| author | wenzelm | 
| Mon, 29 Jul 2019 11:09:37 +0200 | |
| changeset 70436 | 251f1fb44ccd | 
| parent 70347 | e5cd5471c18a | 
| child 70490 | c42a0a0a9a8d | 
| permissions | -rw-r--r-- | 
| 63588 | 1 | (* Title: HOL/Groups.thy | 
| 2 | Author: Gertrud Bauer | |
| 3 | Author: Steven Obua | |
| 4 | Author: Lawrence C Paulson | |
| 5 | Author: Markus Wenzel | |
| 6 | Author: Jeremy Avigad | |
| 14738 | 7 | *) | 
| 8 | ||
| 60758 | 9 | section \<open>Groups, also combined with orderings\<close> | 
| 14738 | 10 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 11 | theory Groups | 
| 63588 | 12 | imports Orderings | 
| 15131 | 13 | begin | 
| 14738 | 14 | |
| 60758 | 15 | subsection \<open>Dynamic facts\<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 16 | |
| 57950 | 17 | named_theorems ac_simps "associativity and commutativity simplification rules" | 
| 70347 | 18 | and algebra_simps "algebra simplification rules for rings" | 
| 63588 | 19 | and field_simps "algebra simplification rules for fields" | 
| 70347 | 20 | and sign_simps "algebra simplification rules for comparision with zero" | 
| 36343 | 21 | |
| 63325 | 22 | text \<open> | 
| 63588 | 23 | The rewrites accumulated in \<open>algebra_simps\<close> deal with the classical | 
| 24 | algebraic structures of groups, rings and family. They simplify terms by | |
| 25 | multiplying everything out (in case of a ring) and bringing sums and | |
| 26 | products into a canonical form (by ordered rewriting). As a result it | |
| 27 | decides group and ring equalities but also helps with inequalities. | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 28 | |
| 63588 | 29 | Of course it also works for fields, but it knows nothing about | 
| 30 | multiplicative inverses or division. This is catered for by \<open>field_simps\<close>. | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 31 | |
| 63588 | 32 | Facts in \<open>field_simps\<close> multiply with denominators in (in)equations if they | 
| 33 | can be proved to be non-zero (for equations) or positive/negative (for | |
| 34 | inequalities). Can be too aggressive and is therefore separate from the more | |
| 35 | benign \<open>algebra_simps\<close>. | |
| 70347 | 36 | |
| 37 | Lemmas \<open>sign_simps\<close> is a first attempt to automate proofs | |
| 38 | of positivity/negativity needed for \<open>field_simps\<close>. Have not added \<open>sign_simps\<close> to \<open>field_simps\<close> | |
| 39 | because the former can lead to case explosions. | |
| 63325 | 40 | \<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 41 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 42 | |
| 60758 | 43 | subsection \<open>Abstract structures\<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 44 | |
| 60758 | 45 | text \<open> | 
| 63588 | 46 | These locales provide basic structures for interpretation into bigger | 
| 47 | structures; extensions require careful thinking, otherwise undesired effects | |
| 48 | may occur due to interpretation. | |
| 60758 | 49 | \<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 50 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 51 | locale semigroup = | 
| 63325 | 52 | fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<^bold>*" 70) | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 53 | assumes assoc [ac_simps]: "a \<^bold>* b \<^bold>* c = a \<^bold>* (b \<^bold>* c)" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 54 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 55 | locale abel_semigroup = semigroup + | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 56 | assumes commute [ac_simps]: "a \<^bold>* b = b \<^bold>* a" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 57 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 58 | |
| 63325 | 59 | lemma left_commute [ac_simps]: "b \<^bold>* (a \<^bold>* c) = a \<^bold>* (b \<^bold>* c)" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 60 | proof - | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 61 | have "(b \<^bold>* a) \<^bold>* c = (a \<^bold>* b) \<^bold>* c" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 62 | by (simp only: commute) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 63 | then show ?thesis | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 64 | by (simp only: assoc) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 65 | qed | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 66 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 67 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 68 | |
| 35720 | 69 | locale monoid = semigroup + | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 70 |   fixes z :: 'a ("\<^bold>1")
 | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 71 | assumes left_neutral [simp]: "\<^bold>1 \<^bold>* a = a" | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 72 | assumes right_neutral [simp]: "a \<^bold>* \<^bold>1 = a" | 
| 35720 | 73 | |
| 74 | locale comm_monoid = abel_semigroup + | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 75 |   fixes z :: 'a ("\<^bold>1")
 | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 76 | assumes comm_neutral: "a \<^bold>* \<^bold>1 = a" | 
| 54868 | 77 | begin | 
| 35720 | 78 | |
| 54868 | 79 | sublocale monoid | 
| 61169 | 80 | by standard (simp_all add: commute comm_neutral) | 
| 35720 | 81 | |
| 54868 | 82 | end | 
| 83 | ||
| 63364 | 84 | locale group = semigroup + | 
| 85 |   fixes z :: 'a ("\<^bold>1")
 | |
| 86 | fixes inverse :: "'a \<Rightarrow> 'a" | |
| 87 | assumes group_left_neutral: "\<^bold>1 \<^bold>* a = a" | |
| 88 | assumes left_inverse [simp]: "inverse a \<^bold>* a = \<^bold>1" | |
| 89 | begin | |
| 90 | ||
| 91 | lemma left_cancel: "a \<^bold>* b = a \<^bold>* c \<longleftrightarrow> b = c" | |
| 92 | proof | |
| 93 | assume "a \<^bold>* b = a \<^bold>* c" | |
| 94 | then have "inverse a \<^bold>* (a \<^bold>* b) = inverse a \<^bold>* (a \<^bold>* c)" by simp | |
| 95 | then have "(inverse a \<^bold>* a) \<^bold>* b = (inverse a \<^bold>* a) \<^bold>* c" | |
| 96 | by (simp only: assoc) | |
| 97 | then show "b = c" by (simp add: group_left_neutral) | |
| 98 | qed simp | |
| 99 | ||
| 100 | sublocale monoid | |
| 101 | proof | |
| 102 | fix a | |
| 103 | have "inverse a \<^bold>* a = \<^bold>1" by simp | |
| 104 | then have "inverse a \<^bold>* (a \<^bold>* \<^bold>1) = inverse a \<^bold>* a" | |
| 105 | by (simp add: group_left_neutral assoc [symmetric]) | |
| 106 | with left_cancel show "a \<^bold>* \<^bold>1 = a" | |
| 107 | by (simp only: left_cancel) | |
| 108 | qed (fact group_left_neutral) | |
| 109 | ||
| 110 | lemma inverse_unique: | |
| 111 | assumes "a \<^bold>* b = \<^bold>1" | |
| 112 | shows "inverse a = b" | |
| 113 | proof - | |
| 114 | from assms have "inverse a \<^bold>* (a \<^bold>* b) = inverse a" | |
| 115 | by simp | |
| 116 | then show ?thesis | |
| 117 | by (simp add: assoc [symmetric]) | |
| 118 | qed | |
| 119 | ||
| 63588 | 120 | lemma inverse_neutral [simp]: "inverse \<^bold>1 = \<^bold>1" | 
| 63364 | 121 | by (rule inverse_unique) simp | 
| 122 | ||
| 63588 | 123 | lemma inverse_inverse [simp]: "inverse (inverse a) = a" | 
| 63364 | 124 | by (rule inverse_unique) simp | 
| 125 | ||
| 63588 | 126 | lemma right_inverse [simp]: "a \<^bold>* inverse a = \<^bold>1" | 
| 63364 | 127 | proof - | 
| 128 | have "a \<^bold>* inverse a = inverse (inverse a) \<^bold>* inverse a" | |
| 129 | by simp | |
| 130 | also have "\<dots> = \<^bold>1" | |
| 131 | by (rule left_inverse) | |
| 132 | then show ?thesis by simp | |
| 133 | qed | |
| 134 | ||
| 63588 | 135 | lemma inverse_distrib_swap: "inverse (a \<^bold>* b) = inverse b \<^bold>* inverse a" | 
| 63364 | 136 | proof (rule inverse_unique) | 
| 137 | have "a \<^bold>* b \<^bold>* (inverse b \<^bold>* inverse a) = | |
| 138 | a \<^bold>* (b \<^bold>* inverse b) \<^bold>* inverse a" | |
| 139 | by (simp only: assoc) | |
| 140 | also have "\<dots> = \<^bold>1" | |
| 141 | by simp | |
| 142 | finally show "a \<^bold>* b \<^bold>* (inverse b \<^bold>* inverse a) = \<^bold>1" . | |
| 143 | qed | |
| 144 | ||
| 63588 | 145 | lemma right_cancel: "b \<^bold>* a = c \<^bold>* a \<longleftrightarrow> b = c" | 
| 63364 | 146 | proof | 
| 147 | assume "b \<^bold>* a = c \<^bold>* a" | |
| 148 | then have "b \<^bold>* a \<^bold>* inverse a= c \<^bold>* a \<^bold>* inverse a" | |
| 149 | by simp | |
| 150 | then show "b = c" | |
| 151 | by (simp add: assoc) | |
| 152 | qed simp | |
| 153 | ||
| 154 | end | |
| 155 | ||
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 156 | |
| 60758 | 157 | subsection \<open>Generic operations\<close> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 158 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 159 | class zero = | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 160 |   fixes zero :: 'a  ("0")
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 161 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 162 | class one = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 163 |   fixes one  :: 'a  ("1")
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 164 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 165 | hide_const (open) zero one | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 166 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 167 | lemma Let_0 [simp]: "Let 0 f = f 0" | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 168 | unfolding Let_def .. | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 169 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 170 | lemma Let_1 [simp]: "Let 1 f = f 1" | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 171 | unfolding Let_def .. | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 172 | |
| 60758 | 173 | setup \<open> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 174 | Reorient_Proc.add | 
| 69593 | 175 | (fn Const(\<^const_name>\<open>Groups.zero\<close>, _) => true | 
| 176 | | Const(\<^const_name>\<open>Groups.one\<close>, _) => true | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 177 | | _ => false) | 
| 60758 | 178 | \<close> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 179 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 180 | simproc_setup reorient_zero ("0 = x") = Reorient_Proc.proc
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 181 | simproc_setup reorient_one ("1 = x") = Reorient_Proc.proc
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 182 | |
| 60758 | 183 | typed_print_translation \<open> | 
| 42247 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 184 | let | 
| 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 185 | fun tr' c = (c, fn ctxt => fn T => fn ts => | 
| 52210 
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
 wenzelm parents: 
52143diff
changeset | 186 | if null ts andalso Printer.type_emphasis ctxt T then | 
| 69593 | 187 | Syntax.const \<^syntax_const>\<open>_constrain\<close> $ Syntax.const c $ | 
| 52210 
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
 wenzelm parents: 
52143diff
changeset | 188 | Syntax_Phases.term_of_typ ctxt T | 
| 
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
 wenzelm parents: 
52143diff
changeset | 189 | else raise Match); | 
| 69593 | 190 | in map tr' [\<^const_syntax>\<open>Groups.one\<close>, \<^const_syntax>\<open>Groups.zero\<close>] end | 
| 61799 | 191 | \<close> \<comment> \<open>show types that are presumably too general\<close> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 192 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 193 | class plus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 194 | fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 195 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 196 | class minus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 197 | fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 198 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 199 | class uminus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 200 |   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 201 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 202 | class times = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 203 | fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 204 | |
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 205 | |
| 60758 | 206 | subsection \<open>Semigroups and Monoids\<close> | 
| 14738 | 207 | |
| 22390 | 208 | class semigroup_add = plus + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 209 | assumes add_assoc [algebra_simps, field_simps]: "(a + b) + c = a + (b + c)" | 
| 54868 | 210 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 211 | |
| 61605 | 212 | sublocale add: semigroup plus | 
| 61169 | 213 | by standard (fact add_assoc) | 
| 22390 | 214 | |
| 54868 | 215 | end | 
| 216 | ||
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 217 | hide_fact add_assoc | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 218 | |
| 22390 | 219 | class ab_semigroup_add = semigroup_add + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 220 | assumes add_commute [algebra_simps, field_simps]: "a + b = b + a" | 
| 54868 | 221 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 222 | |
| 61605 | 223 | sublocale add: abel_semigroup plus | 
| 61169 | 224 | by standard (fact add_commute) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 225 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 226 | declare add.left_commute [algebra_simps, field_simps] | 
| 25062 | 227 | |
| 61337 | 228 | lemmas add_ac = add.assoc add.commute add.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 229 | |
| 25062 | 230 | end | 
| 14738 | 231 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 232 | hide_fact add_commute | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 233 | |
| 61337 | 234 | lemmas add_ac = add.assoc add.commute add.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 235 | |
| 22390 | 236 | class semigroup_mult = times + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 237 | assumes mult_assoc [algebra_simps, field_simps]: "(a * b) * c = a * (b * c)" | 
| 54868 | 238 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 239 | |
| 61605 | 240 | sublocale mult: semigroup times | 
| 61169 | 241 | by standard (fact mult_assoc) | 
| 14738 | 242 | |
| 54868 | 243 | end | 
| 244 | ||
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 245 | hide_fact mult_assoc | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 246 | |
| 22390 | 247 | class ab_semigroup_mult = semigroup_mult + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 248 | assumes mult_commute [algebra_simps, field_simps]: "a * b = b * a" | 
| 54868 | 249 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 250 | |
| 61605 | 251 | sublocale mult: abel_semigroup times | 
| 61169 | 252 | by standard (fact mult_commute) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 253 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 254 | declare mult.left_commute [algebra_simps, field_simps] | 
| 25062 | 255 | |
| 61337 | 256 | lemmas mult_ac = mult.assoc mult.commute mult.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 257 | |
| 23181 | 258 | end | 
| 14738 | 259 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 260 | hide_fact mult_commute | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 261 | |
| 61337 | 262 | lemmas mult_ac = mult.assoc mult.commute mult.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 263 | |
| 23085 | 264 | class monoid_add = zero + semigroup_add + | 
| 35720 | 265 | assumes add_0_left: "0 + a = a" | 
| 266 | and add_0_right: "a + 0 = a" | |
| 54868 | 267 | begin | 
| 35720 | 268 | |
| 61605 | 269 | sublocale add: monoid plus 0 | 
| 61169 | 270 | by standard (fact add_0_left add_0_right)+ | 
| 23085 | 271 | |
| 54868 | 272 | end | 
| 273 | ||
| 26071 | 274 | lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0" | 
| 54868 | 275 | by (fact eq_commute) | 
| 26071 | 276 | |
| 22390 | 277 | class comm_monoid_add = zero + ab_semigroup_add + | 
| 25062 | 278 | assumes add_0: "0 + a = a" | 
| 54868 | 279 | begin | 
| 23085 | 280 | |
| 59559 
35da1bbf234e
more canonical order of subscriptions avoids superfluous facts
 haftmann parents: 
59557diff
changeset | 281 | subclass monoid_add | 
| 61169 | 282 | by standard (simp_all add: add_0 add.commute [of _ 0]) | 
| 25062 | 283 | |
| 61605 | 284 | sublocale add: comm_monoid plus 0 | 
| 61169 | 285 | by standard (simp add: ac_simps) | 
| 14738 | 286 | |
| 54868 | 287 | end | 
| 288 | ||
| 22390 | 289 | class monoid_mult = one + semigroup_mult + | 
| 35720 | 290 | assumes mult_1_left: "1 * a = a" | 
| 291 | and mult_1_right: "a * 1 = a" | |
| 54868 | 292 | begin | 
| 35720 | 293 | |
| 61605 | 294 | sublocale mult: monoid times 1 | 
| 61169 | 295 | by standard (fact mult_1_left mult_1_right)+ | 
| 14738 | 296 | |
| 54868 | 297 | end | 
| 298 | ||
| 26071 | 299 | lemma one_reorient: "1 = x \<longleftrightarrow> x = 1" | 
| 54868 | 300 | by (fact eq_commute) | 
| 26071 | 301 | |
| 22390 | 302 | class comm_monoid_mult = one + ab_semigroup_mult + | 
| 25062 | 303 | assumes mult_1: "1 * a = a" | 
| 54868 | 304 | begin | 
| 14738 | 305 | |
| 59559 
35da1bbf234e
more canonical order of subscriptions avoids superfluous facts
 haftmann parents: 
59557diff
changeset | 306 | subclass monoid_mult | 
| 61169 | 307 | by standard (simp_all add: mult_1 mult.commute [of _ 1]) | 
| 25062 | 308 | |
| 61605 | 309 | sublocale mult: comm_monoid times 1 | 
| 61169 | 310 | by standard (simp add: ac_simps) | 
| 14738 | 311 | |
| 54868 | 312 | end | 
| 313 | ||
| 22390 | 314 | class cancel_semigroup_add = semigroup_add + | 
| 25062 | 315 | assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 316 | assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c" | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 317 | begin | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 318 | |
| 63325 | 319 | lemma add_left_cancel [simp]: "a + b = a + c \<longleftrightarrow> b = c" | 
| 320 | by (blast dest: add_left_imp_eq) | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 321 | |
| 63325 | 322 | lemma add_right_cancel [simp]: "b + a = c + a \<longleftrightarrow> b = c" | 
| 323 | by (blast dest: add_right_imp_eq) | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 324 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 325 | end | 
| 14738 | 326 | |
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 327 | class cancel_ab_semigroup_add = ab_semigroup_add + minus + | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 328 | assumes add_diff_cancel_left' [simp]: "(a + b) - a = b" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 329 | assumes diff_diff_add [algebra_simps, field_simps]: "a - b - c = a - (b + c)" | 
| 25267 | 330 | begin | 
| 14738 | 331 | |
| 63325 | 332 | lemma add_diff_cancel_right' [simp]: "(a + b) - b = a" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 333 | using add_diff_cancel_left' [of b a] by (simp add: ac_simps) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 334 | |
| 25267 | 335 | subclass cancel_semigroup_add | 
| 28823 | 336 | proof | 
| 22390 | 337 | fix a b c :: 'a | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 338 | assume "a + b = a + c" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 339 | then have "a + b - a = a + c - a" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 340 | by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 341 | then show "b = c" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 342 | by simp | 
| 22390 | 343 | next | 
| 14738 | 344 | fix a b c :: 'a | 
| 345 | assume "b + a = c + a" | |
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 346 | then have "b + a - a = c + a - a" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 347 | by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 348 | then show "b = c" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 349 | by simp | 
| 14738 | 350 | qed | 
| 351 | ||
| 63325 | 352 | lemma add_diff_cancel_left [simp]: "(c + a) - (c + b) = a - b" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 353 | unfolding diff_diff_add [symmetric] by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 354 | |
| 63325 | 355 | lemma add_diff_cancel_right [simp]: "(a + c) - (b + c) = a - b" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 356 | using add_diff_cancel_left [symmetric] by (simp add: ac_simps) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 357 | |
| 63325 | 358 | lemma diff_right_commute: "a - c - b = a - b - c" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 359 | by (simp add: diff_diff_add add.commute) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 360 | |
| 25267 | 361 | end | 
| 362 | ||
| 29904 | 363 | class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add | 
| 59322 | 364 | begin | 
| 365 | ||
| 63325 | 366 | lemma diff_zero [simp]: "a - 0 = a" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 367 | using add_diff_cancel_right' [of a 0] by simp | 
| 59322 | 368 | |
| 63325 | 369 | lemma diff_cancel [simp]: "a - a = 0" | 
| 59322 | 370 | proof - | 
| 63325 | 371 | have "(a + 0) - (a + 0) = 0" | 
| 372 | by (simp only: add_diff_cancel_left diff_zero) | |
| 59322 | 373 | then show ?thesis by simp | 
| 374 | qed | |
| 375 | ||
| 376 | lemma add_implies_diff: | |
| 377 | assumes "c + b = a" | |
| 378 | shows "c = a - b" | |
| 379 | proof - | |
| 63325 | 380 | from assms have "(b + c) - (b + 0) = a - b" | 
| 381 | by (simp add: add.commute) | |
| 59322 | 382 | then show "c = a - b" by simp | 
| 383 | qed | |
| 384 | ||
| 63325 | 385 | lemma add_cancel_right_right [simp]: "a = a + b \<longleftrightarrow> b = 0" | 
| 386 | (is "?P \<longleftrightarrow> ?Q") | |
| 62608 | 387 | proof | 
| 63325 | 388 | assume ?Q | 
| 389 | then show ?P by simp | |
| 62608 | 390 | next | 
| 63325 | 391 | assume ?P | 
| 392 | then have "a - a = a + b - a" by simp | |
| 62608 | 393 | then show ?Q by simp | 
| 394 | qed | |
| 395 | ||
| 63325 | 396 | lemma add_cancel_right_left [simp]: "a = b + a \<longleftrightarrow> b = 0" | 
| 62608 | 397 | using add_cancel_right_right [of a b] by (simp add: ac_simps) | 
| 398 | ||
| 63325 | 399 | lemma add_cancel_left_right [simp]: "a + b = a \<longleftrightarrow> b = 0" | 
| 62608 | 400 | by (auto dest: sym) | 
| 401 | ||
| 63325 | 402 | lemma add_cancel_left_left [simp]: "b + a = a \<longleftrightarrow> b = 0" | 
| 62608 | 403 | by (auto dest: sym) | 
| 404 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 405 | end | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 406 | |
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 407 | class comm_monoid_diff = cancel_comm_monoid_add + | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 408 | assumes zero_diff [simp]: "0 - a = 0" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 409 | begin | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 410 | |
| 63325 | 411 | lemma diff_add_zero [simp]: "a - (a + b) = 0" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 412 | proof - | 
| 63325 | 413 | have "a - (a + b) = (a + 0) - (a + b)" | 
| 414 | by simp | |
| 415 | also have "\<dots> = 0" | |
| 416 | by (simp only: add_diff_cancel_left zero_diff) | |
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 417 | finally show ?thesis . | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 418 | qed | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 419 | |
| 59322 | 420 | end | 
| 421 | ||
| 29904 | 422 | |
| 60758 | 423 | subsection \<open>Groups\<close> | 
| 23085 | 424 | |
| 25762 | 425 | class group_add = minus + uminus + monoid_add + | 
| 63364 | 426 | assumes left_minus: "- a + a = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 427 | assumes add_uminus_conv_diff [simp]: "a + (- b) = a - b" | 
| 25062 | 428 | begin | 
| 23085 | 429 | |
| 63325 | 430 | lemma diff_conv_add_uminus: "a - b = a + (- b)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 431 | by simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 432 | |
| 63364 | 433 | sublocale add: group plus 0 uminus | 
| 434 | by standard (simp_all add: left_minus) | |
| 435 | ||
| 63588 | 436 | lemma minus_unique: "a + b = 0 \<Longrightarrow> - a = b" | 
| 437 | by (fact add.inverse_unique) | |
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 438 | |
| 63364 | 439 | lemma minus_zero: "- 0 = 0" | 
| 440 | by (fact add.inverse_neutral) | |
| 14738 | 441 | |
| 63364 | 442 | lemma minus_minus: "- (- a) = a" | 
| 443 | by (fact add.inverse_inverse) | |
| 14738 | 444 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 445 | lemma right_minus: "a + - a = 0" | 
| 63364 | 446 | by (fact add.right_inverse) | 
| 14738 | 447 | |
| 63325 | 448 | lemma diff_self [simp]: "a - a = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 449 | using right_minus [of a] by simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 450 | |
| 40368 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 451 | subclass cancel_semigroup_add | 
| 63364 | 452 | by standard (simp_all add: add.left_cancel add.right_cancel) | 
| 40368 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 453 | |
| 63325 | 454 | lemma minus_add_cancel [simp]: "- a + (a + b) = b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 455 | by (simp add: add.assoc [symmetric]) | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 456 | |
| 63325 | 457 | lemma add_minus_cancel [simp]: "a + (- a + b) = b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 458 | by (simp add: add.assoc [symmetric]) | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 459 | |
| 63325 | 460 | lemma diff_add_cancel [simp]: "a - b + b = a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 461 | by (simp only: diff_conv_add_uminus add.assoc) simp | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 462 | |
| 63325 | 463 | lemma add_diff_cancel [simp]: "a + b - b = a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 464 | by (simp only: diff_conv_add_uminus add.assoc) simp | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 465 | |
| 63325 | 466 | lemma minus_add: "- (a + b) = - b + - a" | 
| 63364 | 467 | by (fact add.inverse_distrib_swap) | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 468 | |
| 63325 | 469 | lemma right_minus_eq [simp]: "a - b = 0 \<longleftrightarrow> a = b" | 
| 14738 | 470 | proof | 
| 23085 | 471 | assume "a - b = 0" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 472 | have "a = (a - b) + b" by (simp add: add.assoc) | 
| 60758 | 473 | also have "\<dots> = b" using \<open>a - b = 0\<close> by simp | 
| 23085 | 474 | finally show "a = b" . | 
| 14738 | 475 | next | 
| 63325 | 476 | assume "a = b" | 
| 477 | then show "a - b = 0" by simp | |
| 14738 | 478 | qed | 
| 479 | ||
| 63325 | 480 | lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 481 | by (fact right_minus_eq [symmetric]) | 
| 14738 | 482 | |
| 63325 | 483 | lemma diff_0 [simp]: "0 - a = - a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 484 | by (simp only: diff_conv_add_uminus add_0_left) | 
| 14738 | 485 | |
| 63325 | 486 | lemma diff_0_right [simp]: "a - 0 = a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 487 | by (simp only: diff_conv_add_uminus minus_zero add_0_right) | 
| 14738 | 488 | |
| 63325 | 489 | lemma diff_minus_eq_add [simp]: "a - - b = a + b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 490 | by (simp only: diff_conv_add_uminus minus_minus) | 
| 14738 | 491 | |
| 63325 | 492 | lemma neg_equal_iff_equal [simp]: "- a = - b \<longleftrightarrow> a = b" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 493 | proof | 
| 14738 | 494 | assume "- a = - b" | 
| 63325 | 495 | then have "- (- a) = - (- b)" by simp | 
| 496 | then show "a = b" by simp | |
| 14738 | 497 | next | 
| 25062 | 498 | assume "a = b" | 
| 63325 | 499 | then show "- a = - b" by simp | 
| 14738 | 500 | qed | 
| 501 | ||
| 63325 | 502 | lemma neg_equal_0_iff_equal [simp]: "- a = 0 \<longleftrightarrow> a = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 503 | by (subst neg_equal_iff_equal [symmetric]) simp | 
| 14738 | 504 | |
| 63325 | 505 | lemma neg_0_equal_iff_equal [simp]: "0 = - a \<longleftrightarrow> 0 = a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 506 | by (subst neg_equal_iff_equal [symmetric]) simp | 
| 14738 | 507 | |
| 63325 | 508 | text \<open>The next two equations can make the simplifier loop!\<close> | 
| 14738 | 509 | |
| 63325 | 510 | lemma equation_minus_iff: "a = - b \<longleftrightarrow> b = - a" | 
| 14738 | 511 | proof - | 
| 63325 | 512 | have "- (- a) = - b \<longleftrightarrow> - a = b" | 
| 513 | by (rule neg_equal_iff_equal) | |
| 514 | then show ?thesis | |
| 515 | by (simp add: eq_commute) | |
| 25062 | 516 | qed | 
| 517 | ||
| 63325 | 518 | lemma minus_equation_iff: "- a = b \<longleftrightarrow> - b = a" | 
| 25062 | 519 | proof - | 
| 63325 | 520 | have "- a = - (- b) \<longleftrightarrow> a = -b" | 
| 521 | by (rule neg_equal_iff_equal) | |
| 522 | then show ?thesis | |
| 523 | by (simp add: eq_commute) | |
| 14738 | 524 | qed | 
| 525 | ||
| 63325 | 526 | lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0" | 
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 527 | proof | 
| 63325 | 528 | assume "a = - b" | 
| 529 | then show "a + b = 0" by simp | |
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 530 | next | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 531 | assume "a + b = 0" | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 532 | moreover have "a + (b + - b) = (a + b) + - b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 533 | by (simp only: add.assoc) | 
| 63325 | 534 | ultimately show "a = - b" | 
| 535 | by simp | |
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 536 | qed | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 537 | |
| 63325 | 538 | lemma add_eq_0_iff2: "a + b = 0 \<longleftrightarrow> a = - b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 539 | by (fact eq_neg_iff_add_eq_0 [symmetric]) | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 540 | |
| 63325 | 541 | lemma neg_eq_iff_add_eq_0: "- a = b \<longleftrightarrow> a + b = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 542 | by (auto simp add: add_eq_0_iff2) | 
| 44348 | 543 | |
| 63325 | 544 | lemma add_eq_0_iff: "a + b = 0 \<longleftrightarrow> b = - a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 545 | by (auto simp add: neg_eq_iff_add_eq_0 [symmetric]) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 546 | |
| 63325 | 547 | lemma minus_diff_eq [simp]: "- (a - b) = b - a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 548 | by (simp only: neg_eq_iff_add_eq_0 diff_conv_add_uminus add.assoc minus_add_cancel) simp | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 549 | |
| 63325 | 550 | lemma add_diff_eq [algebra_simps, field_simps]: "a + (b - c) = (a + b) - c" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 551 | by (simp only: diff_conv_add_uminus add.assoc) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 552 | |
| 63325 | 553 | lemma diff_add_eq_diff_diff_swap: "a - (b + c) = a - c - b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 554 | by (simp only: diff_conv_add_uminus add.assoc minus_add) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 555 | |
| 63325 | 556 | lemma diff_eq_eq [algebra_simps, field_simps]: "a - b = c \<longleftrightarrow> a = c + b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 557 | by auto | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 558 | |
| 63325 | 559 | lemma eq_diff_eq [algebra_simps, field_simps]: "a = c - b \<longleftrightarrow> a + b = c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 560 | by auto | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 561 | |
| 63325 | 562 | lemma diff_diff_eq2 [algebra_simps, field_simps]: "a - (b - c) = (a + c) - b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 563 | by (simp only: diff_conv_add_uminus add.assoc) simp | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 564 | |
| 63325 | 565 | lemma diff_eq_diff_eq: "a - b = c - d \<Longrightarrow> a = b \<longleftrightarrow> c = d" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 566 | by (simp only: eq_iff_diff_eq_0 [of a b] eq_iff_diff_eq_0 [of c d]) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 567 | |
| 25062 | 568 | end | 
| 569 | ||
| 25762 | 570 | class ab_group_add = minus + uminus + comm_monoid_add + | 
| 25062 | 571 | assumes ab_left_minus: "- a + a = 0" | 
| 59557 | 572 | assumes ab_diff_conv_add_uminus: "a - b = a + (- b)" | 
| 25267 | 573 | begin | 
| 25062 | 574 | |
| 25267 | 575 | subclass group_add | 
| 63325 | 576 | by standard (simp_all add: ab_left_minus ab_diff_conv_add_uminus) | 
| 25062 | 577 | |
| 29904 | 578 | subclass cancel_comm_monoid_add | 
| 28823 | 579 | proof | 
| 25062 | 580 | fix a b c :: 'a | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 581 | have "b + a - a = b" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 582 | by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 583 | then show "a + b - a = b" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 584 | by (simp add: ac_simps) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 585 | show "a - b - c = a - (b + c)" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 586 | by (simp add: algebra_simps) | 
| 25062 | 587 | qed | 
| 588 | ||
| 63325 | 589 | lemma uminus_add_conv_diff [simp]: "- a + b = b - a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 590 | by (simp add: add.commute) | 
| 25062 | 591 | |
| 63325 | 592 | lemma minus_add_distrib [simp]: "- (a + b) = - a + - b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 593 | by (simp add: algebra_simps) | 
| 25062 | 594 | |
| 63325 | 595 | lemma diff_add_eq [algebra_simps, field_simps]: "(a - b) + c = (a + c) - b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 596 | by (simp add: algebra_simps) | 
| 25077 | 597 | |
| 25062 | 598 | end | 
| 14738 | 599 | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 600 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 601 | subsection \<open>(Partially) Ordered Groups\<close> | 
| 14738 | 602 | |
| 60758 | 603 | text \<open> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 604 | The theory of partially ordered groups is taken from the books: | 
| 63325 | 605 | |
| 606 | \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979 | |
| 607 | \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963 | |
| 608 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 609 | Most of the used notions can also be looked up in | 
| 63680 | 610 | \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al. | 
| 63325 | 611 | \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer | 
| 60758 | 612 | \<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 613 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 614 | class ordered_ab_semigroup_add = order + ab_semigroup_add + | 
| 25062 | 615 | assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b" | 
| 616 | begin | |
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 617 | |
| 63325 | 618 | lemma add_right_mono: "a \<le> b \<Longrightarrow> a + c \<le> b + c" | 
| 619 | by (simp add: add.commute [of _ c] add_left_mono) | |
| 14738 | 620 | |
| 60758 | 621 | text \<open>non-strict, in both arguments\<close> | 
| 63325 | 622 | lemma add_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d" | 
| 14738 | 623 | apply (erule add_right_mono [THEN order_trans]) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 624 | apply (simp add: add.commute add_left_mono) | 
| 14738 | 625 | done | 
| 626 | ||
| 25062 | 627 | end | 
| 628 | ||
| 63325 | 629 | text \<open>Strict monotonicity in both arguments\<close> | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 630 | class strict_ordered_ab_semigroup_add = ordered_ab_semigroup_add + | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 631 | assumes add_strict_mono: "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 632 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 633 | class ordered_cancel_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 634 | ordered_ab_semigroup_add + cancel_ab_semigroup_add | 
| 25062 | 635 | begin | 
| 636 | ||
| 63325 | 637 | lemma add_strict_left_mono: "a < b \<Longrightarrow> c + a < c + b" | 
| 638 | by (auto simp add: less_le add_left_mono) | |
| 14738 | 639 | |
| 63325 | 640 | lemma add_strict_right_mono: "a < b \<Longrightarrow> a + c < b + c" | 
| 641 | by (simp add: add.commute [of _ c] add_strict_left_mono) | |
| 14738 | 642 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 643 | subclass strict_ordered_ab_semigroup_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 644 | apply standard | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 645 | apply (erule add_strict_right_mono [THEN less_trans]) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 646 | apply (erule add_strict_left_mono) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 647 | done | 
| 14738 | 648 | |
| 63325 | 649 | lemma add_less_le_mono: "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d" | 
| 650 | apply (erule add_strict_right_mono [THEN less_le_trans]) | |
| 651 | apply (erule add_left_mono) | |
| 652 | done | |
| 14738 | 653 | |
| 63325 | 654 | lemma add_le_less_mono: "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 655 | apply (erule add_right_mono [THEN le_less_trans]) | |
| 656 | apply (erule add_strict_left_mono) | |
| 657 | done | |
| 14738 | 658 | |
| 25062 | 659 | end | 
| 660 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 661 | class ordered_ab_semigroup_add_imp_le = ordered_cancel_ab_semigroup_add + | 
| 25062 | 662 | assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b" | 
| 663 | begin | |
| 664 | ||
| 14738 | 665 | lemma add_less_imp_less_left: | 
| 63325 | 666 | assumes less: "c + a < c + b" | 
| 667 | shows "a < b" | |
| 14738 | 668 | proof - | 
| 63325 | 669 | from less have le: "c + a \<le> c + b" | 
| 670 | by (simp add: order_le_less) | |
| 671 | have "a \<le> b" | |
| 14738 | 672 | apply (insert le) | 
| 673 | apply (drule add_le_imp_le_left) | |
| 63325 | 674 | apply (insert le) | 
| 675 | apply (drule add_le_imp_le_left) | |
| 676 | apply assumption | |
| 677 | done | |
| 14738 | 678 | moreover have "a \<noteq> b" | 
| 679 | proof (rule ccontr) | |
| 63325 | 680 | assume "\<not> ?thesis" | 
| 14738 | 681 | then have "a = b" by simp | 
| 682 | then have "c + a = c + b" by simp | |
| 63325 | 683 | with less show "False" by simp | 
| 14738 | 684 | qed | 
| 63325 | 685 | ultimately show "a < b" | 
| 686 | by (simp add: order_le_less) | |
| 14738 | 687 | qed | 
| 688 | ||
| 63325 | 689 | lemma add_less_imp_less_right: "a + c < b + c \<Longrightarrow> a < b" | 
| 690 | by (rule add_less_imp_less_left [of c]) (simp add: add.commute) | |
| 14738 | 691 | |
| 63325 | 692 | lemma add_less_cancel_left [simp]: "c + a < c + b \<longleftrightarrow> a < b" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 693 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | 
| 14738 | 694 | |
| 63325 | 695 | lemma add_less_cancel_right [simp]: "a + c < b + c \<longleftrightarrow> a < b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 696 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | 
| 14738 | 697 | |
| 63325 | 698 | lemma add_le_cancel_left [simp]: "c + a \<le> c + b \<longleftrightarrow> a \<le> b" | 
| 699 | apply auto | |
| 63588 | 700 | apply (drule add_le_imp_le_left) | 
| 701 | apply (simp_all add: add_left_mono) | |
| 63325 | 702 | done | 
| 14738 | 703 | |
| 63325 | 704 | lemma add_le_cancel_right [simp]: "a + c \<le> b + c \<longleftrightarrow> a \<le> b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 705 | by (simp add: add.commute [of a c] add.commute [of b c]) | 
| 14738 | 706 | |
| 63325 | 707 | lemma add_le_imp_le_right: "a + c \<le> b + c \<Longrightarrow> a \<le> b" | 
| 708 | by simp | |
| 25062 | 709 | |
| 63325 | 710 | lemma max_add_distrib_left: "max x y + z = max (x + z) (y + z)" | 
| 25077 | 711 | unfolding max_def by auto | 
| 712 | ||
| 63325 | 713 | lemma min_add_distrib_left: "min x y + z = min (x + z) (y + z)" | 
| 25077 | 714 | unfolding min_def by auto | 
| 715 | ||
| 63325 | 716 | lemma max_add_distrib_right: "x + max y z = max (x + y) (x + z)" | 
| 44848 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 717 | unfolding max_def by auto | 
| 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 718 | |
| 63325 | 719 | lemma min_add_distrib_right: "x + min y z = min (x + y) (x + z)" | 
| 44848 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 720 | unfolding min_def by auto | 
| 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 721 | |
| 25062 | 722 | end | 
| 723 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 724 | subsection \<open>Support for reasoning about signs\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 725 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 726 | class ordered_comm_monoid_add = comm_monoid_add + ordered_ab_semigroup_add | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 727 | begin | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 728 | |
| 63325 | 729 | lemma add_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 730 | using add_mono[of 0 a 0 b] by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 731 | |
| 63325 | 732 | lemma add_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> a + b \<le> 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 733 | using add_mono[of a 0 b 0] by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 734 | |
| 63325 | 735 | lemma add_nonneg_eq_0_iff: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 736 | using add_left_mono[of 0 y x] add_right_mono[of 0 x y] by auto | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 737 | |
| 63325 | 738 | lemma add_nonpos_eq_0_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 739 | using add_left_mono[of y 0 x] add_right_mono[of x 0 y] by auto | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 740 | |
| 63325 | 741 | lemma add_increasing: "0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c" | 
| 742 | using add_mono [of 0 a b c] by simp | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 743 | |
| 63325 | 744 | lemma add_increasing2: "0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 745 | by (simp add: add_increasing add.commute [of a]) | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 746 | |
| 63325 | 747 | lemma add_decreasing: "a \<le> 0 \<Longrightarrow> c \<le> b \<Longrightarrow> a + c \<le> b" | 
| 748 | using add_mono [of a 0 c b] by simp | |
| 52289 | 749 | |
| 63325 | 750 | lemma add_decreasing2: "c \<le> 0 \<Longrightarrow> a \<le> b \<Longrightarrow> a + c \<le> b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 751 | using add_mono[of a b c 0] by simp | 
| 52289 | 752 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 753 | lemma add_pos_nonneg: "0 < a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < a + b" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 754 | using less_le_trans[of 0 a "a + b"] by (simp add: add_increasing2) | 
| 52289 | 755 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 756 | lemma add_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a + b" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 757 | by (intro add_pos_nonneg less_imp_le) | 
| 52289 | 758 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 759 | lemma add_nonneg_pos: "0 \<le> a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a + b" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 760 | using add_pos_nonneg[of b a] by (simp add: add_commute) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 761 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 762 | lemma add_neg_nonpos: "a < 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> a + b < 0" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 763 | using le_less_trans[of "a + b" a 0] by (simp add: add_decreasing2) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 764 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 765 | lemma add_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> a + b < 0" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 766 | by (intro add_neg_nonpos less_imp_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 767 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 768 | lemma add_nonpos_neg: "a \<le> 0 \<Longrightarrow> b < 0 \<Longrightarrow> a + b < 0" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 769 | using add_neg_nonpos[of b a] by (simp add: add_commute) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 770 | |
| 30691 | 771 | lemmas add_sign_intros = | 
| 772 | add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg | |
| 773 | add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos | |
| 774 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 775 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 776 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 777 | class strict_ordered_comm_monoid_add = comm_monoid_add + strict_ordered_ab_semigroup_add | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 778 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 779 | |
| 63325 | 780 | lemma pos_add_strict: "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 781 | using add_strict_mono [of 0 a b c] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 782 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 783 | end | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 784 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 785 | class ordered_cancel_comm_monoid_add = ordered_comm_monoid_add + cancel_ab_semigroup_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 786 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 787 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 788 | subclass ordered_cancel_ab_semigroup_add .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 789 | subclass strict_ordered_comm_monoid_add .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 790 | |
| 63325 | 791 | lemma add_strict_increasing: "0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c" | 
| 792 | using add_less_le_mono [of 0 a b c] by simp | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 793 | |
| 63325 | 794 | lemma add_strict_increasing2: "0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | 
| 795 | using add_le_less_mono [of 0 a b c] by simp | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 796 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 797 | end | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 798 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 799 | class ordered_ab_semigroup_monoid_add_imp_le = monoid_add + ordered_ab_semigroup_add_imp_le | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 800 | begin | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 801 | |
| 63588 | 802 | lemma add_less_same_cancel1 [simp]: "b + a < b \<longleftrightarrow> a < 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 803 | using add_less_cancel_left [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 804 | |
| 63588 | 805 | lemma add_less_same_cancel2 [simp]: "a + b < b \<longleftrightarrow> a < 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 806 | using add_less_cancel_right [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 807 | |
| 63588 | 808 | lemma less_add_same_cancel1 [simp]: "a < a + b \<longleftrightarrow> 0 < b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 809 | using add_less_cancel_left [of _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 810 | |
| 63588 | 811 | lemma less_add_same_cancel2 [simp]: "a < b + a \<longleftrightarrow> 0 < b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 812 | using add_less_cancel_right [of 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 813 | |
| 63588 | 814 | lemma add_le_same_cancel1 [simp]: "b + a \<le> b \<longleftrightarrow> a \<le> 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 815 | using add_le_cancel_left [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 816 | |
| 63588 | 817 | lemma add_le_same_cancel2 [simp]: "a + b \<le> b \<longleftrightarrow> a \<le> 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 818 | using add_le_cancel_right [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 819 | |
| 63588 | 820 | lemma le_add_same_cancel1 [simp]: "a \<le> a + b \<longleftrightarrow> 0 \<le> b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 821 | using add_le_cancel_left [of _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 822 | |
| 63588 | 823 | lemma le_add_same_cancel2 [simp]: "a \<le> b + a \<longleftrightarrow> 0 \<le> b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 824 | using add_le_cancel_right [of 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 825 | |
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 826 | subclass cancel_comm_monoid_add | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 827 | by standard auto | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 828 | |
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 829 | subclass ordered_cancel_comm_monoid_add | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 830 | by standard | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 831 | |
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 832 | end | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 833 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 834 | class ordered_ab_group_add = ab_group_add + ordered_ab_semigroup_add | 
| 25062 | 835 | begin | 
| 836 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 837 | subclass ordered_cancel_ab_semigroup_add .. | 
| 25062 | 838 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 839 | subclass ordered_ab_semigroup_monoid_add_imp_le | 
| 28823 | 840 | proof | 
| 25062 | 841 | fix a b c :: 'a | 
| 842 | assume "c + a \<le> c + b" | |
| 63325 | 843 | then have "(-c) + (c + a) \<le> (-c) + (c + b)" | 
| 844 | by (rule add_left_mono) | |
| 845 | then have "((-c) + c) + a \<le> ((-c) + c) + b" | |
| 846 | by (simp only: add.assoc) | |
| 847 | then show "a \<le> b" by simp | |
| 25062 | 848 | qed | 
| 849 | ||
| 63325 | 850 | lemma max_diff_distrib_left: "max x y - z = max (x - z) (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 851 | using max_add_distrib_left [of x y "- z"] by simp | 
| 25077 | 852 | |
| 63325 | 853 | lemma min_diff_distrib_left: "min x y - z = min (x - z) (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 854 | using min_add_distrib_left [of x y "- z"] by simp | 
| 25077 | 855 | |
| 856 | lemma le_imp_neg_le: | |
| 63325 | 857 | assumes "a \<le> b" | 
| 858 | shows "- b \<le> - a" | |
| 25077 | 859 | proof - | 
| 63325 | 860 | from assms have "- a + a \<le> - a + b" | 
| 861 | by (rule add_left_mono) | |
| 862 | then have "0 \<le> - a + b" | |
| 863 | by simp | |
| 864 | then have "0 + (- b) \<le> (- a + b) + (- b)" | |
| 865 | by (rule add_right_mono) | |
| 866 | then show ?thesis | |
| 867 | by (simp add: algebra_simps) | |
| 25077 | 868 | qed | 
| 869 | ||
| 870 | lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b" | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 871 | proof | 
| 25077 | 872 | assume "- b \<le> - a" | 
| 63325 | 873 | then have "- (- a) \<le> - (- b)" | 
| 874 | by (rule le_imp_neg_le) | |
| 875 | then show "a \<le> b" | |
| 876 | by simp | |
| 25077 | 877 | next | 
| 63325 | 878 | assume "a \<le> b" | 
| 879 | then show "- b \<le> - a" | |
| 880 | by (rule le_imp_neg_le) | |
| 25077 | 881 | qed | 
| 882 | ||
| 883 | lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 63325 | 884 | by (subst neg_le_iff_le [symmetric]) simp | 
| 25077 | 885 | |
| 886 | lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 63325 | 887 | by (subst neg_le_iff_le [symmetric]) simp | 
| 25077 | 888 | |
| 889 | lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b" | |
| 63325 | 890 | by (auto simp add: less_le) | 
| 25077 | 891 | |
| 892 | lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a" | |
| 63325 | 893 | by (subst neg_less_iff_less [symmetric]) simp | 
| 25077 | 894 | |
| 895 | lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0" | |
| 63325 | 896 | by (subst neg_less_iff_less [symmetric]) simp | 
| 25077 | 897 | |
| 63325 | 898 | text \<open>The next several equations can make the simplifier loop!\<close> | 
| 25077 | 899 | |
| 900 | lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a" | |
| 901 | proof - | |
| 63588 | 902 | have "- (- a) < - b \<longleftrightarrow> b < - a" | 
| 63325 | 903 | by (rule neg_less_iff_less) | 
| 904 | then show ?thesis by simp | |
| 25077 | 905 | qed | 
| 906 | ||
| 907 | lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a" | |
| 908 | proof - | |
| 63325 | 909 | have "- a < - (- b) \<longleftrightarrow> - b < a" | 
| 910 | by (rule neg_less_iff_less) | |
| 911 | then show ?thesis by simp | |
| 25077 | 912 | qed | 
| 913 | ||
| 914 | lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a" | |
| 915 | proof - | |
| 63588 | 916 | have mm: "- (- a) < - b \<Longrightarrow> - (- b) < -a" for a b :: 'a | 
| 63325 | 917 | by (simp only: minus_less_iff) | 
| 63588 | 918 | have "- (- a) \<le> - b \<longleftrightarrow> b \<le> - a" | 
| 25077 | 919 | apply (auto simp only: le_less) | 
| 63588 | 920 | apply (drule mm) | 
| 921 | apply (simp_all) | |
| 25077 | 922 | apply (drule mm[simplified], assumption) | 
| 923 | done | |
| 924 | then show ?thesis by simp | |
| 925 | qed | |
| 926 | ||
| 927 | lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a" | |
| 63325 | 928 | by (auto simp add: le_less minus_less_iff) | 
| 25077 | 929 | |
| 63325 | 930 | lemma diff_less_0_iff_less [simp]: "a - b < 0 \<longleftrightarrow> a < b" | 
| 25077 | 931 | proof - | 
| 63325 | 932 | have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" | 
| 933 | by simp | |
| 934 | also have "\<dots> \<longleftrightarrow> a < b" | |
| 935 | by (simp only: add_less_cancel_right) | |
| 25077 | 936 | finally show ?thesis . | 
| 937 | qed | |
| 938 | ||
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 939 | lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric] | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 940 | |
| 63325 | 941 | lemma diff_less_eq [algebra_simps, field_simps]: "a - b < c \<longleftrightarrow> a < c + b" | 
| 942 | apply (subst less_iff_diff_less_0 [of a]) | |
| 943 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | |
| 944 | apply (simp add: algebra_simps) | |
| 945 | done | |
| 25077 | 946 | |
| 63325 | 947 | lemma less_diff_eq[algebra_simps, field_simps]: "a < c - b \<longleftrightarrow> a + b < c" | 
| 948 | apply (subst less_iff_diff_less_0 [of "a + b"]) | |
| 949 | apply (subst less_iff_diff_less_0 [of a]) | |
| 950 | apply (simp add: algebra_simps) | |
| 951 | done | |
| 25077 | 952 | |
| 63325 | 953 | lemma diff_gt_0_iff_gt [simp]: "a - b > 0 \<longleftrightarrow> a > b" | 
| 62348 | 954 | by (simp add: less_diff_eq) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61605diff
changeset | 955 | |
| 63325 | 956 | lemma diff_le_eq [algebra_simps, field_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b" | 
| 62348 | 957 | by (auto simp add: le_less diff_less_eq ) | 
| 25077 | 958 | |
| 63325 | 959 | lemma le_diff_eq [algebra_simps, field_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c" | 
| 62348 | 960 | by (auto simp add: le_less less_diff_eq) | 
| 25077 | 961 | |
| 63325 | 962 | lemma diff_le_0_iff_le [simp]: "a - b \<le> 0 \<longleftrightarrow> a \<le> b" | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 963 | by (simp add: algebra_simps) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 964 | |
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 965 | lemmas le_iff_diff_le_0 = diff_le_0_iff_le [symmetric] | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 966 | |
| 63325 | 967 | lemma diff_ge_0_iff_ge [simp]: "a - b \<ge> 0 \<longleftrightarrow> a \<ge> b" | 
| 62348 | 968 | by (simp add: le_diff_eq) | 
| 969 | ||
| 63325 | 970 | lemma diff_eq_diff_less: "a - b = c - d \<Longrightarrow> a < b \<longleftrightarrow> c < d" | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 971 | by (auto simp only: less_iff_diff_less_0 [of a b] less_iff_diff_less_0 [of c d]) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 972 | |
| 63325 | 973 | lemma diff_eq_diff_less_eq: "a - b = c - d \<Longrightarrow> a \<le> b \<longleftrightarrow> c \<le> d" | 
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 974 | by (auto simp only: le_iff_diff_le_0 [of a b] le_iff_diff_le_0 [of c d]) | 
| 25077 | 975 | |
| 56950 | 976 | lemma diff_mono: "a \<le> b \<Longrightarrow> d \<le> c \<Longrightarrow> a - c \<le> b - d" | 
| 977 | by (simp add: field_simps add_mono) | |
| 978 | ||
| 979 | lemma diff_left_mono: "b \<le> a \<Longrightarrow> c - a \<le> c - b" | |
| 980 | by (simp add: field_simps) | |
| 981 | ||
| 982 | lemma diff_right_mono: "a \<le> b \<Longrightarrow> a - c \<le> b - c" | |
| 983 | by (simp add: field_simps) | |
| 984 | ||
| 985 | lemma diff_strict_mono: "a < b \<Longrightarrow> d < c \<Longrightarrow> a - c < b - d" | |
| 986 | by (simp add: field_simps add_strict_mono) | |
| 987 | ||
| 988 | lemma diff_strict_left_mono: "b < a \<Longrightarrow> c - a < c - b" | |
| 989 | by (simp add: field_simps) | |
| 990 | ||
| 991 | lemma diff_strict_right_mono: "a < b \<Longrightarrow> a - c < b - c" | |
| 992 | by (simp add: field_simps) | |
| 993 | ||
| 25077 | 994 | end | 
| 995 | ||
| 69605 | 996 | ML_file \<open>Tools/group_cancel.ML\<close> | 
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 997 | |
| 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 998 | simproc_setup group_cancel_add ("a + b::'a::ab_group_add") =
 | 
| 60758 | 999 | \<open>fn phi => fn ss => try Group_Cancel.cancel_add_conv\<close> | 
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1000 | |
| 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1001 | simproc_setup group_cancel_diff ("a - b::'a::ab_group_add") =
 | 
| 60758 | 1002 | \<open>fn phi => fn ss => try Group_Cancel.cancel_diff_conv\<close> | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 1003 | |
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1004 | simproc_setup group_cancel_eq ("a = (b::'a::ab_group_add)") =
 | 
| 60758 | 1005 | \<open>fn phi => fn ss => try Group_Cancel.cancel_eq_conv\<close> | 
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1006 | |
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1007 | simproc_setup group_cancel_le ("a \<le> (b::'a::ordered_ab_group_add)") =
 | 
| 60758 | 1008 | \<open>fn phi => fn ss => try Group_Cancel.cancel_le_conv\<close> | 
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1009 | |
| 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1010 | simproc_setup group_cancel_less ("a < (b::'a::ordered_ab_group_add)") =
 | 
| 60758 | 1011 | \<open>fn phi => fn ss => try Group_Cancel.cancel_less_conv\<close> | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 1012 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1013 | class linordered_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1014 | linorder + ordered_ab_semigroup_add | 
| 25062 | 1015 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1016 | class linordered_cancel_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1017 | linorder + ordered_cancel_ab_semigroup_add | 
| 25267 | 1018 | begin | 
| 25062 | 1019 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1020 | subclass linordered_ab_semigroup_add .. | 
| 25062 | 1021 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1022 | subclass ordered_ab_semigroup_add_imp_le | 
| 28823 | 1023 | proof | 
| 25062 | 1024 | fix a b c :: 'a | 
| 63325 | 1025 | assume le1: "c + a \<le> c + b" | 
| 1026 | show "a \<le> b" | |
| 25062 | 1027 | proof (rule ccontr) | 
| 63325 | 1028 | assume *: "\<not> ?thesis" | 
| 1029 | then have "b \<le> a" by (simp add: linorder_not_le) | |
| 63588 | 1030 | then have "c + b \<le> c + a" by (rule add_left_mono) | 
| 1031 | with le1 have "a = b" | |
| 1032 | apply - | |
| 63325 | 1033 | apply (drule antisym) | 
| 63588 | 1034 | apply simp_all | 
| 25062 | 1035 | done | 
| 63325 | 1036 | with * show False | 
| 25062 | 1037 | by (simp add: linorder_not_le [symmetric]) | 
| 1038 | qed | |
| 1039 | qed | |
| 1040 | ||
| 25267 | 1041 | end | 
| 1042 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1043 | class linordered_ab_group_add = linorder + ordered_ab_group_add | 
| 25267 | 1044 | begin | 
| 25230 | 1045 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1046 | subclass linordered_cancel_ab_semigroup_add .. | 
| 25230 | 1047 | |
| 63325 | 1048 | lemma equal_neg_zero [simp]: "a = - a \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1049 | proof | 
| 63325 | 1050 | assume "a = 0" | 
| 1051 | then show "a = - a" by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1052 | next | 
| 63325 | 1053 | assume A: "a = - a" | 
| 1054 | show "a = 0" | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1055 | proof (cases "0 \<le> a") | 
| 63325 | 1056 | case True | 
| 1057 | with A have "0 \<le> - a" by auto | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1058 | with le_minus_iff have "a \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1059 | with True show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1060 | next | 
| 63325 | 1061 | case False | 
| 1062 | then have B: "a \<le> 0" by auto | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1063 | with A have "- a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1064 | with B show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1065 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1066 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1067 | |
| 63325 | 1068 | lemma neg_equal_zero [simp]: "- a = a \<longleftrightarrow> a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1069 | by (auto dest: sym) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1070 | |
| 63325 | 1071 | lemma neg_less_eq_nonneg [simp]: "- a \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 54250 | 1072 | proof | 
| 63325 | 1073 | assume *: "- a \<le> a" | 
| 1074 | show "0 \<le> a" | |
| 54250 | 1075 | proof (rule classical) | 
| 63325 | 1076 | assume "\<not> ?thesis" | 
| 54250 | 1077 | then have "a < 0" by auto | 
| 63325 | 1078 | with * have "- a < 0" by (rule le_less_trans) | 
| 54250 | 1079 | then show ?thesis by auto | 
| 1080 | qed | |
| 1081 | next | |
| 63325 | 1082 | assume *: "0 \<le> a" | 
| 1083 | then have "- a \<le> 0" by (simp add: minus_le_iff) | |
| 1084 | from this * show "- a \<le> a" by (rule order_trans) | |
| 54250 | 1085 | qed | 
| 1086 | ||
| 63325 | 1087 | lemma neg_less_pos [simp]: "- a < a \<longleftrightarrow> 0 < a" | 
| 54250 | 1088 | by (auto simp add: less_le) | 
| 1089 | ||
| 63325 | 1090 | lemma less_eq_neg_nonpos [simp]: "a \<le> - a \<longleftrightarrow> a \<le> 0" | 
| 54250 | 1091 | using neg_less_eq_nonneg [of "- a"] by simp | 
| 1092 | ||
| 63325 | 1093 | lemma less_neg_neg [simp]: "a < - a \<longleftrightarrow> a < 0" | 
| 54250 | 1094 | using neg_less_pos [of "- a"] by simp | 
| 1095 | ||
| 63325 | 1096 | lemma double_zero [simp]: "a + a = 0 \<longleftrightarrow> a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1097 | proof | 
| 63325 | 1098 | assume "a + a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1099 | then have a: "- a = a" by (rule minus_unique) | 
| 35216 | 1100 | then show "a = 0" by (simp only: neg_equal_zero) | 
| 63325 | 1101 | next | 
| 1102 | assume "a = 0" | |
| 1103 | then show "a + a = 0" by simp | |
| 1104 | qed | |
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1105 | |
| 63325 | 1106 | lemma double_zero_sym [simp]: "0 = a + a \<longleftrightarrow> a = 0" | 
| 1107 | apply (rule iffI) | |
| 63588 | 1108 | apply (drule sym) | 
| 1109 | apply simp_all | |
| 63325 | 1110 | done | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1111 | |
| 63325 | 1112 | lemma zero_less_double_add_iff_zero_less_single_add [simp]: "0 < a + a \<longleftrightarrow> 0 < a" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1113 | proof | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1114 | assume "0 < a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1115 | then have "0 - a < a" by (simp only: diff_less_eq) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1116 | then have "- a < a" by simp | 
| 54250 | 1117 | then show "0 < a" by simp | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1118 | next | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1119 | assume "0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1120 | with this have "0 + 0 < a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1121 | by (rule add_strict_mono) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1122 | then show "0 < a + a" by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1123 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1124 | |
| 63325 | 1125 | lemma zero_le_double_add_iff_zero_le_single_add [simp]: "0 \<le> a + a \<longleftrightarrow> 0 \<le> a" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1126 | by (auto simp add: le_less) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1127 | |
| 63325 | 1128 | lemma double_add_less_zero_iff_single_add_less_zero [simp]: "a + a < 0 \<longleftrightarrow> a < 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1129 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1130 | have "\<not> a + a < 0 \<longleftrightarrow> \<not> a < 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1131 | by (simp add: not_less) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1132 | then show ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1133 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1134 | |
| 63325 | 1135 | lemma double_add_le_zero_iff_single_add_le_zero [simp]: "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1136 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1137 | have "\<not> a + a \<le> 0 \<longleftrightarrow> \<not> a \<le> 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1138 | by (simp add: not_le) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1139 | then show ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1140 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1141 | |
| 63325 | 1142 | lemma minus_max_eq_min: "- max x y = min (- x) (- y)" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1143 | by (auto simp add: max_def min_def) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1144 | |
| 63325 | 1145 | lemma minus_min_eq_max: "- min x y = max (- x) (- y)" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1146 | by (auto simp add: max_def min_def) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1147 | |
| 25267 | 1148 | end | 
| 1149 | ||
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1150 | class abs = | 
| 61944 | 1151 |   fixes abs :: "'a \<Rightarrow> 'a"  ("\<bar>_\<bar>")
 | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1152 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1153 | class sgn = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1154 | fixes sgn :: "'a \<Rightarrow> 'a" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1155 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1156 | class ordered_ab_group_add_abs = ordered_ab_group_add + abs + | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1157 | assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1158 | and abs_ge_self: "a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1159 | and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1160 | and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1161 | and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1162 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1163 | |
| 25307 | 1164 | lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0" | 
| 1165 | unfolding neg_le_0_iff_le by simp | |
| 1166 | ||
| 1167 | lemma abs_of_nonneg [simp]: | |
| 63325 | 1168 | assumes nonneg: "0 \<le> a" | 
| 1169 | shows "\<bar>a\<bar> = a" | |
| 25307 | 1170 | proof (rule antisym) | 
| 63325 | 1171 | show "a \<le> \<bar>a\<bar>" by (rule abs_ge_self) | 
| 25307 | 1172 | from nonneg le_imp_neg_le have "- a \<le> 0" by simp | 
| 1173 | from this nonneg have "- a \<le> a" by (rule order_trans) | |
| 1174 | then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI) | |
| 63325 | 1175 | qed | 
| 25307 | 1176 | |
| 1177 | lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 63325 | 1178 | by (rule antisym) (auto intro!: abs_ge_self abs_leI order_trans [of "- \<bar>a\<bar>" 0 "\<bar>a\<bar>"]) | 
| 25307 | 1179 | |
| 1180 | lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 1181 | proof - | |
| 1182 | have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0" | |
| 1183 | proof (rule antisym) | |
| 1184 | assume zero: "\<bar>a\<bar> = 0" | |
| 1185 | with abs_ge_self show "a \<le> 0" by auto | |
| 1186 | from zero have "\<bar>-a\<bar> = 0" by simp | |
| 36302 | 1187 | with abs_ge_self [of "- a"] have "- a \<le> 0" by auto | 
| 25307 | 1188 | with neg_le_0_iff_le show "0 \<le> a" by auto | 
| 1189 | qed | |
| 1190 | then show ?thesis by auto | |
| 1191 | qed | |
| 1192 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1193 | lemma abs_zero [simp]: "\<bar>0\<bar> = 0" | 
| 63325 | 1194 | by simp | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1195 | |
| 54148 | 1196 | lemma abs_0_eq [simp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1197 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1198 | have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac) | 
| 63325 | 1199 | then show ?thesis by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1200 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1201 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 1202 | lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1203 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1204 | assume "\<bar>a\<bar> \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1205 | then have "\<bar>a\<bar> = 0" by (rule antisym) simp | 
| 63325 | 1206 | then show "a = 0" by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1207 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1208 | assume "a = 0" | 
| 63325 | 1209 | then show "\<bar>a\<bar> \<le> 0" by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1210 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1211 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1212 | lemma abs_le_self_iff [simp]: "\<bar>a\<bar> \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1213 | proof - | 
| 63325 | 1214 | have "0 \<le> \<bar>a\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1215 | using abs_ge_zero by blast | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1216 | then have "\<bar>a\<bar> \<le> a \<Longrightarrow> 0 \<le> a" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1217 | using order.trans by blast | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1218 | then show ?thesis | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1219 | using abs_of_nonneg eq_refl by blast | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1220 | qed | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1221 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1222 | lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0" | 
| 63325 | 1223 | by (simp add: less_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1224 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1225 | lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1226 | proof - | 
| 63325 | 1227 | have "x \<le> y \<Longrightarrow> \<not> y < x" for x y by auto | 
| 1228 | then show ?thesis by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1229 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1230 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1231 | lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1232 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1233 | have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1234 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1235 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1236 | |
| 63325 | 1237 | lemma abs_minus_commute: "\<bar>a - b\<bar> = \<bar>b - a\<bar>" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1238 | proof - | 
| 63325 | 1239 | have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" | 
| 1240 | by (simp only: abs_minus_cancel) | |
| 1241 | also have "\<dots> = \<bar>b - a\<bar>" by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1242 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1243 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1244 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1245 | lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a" | 
| 63325 | 1246 | by (rule abs_of_nonneg) (rule less_imp_le) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1247 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1248 | lemma abs_of_nonpos [simp]: | 
| 63325 | 1249 | assumes "a \<le> 0" | 
| 1250 | shows "\<bar>a\<bar> = - a" | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1251 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1252 | let ?b = "- a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1253 | have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)" | 
| 63325 | 1254 | unfolding abs_minus_cancel [of ?b] | 
| 1255 | unfolding neg_le_0_iff_le [of ?b] | |
| 1256 | unfolding minus_minus by (erule abs_of_nonneg) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1257 | then show ?thesis using assms by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1258 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 1259 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1260 | lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a" | 
| 63325 | 1261 | by (rule abs_of_nonpos) (rule less_imp_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1262 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1263 | lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b" | 
| 63325 | 1264 | using abs_ge_self by (blast intro: order_trans) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1265 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1266 | lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b" | 
| 63325 | 1267 | using abs_le_D1 [of "- a"] by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1268 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1269 | lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b" | 
| 63325 | 1270 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1271 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1272 | lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>" | 
| 36302 | 1273 | proof - | 
| 1274 | have "\<bar>a\<bar> = \<bar>b + (a - b)\<bar>" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 1275 | by (simp add: algebra_simps) | 
| 36302 | 1276 | then have "\<bar>a\<bar> \<le> \<bar>b\<bar> + \<bar>a - b\<bar>" | 
| 1277 | by (simp add: abs_triangle_ineq) | |
| 1278 | then show ?thesis | |
| 1279 | by (simp add: algebra_simps) | |
| 1280 | qed | |
| 1281 | ||
| 1282 | lemma abs_triangle_ineq2_sym: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>b - a\<bar>" | |
| 1283 | by (simp only: abs_minus_commute [of b] abs_triangle_ineq2) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1284 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1285 | lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>" | 
| 36302 | 1286 | by (simp add: abs_le_iff abs_triangle_ineq2 abs_triangle_ineq2_sym) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1287 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1288 | lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1289 | proof - | 
| 63325 | 1290 | have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" | 
| 1291 | by (simp add: algebra_simps) | |
| 1292 | also have "\<dots> \<le> \<bar>a\<bar> + \<bar>- b\<bar>" | |
| 1293 | by (rule abs_triangle_ineq) | |
| 29667 | 1294 | finally show ?thesis by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1295 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1296 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1297 | lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1298 | proof - | 
| 63325 | 1299 | have "\<bar>a + b - (c + d)\<bar> = \<bar>(a - c) + (b - d)\<bar>" | 
| 1300 | by (simp add: algebra_simps) | |
| 1301 | also have "\<dots> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | |
| 1302 | by (rule abs_triangle_ineq) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1303 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1304 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1305 | |
| 63325 | 1306 | lemma abs_add_abs [simp]: "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" | 
| 1307 | (is "?L = ?R") | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1308 | proof (rule antisym) | 
| 63325 | 1309 | show "?L \<ge> ?R" by (rule abs_ge_self) | 
| 1310 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by (rule abs_triangle_ineq) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1311 | also have "\<dots> = ?R" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1312 | finally show "?L \<le> ?R" . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1313 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1314 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1315 | end | 
| 14738 | 1316 | |
| 60762 | 1317 | lemma dense_eq0_I: | 
| 1318 |   fixes x::"'a::{dense_linorder,ordered_ab_group_add_abs}"
 | |
| 63325 | 1319 | shows "(\<And>e. 0 < e \<Longrightarrow> \<bar>x\<bar> \<le> e) \<Longrightarrow> x = 0" | 
| 1320 | apply (cases "\<bar>x\<bar> = 0") | |
| 63588 | 1321 | apply simp | 
| 60762 | 1322 | apply (simp only: zero_less_abs_iff [symmetric]) | 
| 1323 | apply (drule dense) | |
| 1324 | apply (auto simp add: not_less [symmetric]) | |
| 1325 | done | |
| 1326 | ||
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 1327 | hide_fact (open) ab_diff_conv_add_uminus add_0 mult_1 ab_left_minus | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 1328 | |
| 63325 | 1329 | lemmas add_0 = add_0_left (* FIXME duplicate *) | 
| 1330 | lemmas mult_1 = mult_1_left (* FIXME duplicate *) | |
| 1331 | lemmas ab_left_minus = left_minus (* FIXME duplicate *) | |
| 1332 | lemmas diff_diff_eq = diff_diff_add (* FIXME duplicate *) | |
| 1333 | ||
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 1334 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1335 | subsection \<open>Canonically ordered monoids\<close> | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1336 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1337 | text \<open>Canonically ordered monoids are never groups.\<close> | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1338 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1339 | class canonically_ordered_monoid_add = comm_monoid_add + order + | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1340 | assumes le_iff_add: "a \<le> b \<longleftrightarrow> (\<exists>c. b = a + c)" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1341 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1342 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1343 | lemma zero_le[simp]: "0 \<le> x" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1344 | by (auto simp: le_iff_add) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1345 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1346 | lemma le_zero_eq[simp]: "n \<le> 0 \<longleftrightarrow> n = 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1347 | by (auto intro: antisym) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1348 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1349 | lemma not_less_zero[simp]: "\<not> n < 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1350 | by (auto simp: less_le) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1351 | |
| 63325 | 1352 | lemma zero_less_iff_neq_zero: "0 < n \<longleftrightarrow> n \<noteq> 0" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1353 | by (auto simp: less_le) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1354 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1355 | text \<open>This theorem is useful with \<open>blast\<close>\<close> | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1356 | lemma gr_zeroI: "(n = 0 \<Longrightarrow> False) \<Longrightarrow> 0 < n" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1357 | by (rule zero_less_iff_neq_zero[THEN iffD2]) iprover | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1358 | |
| 63325 | 1359 | lemma not_gr_zero[simp]: "\<not> 0 < n \<longleftrightarrow> n = 0" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1360 | by (simp add: zero_less_iff_neq_zero) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1361 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1362 | subclass ordered_comm_monoid_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1363 | proof qed (auto simp: le_iff_add add_ac) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1364 | |
| 63878 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1365 | lemma gr_implies_not_zero: "m < n \<Longrightarrow> n \<noteq> 0" | 
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1366 | by auto | 
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1367 | |
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1368 | lemma add_eq_0_iff_both_eq_0[simp]: "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1369 | by (intro add_nonneg_eq_0_iff zero_le) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1370 | |
| 63878 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1371 | lemma zero_eq_add_iff_both_eq_0[simp]: "0 = x + y \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1372 | using add_eq_0_iff_both_eq_0[of x y] unfolding eq_commute[of 0] . | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1373 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1374 | lemmas zero_order = zero_le le_zero_eq not_less_zero zero_less_iff_neq_zero not_gr_zero | 
| 63145 | 1375 | \<comment> \<open>This should be attributed with \<open>[iff]\<close>, but then \<open>blast\<close> fails in \<open>Set\<close>.\<close> | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1376 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1377 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1378 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1379 | class ordered_cancel_comm_monoid_diff = | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1380 | canonically_ordered_monoid_add + comm_monoid_diff + ordered_ab_semigroup_add_imp_le | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1381 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1382 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1383 | context | 
| 63588 | 1384 | fixes a b :: 'a | 
| 63325 | 1385 | assumes le: "a \<le> b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1386 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1387 | |
| 63325 | 1388 | lemma add_diff_inverse: "a + (b - a) = b" | 
| 1389 | using le by (auto simp add: le_iff_add) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1390 | |
| 63325 | 1391 | lemma add_diff_assoc: "c + (b - a) = c + b - a" | 
| 1392 | using le by (auto simp add: le_iff_add add.left_commute [of c]) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1393 | |
| 63325 | 1394 | lemma add_diff_assoc2: "b - a + c = b + c - a" | 
| 1395 | using le by (auto simp add: le_iff_add add.assoc) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1396 | |
| 63325 | 1397 | lemma diff_add_assoc: "c + b - a = c + (b - a)" | 
| 1398 | using le by (simp add: add.commute add_diff_assoc) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1399 | |
| 63325 | 1400 | lemma diff_add_assoc2: "b + c - a = b - a + c" | 
| 1401 | using le by (simp add: add.commute add_diff_assoc) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1402 | |
| 63325 | 1403 | lemma diff_diff_right: "c - (b - a) = c + a - b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1404 | by (simp add: add_diff_inverse add_diff_cancel_left [of a c "b - a", symmetric] add.commute) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1405 | |
| 63325 | 1406 | lemma diff_add: "b - a + a = b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1407 | by (simp add: add.commute add_diff_inverse) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1408 | |
| 63325 | 1409 | lemma le_add_diff: "c \<le> b + c - a" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1410 | by (auto simp add: add.commute diff_add_assoc2 le_iff_add) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1411 | |
| 63325 | 1412 | lemma le_imp_diff_is_add: "a \<le> b \<Longrightarrow> b - a = c \<longleftrightarrow> b = c + a" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1413 | by (auto simp add: add.commute add_diff_inverse) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1414 | |
| 63325 | 1415 | lemma le_diff_conv2: "c \<le> b - a \<longleftrightarrow> c + a \<le> b" | 
| 1416 | (is "?P \<longleftrightarrow> ?Q") | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1417 | proof | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1418 | assume ?P | 
| 63325 | 1419 | then have "c + a \<le> b - a + a" | 
| 1420 | by (rule add_right_mono) | |
| 1421 | then show ?Q | |
| 1422 | by (simp add: add_diff_inverse add.commute) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1423 | next | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1424 | assume ?Q | 
| 63325 | 1425 | then have "a + c \<le> a + (b - a)" | 
| 1426 | by (simp add: add_diff_inverse add.commute) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1427 | then show ?P by simp | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1428 | qed | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1429 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1430 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1431 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1432 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1433 | |
| 63325 | 1434 | |
| 60758 | 1435 | subsection \<open>Tools setup\<close> | 
| 25090 | 1436 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1437 | lemma add_mono_thms_linordered_semiring: | 
| 61076 | 1438 | fixes i j k :: "'a::ordered_ab_semigroup_add" | 
| 25077 | 1439 | shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | 
| 1440 | and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1441 | and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l" | |
| 1442 | and "i = j \<and> k = l \<Longrightarrow> i + k = j + l" | |
| 63325 | 1443 | by (rule add_mono, clarify+)+ | 
| 25077 | 1444 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1445 | lemma add_mono_thms_linordered_field: | 
| 61076 | 1446 | fixes i j k :: "'a::ordered_cancel_ab_semigroup_add" | 
| 25077 | 1447 | shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l" | 
| 1448 | and "i = j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1449 | and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l" | |
| 1450 | and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1451 | and "i < j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 63325 | 1452 | by (auto intro: add_strict_right_mono add_strict_left_mono | 
| 1453 | add_less_le_mono add_le_less_mono add_strict_mono) | |
| 25077 | 1454 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52289diff
changeset | 1455 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52289diff
changeset | 1456 | code_module Groups \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 1457 | |
| 14738 | 1458 | end |