (simp add: add_left_cancel)  | 
|
| 27612 | 367  | 
also have "\<dots> = d" using `c \<in> V` `d \<in> V` by (rule minus_add_cancel)  | 
| 9035 | 368  | 
finally have eq: "- c + (a + b) = d" .  | 
| 10687 | 369  | 
from vs have "a - c = (- c + (a + b)) + - b"  | 
| 13515 | 370  | 
by (simp add: add_ac diff_eq1)  | 
| 27612 | 371  | 
also from vs eq have "\<dots> = d + - b"  | 
| 13515 | 372  | 
by (simp add: add_right_cancel)  | 
| 27612 | 373  | 
also from vs have "\<dots> = d - b" by (simp add: diff_eq2)  | 
| 9035 | 374  | 
finally show "a - c = d - b" .  | 
375  | 
qed  | 
|
| 7917 | 376  | 
|
| 13515 | 377  | 
lemma (in vectorspace) vs_add_cancel_21:  | 
378  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> u \<in> V  | 
|
379  | 
\<Longrightarrow> (x + (y + z) = y + u) = (x + z = u)"  | 
|
380  | 
proof  | 
|
381  | 
assume vs: "x \<in> V" "y \<in> V" "z \<in> V" "u \<in> V"  | 
|
382  | 
  {
 | 
|
383  | 
from vs have "x + z = - y + y + (x + z)" by simp  | 
|
| 27612 | 384  | 
also have "\<dots> = - y + (y + (x + z))"  | 
| 13515 | 385  | 
by (rule add_assoc) (simp_all add: vs)  | 
386  | 
also from vs have "y + (x + z) = x + (y + z)"  | 
|
387  | 
by (simp add: add_ac)  | 
|
388  | 
also assume "x + (y + z) = y + u"  | 
|
389  | 
also from vs have "- y + (y + u) = u" by simp  | 
|
390  | 
finally show "x + z = u" .  | 
|
391  | 
next  | 
|
392  | 
assume "x + z = u"  | 
|
393  | 
with vs show "x + (y + z) = y + u"  | 
|
394  | 
by (simp only: add_left_commute [of x])  | 
|
395  | 
}  | 
|
| 9035 | 396  | 
qed  | 
| 7917 | 397  | 
|
| 13515 | 398  | 
lemma (in vectorspace) add_cancel_end:  | 
399  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + (y + z) = y) = (x = - z)"  | 
|
400  | 
proof  | 
|
401  | 
assume vs: "x \<in> V" "y \<in> V" "z \<in> V"  | 
|
402  | 
  {
 | 
|
403  | 
assume "x + (y + z) = y"  | 
|
404  | 
with vs have "(x + z) + y = 0 + y"  | 
|
405  | 
by (simp add: add_ac)  | 
|
406  | 
with vs have "x + z = 0"  | 
|
407  | 
by (simp only: add_right_cancel add_closed zero)  | 
|
408  | 
with vs show "x = - z" by (simp add: add_minus_eq_minus)  | 
|
| 9035 | 409  | 
next  | 
| 13515 | 410  | 
assume eq: "x = - z"  | 
| 27612 | 411  | 
then have "x + (y + z) = - z + (y + z)" by simp  | 
412  | 
also have "\<dots> = y + (- z + z)"  | 
|
| 13515 | 413  | 
by (rule add_left_commute) (simp_all add: vs)  | 
| 27612 | 414  | 
also from vs have "\<dots> = y" by simp  | 
| 13515 | 415  | 
finally show "x + (y + z) = y" .  | 
416  | 
}  | 
|
| 9035 | 417  | 
qed  | 
| 7917 | 418  | 
|
| 10687 | 419  | 
end  |