--- a/src/HOL/ROOT Mon Sep 22 16:15:29 2014 +0200
+++ b/src/HOL/ROOT Mon Sep 22 16:28:24 2014 +0200
@@ -600,13 +600,16 @@
SAT_Examples
Nominal2_Dummy
SOS_Cert
+ theories [condition = ISABELLE_CSDP]
+ SOS
+ theories [condition = ISABELLE_FULL_TEST]
+ SOS_Remote
theories [skip_proofs = false]
Meson_Test
theories [condition = SVC_HOME]
svc_test
theories [condition = ISABELLE_FULL_TEST]
Sudoku
- SOS_Remote
document_files "root.bib" "root.tex"
session "HOL-Isar_Examples" in Isar_Examples = HOL +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/SOS.thy Mon Sep 22 16:28:24 2014 +0200
@@ -0,0 +1,130 @@
+(* Title: HOL/ex/SOS.thy
+ Author: Amine Chaieb, University of Cambridge
+ Author: Philipp Meyer, TU Muenchen
+
+Examples for Sum_of_Squares.
+*)
+
+theory SOS
+imports "~~/src/HOL/Library/Sum_of_Squares"
+begin
+
+lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
+ by (sos csdp)
+
+lemma "a1 >= 0 & a2 >= 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)"
+ by (sos csdp)
+
+lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0"
+ by (sos csdp)
+
+lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1 --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1"
+ by (sos csdp)
+
+lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z"
+ by (sos csdp)
+
+lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3"
+ by (sos csdp)
+
+lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)"
+ by (sos csdp)
+
+lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1"
+ by (sos csdp)
+
+lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1"
+ by (sos csdp)
+
+lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)"
+ by (sos csdp)
+
+
+text \<open>One component of denominator in dodecahedral example.\<close>
+
+lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)"
+ by (sos csdp)
+
+
+text \<open>Over a larger but simpler interval.\<close>
+
+lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
+ by (sos csdp)
+
+
+text \<open>We can do 12. I think 12 is a sharp bound; see PP's certificate.\<close>
+
+lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
+ by (sos csdp)
+
+
+text \<open>Inequality from sci.math (see "Leon-Sotelo, por favor").\<close>
+
+lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2"
+ by (sos csdp)
+
+lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2"
+ by (sos csdp)
+
+lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2"
+ by (sos csdp)
+
+lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \<longrightarrow> c * a^2 * b <= x"
+ by (sos csdp)
+
+lemma "(0::real) < x --> 0 < 1 + x + x^2"
+ by (sos csdp)
+
+lemma "(0::real) <= x --> 0 < 1 + x + x^2"
+ by (sos csdp)
+
+lemma "(0::real) < 1 + x^2"
+ by (sos csdp)
+
+lemma "(0::real) <= 1 + 2 * x + x^2"
+ by (sos csdp)
+
+lemma "(0::real) < 1 + abs x"
+ by (sos csdp)
+
+lemma "(0::real) < 1 + (1 + x)^2 * (abs x)"
+ by (sos csdp)
+
+
+lemma "abs ((1::real) + x^2) = (1::real) + x^2"
+ by (sos csdp)
+lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0"
+ by (sos csdp)
+
+lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z"
+ by (sos csdp)
+lemma "(1::real) < x --> x^2 < y --> 1 < y"
+ by (sos csdp)
+lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
+ by (sos csdp)
+lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
+ by (sos csdp)
+lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c"
+ by (sos csdp)
+lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x"
+ by (sos csdp)
+lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)"
+ by (sos csdp)
+
+
+(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*)
+
+lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x"
+ by (sos csdp)
+
+lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)"
+ by (sos csdp)
+
+lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)"
+ by (sos csdp)
+
+lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r"
+ by (sos csdp)
+
+end
+
--- a/src/HOL/ex/SOS_Cert.thy Mon Sep 22 16:15:29 2014 +0200
+++ b/src/HOL/ex/SOS_Cert.thy Mon Sep 22 16:28:24 2014 +0200
@@ -1,4 +1,4 @@
-(* Title: HOL/Library/Sum_of_Squares.thy
+(* Title: HOL/ex/SOS_Cert.thy
Author: Amine Chaieb, University of Cambridge
Author: Philipp Meyer, TU Muenchen