author | wenzelm |
Tue, 09 May 2023 19:47:11 +0200 | |
changeset 78006 | 2587b492664a |
parent 71168 | 11e1e273eaad |
permissions | -rw-r--r-- |
58419 | 1 |
(* Title: HOL/ex/SOS.thy |
58418 | 2 |
Author: Amine Chaieb, University of Cambridge |
3 |
Author: Philipp Meyer, TU Muenchen |
|
4 |
||
58419 | 5 |
Examples for Sum_of_Squares. |
58418 | 6 |
*) |
7 |
||
58419 | 8 |
theory SOS |
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
61156
diff
changeset
|
9 |
imports "HOL-Library.Sum_of_Squares" |
58418 | 10 |
begin |
11 |
||
67271 | 12 |
lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<Longrightarrow> a < 0" |
58630 | 13 |
by sos |
58418 | 14 |
|
61156 | 15 |
lemma "a1 \<ge> 0 \<and> a2 \<ge> 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) \<longrightarrow> |
16 |
a1 * a2 - b1 * b2 \<ge> (0::real)" |
|
58630 | 17 |
by sos |
58418 | 18 |
|
67271 | 19 |
lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0" |
58630 | 20 |
by sos |
58418 | 21 |
|
61156 | 22 |
lemma "(0::real) \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> |
23 |
x\<^sup>2 + y\<^sup>2 < 1 \<or> (x - 1)\<^sup>2 + y\<^sup>2 < 1 \<or> x\<^sup>2 + (y - 1)\<^sup>2 < 1 \<or> (x - 1)\<^sup>2 + (y - 1)\<^sup>2 < 1" |
|
58630 | 24 |
by sos |
58418 | 25 |
|
61156 | 26 |
lemma "(0::real) \<le> x \<and> 0 \<le> y \<and> 0 \<le> z \<and> x + y + z \<le> 3 \<longrightarrow> x * y + x * z + y * z \<ge> 3 * x * y * z" |
58630 | 27 |
by sos |
58418 | 28 |
|
61156 | 29 |
lemma "(x::real)\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \<longrightarrow> (x + y + z)\<^sup>2 \<le> 3" |
58630 | 30 |
by sos |
58418 | 31 |
|
61156 | 32 |
lemma "w\<^sup>2 + x\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \<longrightarrow> (w + x + y + z)\<^sup>2 \<le> (4::real)" |
58630 | 33 |
by sos |
58418 | 34 |
|
61156 | 35 |
lemma "(x::real) \<ge> 1 \<and> y \<ge> 1 \<longrightarrow> x * y \<ge> x + y - 1" |
58630 | 36 |
by sos |
58418 | 37 |
|
61156 | 38 |
lemma "(x::real) > 1 \<and> y > 1 \<longrightarrow> x * y > x + y - 1" |
58630 | 39 |
by sos |
58418 | 40 |
|
61156 | 41 |
lemma "\<bar>x\<bar> \<le> 1 \<longrightarrow> \<bar>64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x\<bar> \<le> (1::real)" |
58630 | 42 |
by sos |
58418 | 43 |
|
44 |
||
45 |
text \<open>One component of denominator in dodecahedral example.\<close> |
|
46 |
||
61156 | 47 |
lemma "2 \<le> x \<and> x \<le> 125841 / 50000 \<and> 2 \<le> y \<and> y \<le> 125841 / 50000 \<and> 2 \<le> z \<and> z \<le> 125841 / 50000 \<longrightarrow> |
48 |
2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) \<ge> (0::real)" |
|
58630 | 49 |
by sos |
58418 | 50 |
|
51 |
||
52 |
text \<open>Over a larger but simpler interval.\<close> |
|
53 |
||
61156 | 54 |
lemma "(2::real) \<le> x \<and> x \<le> 4 \<and> 2 \<le> y \<and> y \<le> 4 \<and> 2 \<le> z \<and> z \<le> 4 \<longrightarrow> |
55 |
0 \<le> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" |
|
58630 | 56 |
by sos |
58418 | 57 |
|
58 |
||
59 |
text \<open>We can do 12. I think 12 is a sharp bound; see PP's certificate.\<close> |
|
60 |
||
61156 | 61 |
lemma "2 \<le> (x::real) \<and> x \<le> 4 \<and> 2 \<le> y \<and> y \<le> 4 \<and> 2 \<le> z \<and> z \<le> 4 \<longrightarrow> |
62 |
12 \<le> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" |
|
58630 | 63 |
by sos |
58418 | 64 |
|
65 |
||
66 |
text \<open>Inequality from sci.math (see "Leon-Sotelo, por favor").\<close> |
|
67 |
||
61156 | 68 |
lemma "0 \<le> (x::real) \<and> 0 \<le> y \<and> x * y = 1 \<longrightarrow> x + y \<le> x\<^sup>2 + y\<^sup>2" |
58630 | 69 |
by sos |
58418 | 70 |
|
61156 | 71 |
lemma "0 \<le> (x::real) \<and> 0 \<le> y \<and> x * y = 1 \<longrightarrow> x * y * (x + y) \<le> x\<^sup>2 + y\<^sup>2" |
58630 | 72 |
by sos |
58418 | 73 |
|
61156 | 74 |
lemma "0 \<le> (x::real) \<and> 0 \<le> y \<longrightarrow> x * y * (x + y)\<^sup>2 \<le> (x\<^sup>2 + y\<^sup>2)\<^sup>2" |
58630 | 75 |
by sos |
58418 | 76 |
|
61156 | 77 |
lemma "(0::real) \<le> a \<and> 0 \<le> b \<and> 0 \<le> c \<and> c * (2 * a + b)^3 / 27 \<le> x \<longrightarrow> c * a\<^sup>2 * b \<le> x" |
58630 | 78 |
by sos |
58418 | 79 |
|
61156 | 80 |
lemma "(0::real) < x \<longrightarrow> 0 < 1 + x + x\<^sup>2" |
58630 | 81 |
by sos |
58418 | 82 |
|
61156 | 83 |
lemma "(0::real) \<le> x \<longrightarrow> 0 < 1 + x + x\<^sup>2" |
58630 | 84 |
by sos |
58418 | 85 |
|
61156 | 86 |
lemma "(0::real) < 1 + x\<^sup>2" |
58630 | 87 |
by sos |
58418 | 88 |
|
61156 | 89 |
lemma "(0::real) \<le> 1 + 2 * x + x\<^sup>2" |
58630 | 90 |
by sos |
58418 | 91 |
|
61156 | 92 |
lemma "(0::real) < 1 + \<bar>x\<bar>" |
58630 | 93 |
by sos |
58418 | 94 |
|
61156 | 95 |
lemma "(0::real) < 1 + (1 + x)\<^sup>2 * \<bar>x\<bar>" |
58630 | 96 |
by sos |
58418 | 97 |
|
98 |
||
61156 | 99 |
lemma "\<bar>(1::real) + x\<^sup>2\<bar> = (1::real) + x\<^sup>2" |
58630 | 100 |
by sos |
61156 | 101 |
|
58418 | 102 |
lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0" |
58630 | 103 |
by sos |
58418 | 104 |
|
61156 | 105 |
lemma "(0::real) < x \<longrightarrow> 1 < y \<longrightarrow> y * x \<le> z \<longrightarrow> x < z" |
58630 | 106 |
by sos |
61156 | 107 |
|
108 |
lemma "(1::real) < x \<longrightarrow> x\<^sup>2 < y \<longrightarrow> 1 < y" |
|
58630 | 109 |
by sos |
61156 | 110 |
|
111 |
lemma "(b::real)\<^sup>2 < 4 * a * c \<longrightarrow> a * x\<^sup>2 + b * x + c \<noteq> 0" |
|
58630 | 112 |
by sos |
61156 | 113 |
|
114 |
lemma "(b::real)\<^sup>2 < 4 * a * c \<longrightarrow> a * x\<^sup>2 + b * x + c \<noteq> 0" |
|
58630 | 115 |
by sos |
61156 | 116 |
|
117 |
lemma "(a::real) * x\<^sup>2 + b * x + c = 0 \<longrightarrow> b\<^sup>2 \<ge> 4 * a * c" |
|
58630 | 118 |
by sos |
61156 | 119 |
|
120 |
lemma "(0::real) \<le> b \<and> 0 \<le> c \<and> 0 \<le> x \<and> 0 \<le> y \<and> x\<^sup>2 = c \<and> y\<^sup>2 = a\<^sup>2 * c + b \<longrightarrow> a * c \<le> y * x" |
|
58630 | 121 |
by sos |
58418 | 122 |
|
67271 | 123 |
lemma "\<bar>x - z\<bar> \<le> e \<and> \<bar>y - z\<bar> \<le> e \<and> 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1 \<longrightarrow> \<bar>(u * x + v * y) - z\<bar> \<le> (e::real)" |
61156 | 124 |
by sos |
58418 | 125 |
|
61156 | 126 |
lemma "(x::real) - y - 2 * x^4 = 0 \<and> 0 \<le> x \<and> x \<le> 2 \<and> 0 \<le> y \<and> y \<le> 3 \<longrightarrow> y\<^sup>2 - 7 * y - 12 * x + 17 \<ge> 0" |
71168 | 127 |
oops (*Too hard; left it running for 80 minutes -- LCP*) |
58418 | 128 |
|
61156 | 129 |
lemma "(0::real) \<le> x \<longrightarrow> (1 + x + x\<^sup>2) / (1 + x\<^sup>2) \<le> 1 + x" |
58630 | 130 |
by sos |
58418 | 131 |
|
61156 | 132 |
lemma "(0::real) \<le> x \<longrightarrow> 1 - x \<le> 1 / (1 + x + x\<^sup>2)" |
58630 | 133 |
by sos |
58418 | 134 |
|
61156 | 135 |
lemma "(x::real) \<le> 1 / 2 \<longrightarrow> - x - 2 * x\<^sup>2 \<le> - x / (1 - x)" |
58630 | 136 |
by sos |
58418 | 137 |
|
61156 | 138 |
lemma "4 * r\<^sup>2 = p\<^sup>2 - 4 * q \<and> r \<ge> (0::real) \<and> x\<^sup>2 + p * x + q = 0 \<longrightarrow> |
139 |
2 * (x::real) = - p + 2 * r \<or> 2 * x = - p - 2 * r" |
|
58630 | 140 |
by sos |
58418 | 141 |
|
142 |
end |