17456
|
1 |
(* Title: CCL/Set.thy
|
0
|
2 |
ID: $Id$
|
|
3 |
*)
|
|
4 |
|
17456
|
5 |
header {* Extending FOL by a modified version of HOL set theory *}
|
|
6 |
|
|
7 |
theory Set
|
|
8 |
imports FOL
|
|
9 |
begin
|
0
|
10 |
|
3935
|
11 |
global
|
|
12 |
|
17456
|
13 |
typedecl 'a set
|
|
14 |
arities set :: ("term") "term"
|
0
|
15 |
|
|
16 |
consts
|
|
17 |
Collect :: "['a => o] => 'a set" (*comprehension*)
|
|
18 |
Compl :: "('a set) => 'a set" (*complement*)
|
24825
|
19 |
Int :: "['a set, 'a set] => 'a set" (infixl "Int" 70)
|
|
20 |
Un :: "['a set, 'a set] => 'a set" (infixl "Un" 65)
|
17456
|
21 |
Union :: "(('a set)set) => 'a set" (*...of a set*)
|
|
22 |
Inter :: "(('a set)set) => 'a set" (*...of a set*)
|
|
23 |
UNION :: "['a set, 'a => 'b set] => 'b set" (*general*)
|
|
24 |
INTER :: "['a set, 'a => 'b set] => 'b set" (*general*)
|
|
25 |
Ball :: "['a set, 'a => o] => o" (*bounded quants*)
|
|
26 |
Bex :: "['a set, 'a => o] => o" (*bounded quants*)
|
0
|
27 |
mono :: "['a set => 'b set] => o" (*monotonicity*)
|
24825
|
28 |
mem :: "['a, 'a set] => o" (infixl ":" 50) (*membership*)
|
|
29 |
subset :: "['a set, 'a set] => o" (infixl "<=" 50)
|
0
|
30 |
singleton :: "'a => 'a set" ("{_}")
|
|
31 |
empty :: "'a set" ("{}")
|
|
32 |
|
3935
|
33 |
syntax
|
0
|
34 |
"@Coll" :: "[idt, o] => 'a set" ("(1{_./ _})") (*collection*)
|
|
35 |
|
|
36 |
(* Big Intersection / Union *)
|
|
37 |
|
|
38 |
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(INT _:_./ _)" [0, 0, 0] 10)
|
|
39 |
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(UN _:_./ _)" [0, 0, 0] 10)
|
|
40 |
|
|
41 |
(* Bounded Quantifiers *)
|
|
42 |
|
|
43 |
"@Ball" :: "[idt, 'a set, o] => o" ("(ALL _:_./ _)" [0, 0, 0] 10)
|
|
44 |
"@Bex" :: "[idt, 'a set, o] => o" ("(EX _:_./ _)" [0, 0, 0] 10)
|
|
45 |
|
|
46 |
translations
|
|
47 |
"{x. P}" == "Collect(%x. P)"
|
|
48 |
"INT x:A. B" == "INTER(A, %x. B)"
|
|
49 |
"UN x:A. B" == "UNION(A, %x. B)"
|
|
50 |
"ALL x:A. P" == "Ball(A, %x. P)"
|
|
51 |
"EX x:A. P" == "Bex(A, %x. P)"
|
|
52 |
|
3935
|
53 |
local
|
0
|
54 |
|
17456
|
55 |
axioms
|
|
56 |
mem_Collect_iff: "(a : {x. P(x)}) <-> P(a)"
|
|
57 |
set_extension: "A=B <-> (ALL x. x:A <-> x:B)"
|
0
|
58 |
|
17456
|
59 |
defs
|
|
60 |
Ball_def: "Ball(A, P) == ALL x. x:A --> P(x)"
|
|
61 |
Bex_def: "Bex(A, P) == EX x. x:A & P(x)"
|
|
62 |
mono_def: "mono(f) == (ALL A B. A <= B --> f(A) <= f(B))"
|
|
63 |
subset_def: "A <= B == ALL x:A. x:B"
|
|
64 |
singleton_def: "{a} == {x. x=a}"
|
|
65 |
empty_def: "{} == {x. False}"
|
|
66 |
Un_def: "A Un B == {x. x:A | x:B}"
|
|
67 |
Int_def: "A Int B == {x. x:A & x:B}"
|
|
68 |
Compl_def: "Compl(A) == {x. ~x:A}"
|
|
69 |
INTER_def: "INTER(A, B) == {y. ALL x:A. y: B(x)}"
|
|
70 |
UNION_def: "UNION(A, B) == {y. EX x:A. y: B(x)}"
|
|
71 |
Inter_def: "Inter(S) == (INT x:S. x)"
|
|
72 |
Union_def: "Union(S) == (UN x:S. x)"
|
|
73 |
|
20140
|
74 |
|
|
75 |
lemma CollectI: "[| P(a) |] ==> a : {x. P(x)}"
|
|
76 |
apply (rule mem_Collect_iff [THEN iffD2])
|
|
77 |
apply assumption
|
|
78 |
done
|
|
79 |
|
|
80 |
lemma CollectD: "[| a : {x. P(x)} |] ==> P(a)"
|
|
81 |
apply (erule mem_Collect_iff [THEN iffD1])
|
|
82 |
done
|
|
83 |
|
|
84 |
lemmas CollectE = CollectD [elim_format]
|
|
85 |
|
|
86 |
lemma set_ext: "[| !!x. x:A <-> x:B |] ==> A = B"
|
|
87 |
apply (rule set_extension [THEN iffD2])
|
|
88 |
apply simp
|
|
89 |
done
|
|
90 |
|
|
91 |
|
|
92 |
subsection {* Bounded quantifiers *}
|
|
93 |
|
|
94 |
lemma ballI: "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
|
|
95 |
by (simp add: Ball_def)
|
|
96 |
|
|
97 |
lemma bspec: "[| ALL x:A. P(x); x:A |] ==> P(x)"
|
|
98 |
by (simp add: Ball_def)
|
|
99 |
|
|
100 |
lemma ballE: "[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q"
|
|
101 |
unfolding Ball_def by blast
|
|
102 |
|
|
103 |
lemma bexI: "[| P(x); x:A |] ==> EX x:A. P(x)"
|
|
104 |
unfolding Bex_def by blast
|
|
105 |
|
|
106 |
lemma bexCI: "[| EX x:A. ~P(x) ==> P(a); a:A |] ==> EX x:A. P(x)"
|
|
107 |
unfolding Bex_def by blast
|
|
108 |
|
|
109 |
lemma bexE: "[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q"
|
|
110 |
unfolding Bex_def by blast
|
|
111 |
|
|
112 |
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)
|
|
113 |
lemma ball_rew: "(ALL x:A. True) <-> True"
|
|
114 |
by (blast intro: ballI)
|
|
115 |
|
|
116 |
|
|
117 |
subsection {* Congruence rules *}
|
|
118 |
|
|
119 |
lemma ball_cong:
|
|
120 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
|
|
121 |
(ALL x:A. P(x)) <-> (ALL x:A'. P'(x))"
|
|
122 |
by (blast intro: ballI elim: ballE)
|
|
123 |
|
|
124 |
lemma bex_cong:
|
|
125 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
|
|
126 |
(EX x:A. P(x)) <-> (EX x:A'. P'(x))"
|
|
127 |
by (blast intro: bexI elim: bexE)
|
|
128 |
|
|
129 |
|
|
130 |
subsection {* Rules for subsets *}
|
|
131 |
|
|
132 |
lemma subsetI: "(!!x. x:A ==> x:B) ==> A <= B"
|
|
133 |
unfolding subset_def by (blast intro: ballI)
|
|
134 |
|
|
135 |
(*Rule in Modus Ponens style*)
|
|
136 |
lemma subsetD: "[| A <= B; c:A |] ==> c:B"
|
|
137 |
unfolding subset_def by (blast elim: ballE)
|
|
138 |
|
|
139 |
(*Classical elimination rule*)
|
|
140 |
lemma subsetCE: "[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P"
|
|
141 |
by (blast dest: subsetD)
|
|
142 |
|
|
143 |
lemma subset_refl: "A <= A"
|
|
144 |
by (blast intro: subsetI)
|
|
145 |
|
|
146 |
lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C"
|
|
147 |
by (blast intro: subsetI dest: subsetD)
|
|
148 |
|
|
149 |
|
|
150 |
subsection {* Rules for equality *}
|
|
151 |
|
|
152 |
(*Anti-symmetry of the subset relation*)
|
|
153 |
lemma subset_antisym: "[| A <= B; B <= A |] ==> A = B"
|
|
154 |
by (blast intro: set_ext dest: subsetD)
|
|
155 |
|
|
156 |
lemmas equalityI = subset_antisym
|
|
157 |
|
|
158 |
(* Equality rules from ZF set theory -- are they appropriate here? *)
|
|
159 |
lemma equalityD1: "A = B ==> A<=B"
|
|
160 |
and equalityD2: "A = B ==> B<=A"
|
|
161 |
by (simp_all add: subset_refl)
|
|
162 |
|
|
163 |
lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"
|
|
164 |
by (simp add: subset_refl)
|
|
165 |
|
|
166 |
lemma equalityCE:
|
|
167 |
"[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P"
|
|
168 |
by (blast elim: equalityE subsetCE)
|
|
169 |
|
|
170 |
lemma trivial_set: "{x. x:A} = A"
|
|
171 |
by (blast intro: equalityI subsetI CollectI dest: CollectD)
|
|
172 |
|
|
173 |
|
|
174 |
subsection {* Rules for binary union *}
|
|
175 |
|
|
176 |
lemma UnI1: "c:A ==> c : A Un B"
|
|
177 |
and UnI2: "c:B ==> c : A Un B"
|
|
178 |
unfolding Un_def by (blast intro: CollectI)+
|
|
179 |
|
|
180 |
(*Classical introduction rule: no commitment to A vs B*)
|
|
181 |
lemma UnCI: "(~c:B ==> c:A) ==> c : A Un B"
|
|
182 |
by (blast intro: UnI1 UnI2)
|
|
183 |
|
|
184 |
lemma UnE: "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P"
|
|
185 |
unfolding Un_def by (blast dest: CollectD)
|
|
186 |
|
|
187 |
|
|
188 |
subsection {* Rules for small intersection *}
|
|
189 |
|
|
190 |
lemma IntI: "[| c:A; c:B |] ==> c : A Int B"
|
|
191 |
unfolding Int_def by (blast intro: CollectI)
|
|
192 |
|
|
193 |
lemma IntD1: "c : A Int B ==> c:A"
|
|
194 |
and IntD2: "c : A Int B ==> c:B"
|
|
195 |
unfolding Int_def by (blast dest: CollectD)+
|
|
196 |
|
|
197 |
lemma IntE: "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P"
|
|
198 |
by (blast dest: IntD1 IntD2)
|
|
199 |
|
|
200 |
|
|
201 |
subsection {* Rules for set complement *}
|
|
202 |
|
|
203 |
lemma ComplI: "[| c:A ==> False |] ==> c : Compl(A)"
|
|
204 |
unfolding Compl_def by (blast intro: CollectI)
|
|
205 |
|
|
206 |
(*This form, with negated conclusion, works well with the Classical prover.
|
|
207 |
Negated assumptions behave like formulae on the right side of the notional
|
|
208 |
turnstile...*)
|
|
209 |
lemma ComplD: "[| c : Compl(A) |] ==> ~c:A"
|
|
210 |
unfolding Compl_def by (blast dest: CollectD)
|
|
211 |
|
|
212 |
lemmas ComplE = ComplD [elim_format]
|
|
213 |
|
|
214 |
|
|
215 |
subsection {* Empty sets *}
|
|
216 |
|
|
217 |
lemma empty_eq: "{x. False} = {}"
|
|
218 |
by (simp add: empty_def)
|
|
219 |
|
|
220 |
lemma emptyD: "a : {} ==> P"
|
|
221 |
unfolding empty_def by (blast dest: CollectD)
|
|
222 |
|
|
223 |
lemmas emptyE = emptyD [elim_format]
|
|
224 |
|
|
225 |
lemma not_emptyD:
|
|
226 |
assumes "~ A={}"
|
|
227 |
shows "EX x. x:A"
|
|
228 |
proof -
|
|
229 |
have "\<not> (EX x. x:A) \<Longrightarrow> A = {}"
|
|
230 |
by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+
|
|
231 |
with prems show ?thesis by blast
|
|
232 |
qed
|
|
233 |
|
|
234 |
|
|
235 |
subsection {* Singleton sets *}
|
|
236 |
|
|
237 |
lemma singletonI: "a : {a}"
|
|
238 |
unfolding singleton_def by (blast intro: CollectI)
|
|
239 |
|
|
240 |
lemma singletonD: "b : {a} ==> b=a"
|
|
241 |
unfolding singleton_def by (blast dest: CollectD)
|
|
242 |
|
|
243 |
lemmas singletonE = singletonD [elim_format]
|
|
244 |
|
|
245 |
|
|
246 |
subsection {* Unions of families *}
|
|
247 |
|
|
248 |
(*The order of the premises presupposes that A is rigid; b may be flexible*)
|
|
249 |
lemma UN_I: "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))"
|
|
250 |
unfolding UNION_def by (blast intro: bexI CollectI)
|
|
251 |
|
|
252 |
lemma UN_E: "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R"
|
|
253 |
unfolding UNION_def by (blast dest: CollectD elim: bexE)
|
|
254 |
|
|
255 |
lemma UN_cong:
|
|
256 |
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==>
|
|
257 |
(UN x:A. C(x)) = (UN x:B. D(x))"
|
|
258 |
by (simp add: UNION_def cong: bex_cong)
|
|
259 |
|
|
260 |
|
|
261 |
subsection {* Intersections of families *}
|
|
262 |
|
|
263 |
lemma INT_I: "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"
|
|
264 |
unfolding INTER_def by (blast intro: CollectI ballI)
|
|
265 |
|
|
266 |
lemma INT_D: "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)"
|
|
267 |
unfolding INTER_def by (blast dest: CollectD bspec)
|
|
268 |
|
|
269 |
(*"Classical" elimination rule -- does not require proving X:C *)
|
|
270 |
lemma INT_E: "[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R"
|
|
271 |
unfolding INTER_def by (blast dest: CollectD bspec)
|
|
272 |
|
|
273 |
lemma INT_cong:
|
|
274 |
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==>
|
|
275 |
(INT x:A. C(x)) = (INT x:B. D(x))"
|
|
276 |
by (simp add: INTER_def cong: ball_cong)
|
|
277 |
|
|
278 |
|
|
279 |
subsection {* Rules for Unions *}
|
|
280 |
|
|
281 |
(*The order of the premises presupposes that C is rigid; A may be flexible*)
|
|
282 |
lemma UnionI: "[| X:C; A:X |] ==> A : Union(C)"
|
|
283 |
unfolding Union_def by (blast intro: UN_I)
|
|
284 |
|
|
285 |
lemma UnionE: "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R"
|
|
286 |
unfolding Union_def by (blast elim: UN_E)
|
|
287 |
|
|
288 |
|
|
289 |
subsection {* Rules for Inter *}
|
|
290 |
|
|
291 |
lemma InterI: "[| !!X. X:C ==> A:X |] ==> A : Inter(C)"
|
|
292 |
unfolding Inter_def by (blast intro: INT_I)
|
|
293 |
|
|
294 |
(*A "destruct" rule -- every X in C contains A as an element, but
|
|
295 |
A:X can hold when X:C does not! This rule is analogous to "spec". *)
|
|
296 |
lemma InterD: "[| A : Inter(C); X:C |] ==> A:X"
|
|
297 |
unfolding Inter_def by (blast dest: INT_D)
|
|
298 |
|
|
299 |
(*"Classical" elimination rule -- does not require proving X:C *)
|
|
300 |
lemma InterE: "[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R"
|
|
301 |
unfolding Inter_def by (blast elim: INT_E)
|
|
302 |
|
|
303 |
|
|
304 |
section {* Derived rules involving subsets; Union and Intersection as lattice operations *}
|
|
305 |
|
|
306 |
subsection {* Big Union -- least upper bound of a set *}
|
|
307 |
|
|
308 |
lemma Union_upper: "B:A ==> B <= Union(A)"
|
|
309 |
by (blast intro: subsetI UnionI)
|
|
310 |
|
|
311 |
lemma Union_least: "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C"
|
|
312 |
by (blast intro: subsetI dest: subsetD elim: UnionE)
|
|
313 |
|
|
314 |
|
|
315 |
subsection {* Big Intersection -- greatest lower bound of a set *}
|
|
316 |
|
|
317 |
lemma Inter_lower: "B:A ==> Inter(A) <= B"
|
|
318 |
by (blast intro: subsetI dest: InterD)
|
|
319 |
|
|
320 |
lemma Inter_greatest: "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)"
|
|
321 |
by (blast intro: subsetI InterI dest: subsetD)
|
|
322 |
|
|
323 |
|
|
324 |
subsection {* Finite Union -- the least upper bound of 2 sets *}
|
|
325 |
|
|
326 |
lemma Un_upper1: "A <= A Un B"
|
|
327 |
by (blast intro: subsetI UnI1)
|
|
328 |
|
|
329 |
lemma Un_upper2: "B <= A Un B"
|
|
330 |
by (blast intro: subsetI UnI2)
|
|
331 |
|
|
332 |
lemma Un_least: "[| A<=C; B<=C |] ==> A Un B <= C"
|
|
333 |
by (blast intro: subsetI elim: UnE dest: subsetD)
|
|
334 |
|
|
335 |
|
|
336 |
subsection {* Finite Intersection -- the greatest lower bound of 2 sets *}
|
|
337 |
|
|
338 |
lemma Int_lower1: "A Int B <= A"
|
|
339 |
by (blast intro: subsetI elim: IntE)
|
|
340 |
|
|
341 |
lemma Int_lower2: "A Int B <= B"
|
|
342 |
by (blast intro: subsetI elim: IntE)
|
|
343 |
|
|
344 |
lemma Int_greatest: "[| C<=A; C<=B |] ==> C <= A Int B"
|
|
345 |
by (blast intro: subsetI IntI dest: subsetD)
|
|
346 |
|
|
347 |
|
|
348 |
subsection {* Monotonicity *}
|
|
349 |
|
|
350 |
lemma monoI: "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)"
|
|
351 |
unfolding mono_def by blast
|
|
352 |
|
|
353 |
lemma monoD: "[| mono(f); A <= B |] ==> f(A) <= f(B)"
|
|
354 |
unfolding mono_def by blast
|
|
355 |
|
|
356 |
lemma mono_Un: "mono(f) ==> f(A) Un f(B) <= f(A Un B)"
|
|
357 |
by (blast intro: Un_least dest: monoD intro: Un_upper1 Un_upper2)
|
|
358 |
|
|
359 |
lemma mono_Int: "mono(f) ==> f(A Int B) <= f(A) Int f(B)"
|
|
360 |
by (blast intro: Int_greatest dest: monoD intro: Int_lower1 Int_lower2)
|
|
361 |
|
|
362 |
|
|
363 |
subsection {* Automated reasoning setup *}
|
|
364 |
|
|
365 |
lemmas [intro!] = ballI subsetI InterI INT_I CollectI ComplI IntI UnCI singletonI
|
|
366 |
and [intro] = bexI UnionI UN_I
|
|
367 |
and [elim!] = bexE UnionE UN_E CollectE ComplE IntE UnE emptyE singletonE
|
|
368 |
and [elim] = ballE InterD InterE INT_D INT_E subsetD subsetCE
|
|
369 |
|
|
370 |
lemma mem_rews:
|
|
371 |
"(a : A Un B) <-> (a:A | a:B)"
|
|
372 |
"(a : A Int B) <-> (a:A & a:B)"
|
|
373 |
"(a : Compl(B)) <-> (~a:B)"
|
|
374 |
"(a : {b}) <-> (a=b)"
|
|
375 |
"(a : {}) <-> False"
|
|
376 |
"(a : {x. P(x)}) <-> P(a)"
|
|
377 |
by blast+
|
|
378 |
|
|
379 |
lemmas [simp] = trivial_set empty_eq mem_rews
|
|
380 |
and [cong] = ball_cong bex_cong INT_cong UN_cong
|
|
381 |
|
|
382 |
|
|
383 |
section {* Equalities involving union, intersection, inclusion, etc. *}
|
|
384 |
|
|
385 |
subsection {* Binary Intersection *}
|
|
386 |
|
|
387 |
lemma Int_absorb: "A Int A = A"
|
|
388 |
by (blast intro: equalityI)
|
|
389 |
|
|
390 |
lemma Int_commute: "A Int B = B Int A"
|
|
391 |
by (blast intro: equalityI)
|
|
392 |
|
|
393 |
lemma Int_assoc: "(A Int B) Int C = A Int (B Int C)"
|
|
394 |
by (blast intro: equalityI)
|
|
395 |
|
|
396 |
lemma Int_Un_distrib: "(A Un B) Int C = (A Int C) Un (B Int C)"
|
|
397 |
by (blast intro: equalityI)
|
|
398 |
|
|
399 |
lemma subset_Int_eq: "(A<=B) <-> (A Int B = A)"
|
|
400 |
by (blast intro: equalityI elim: equalityE)
|
|
401 |
|
|
402 |
|
|
403 |
subsection {* Binary Union *}
|
|
404 |
|
|
405 |
lemma Un_absorb: "A Un A = A"
|
|
406 |
by (blast intro: equalityI)
|
|
407 |
|
|
408 |
lemma Un_commute: "A Un B = B Un A"
|
|
409 |
by (blast intro: equalityI)
|
|
410 |
|
|
411 |
lemma Un_assoc: "(A Un B) Un C = A Un (B Un C)"
|
|
412 |
by (blast intro: equalityI)
|
|
413 |
|
|
414 |
lemma Un_Int_distrib: "(A Int B) Un C = (A Un C) Int (B Un C)"
|
|
415 |
by (blast intro: equalityI)
|
|
416 |
|
|
417 |
lemma Un_Int_crazy:
|
|
418 |
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"
|
|
419 |
by (blast intro: equalityI)
|
|
420 |
|
|
421 |
lemma subset_Un_eq: "(A<=B) <-> (A Un B = B)"
|
|
422 |
by (blast intro: equalityI elim: equalityE)
|
|
423 |
|
|
424 |
|
|
425 |
subsection {* Simple properties of @{text "Compl"} -- complement of a set *}
|
|
426 |
|
|
427 |
lemma Compl_disjoint: "A Int Compl(A) = {x. False}"
|
|
428 |
by (blast intro: equalityI)
|
|
429 |
|
|
430 |
lemma Compl_partition: "A Un Compl(A) = {x. True}"
|
|
431 |
by (blast intro: equalityI)
|
|
432 |
|
|
433 |
lemma double_complement: "Compl(Compl(A)) = A"
|
|
434 |
by (blast intro: equalityI)
|
|
435 |
|
|
436 |
lemma Compl_Un: "Compl(A Un B) = Compl(A) Int Compl(B)"
|
|
437 |
by (blast intro: equalityI)
|
|
438 |
|
|
439 |
lemma Compl_Int: "Compl(A Int B) = Compl(A) Un Compl(B)"
|
|
440 |
by (blast intro: equalityI)
|
|
441 |
|
|
442 |
lemma Compl_UN: "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"
|
|
443 |
by (blast intro: equalityI)
|
|
444 |
|
|
445 |
lemma Compl_INT: "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"
|
|
446 |
by (blast intro: equalityI)
|
|
447 |
|
|
448 |
(*Halmos, Naive Set Theory, page 16.*)
|
|
449 |
lemma Un_Int_assoc_eq: "((A Int B) Un C = A Int (B Un C)) <-> (C<=A)"
|
|
450 |
by (blast intro: equalityI elim: equalityE)
|
|
451 |
|
|
452 |
|
|
453 |
subsection {* Big Union and Intersection *}
|
|
454 |
|
|
455 |
lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"
|
|
456 |
by (blast intro: equalityI)
|
|
457 |
|
|
458 |
lemma Union_disjoint:
|
|
459 |
"(Union(C) Int A = {x. False}) <-> (ALL B:C. B Int A = {x. False})"
|
|
460 |
by (blast intro: equalityI elim: equalityE)
|
|
461 |
|
|
462 |
lemma Inter_Un_distrib: "Inter(A Un B) = Inter(A) Int Inter(B)"
|
|
463 |
by (blast intro: equalityI)
|
|
464 |
|
|
465 |
|
|
466 |
subsection {* Unions and Intersections of Families *}
|
|
467 |
|
|
468 |
lemma UN_eq: "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"
|
|
469 |
by (blast intro: equalityI)
|
|
470 |
|
|
471 |
(*Look: it has an EXISTENTIAL quantifier*)
|
|
472 |
lemma INT_eq: "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"
|
|
473 |
by (blast intro: equalityI)
|
|
474 |
|
|
475 |
lemma Int_Union_image: "A Int Union(B) = (UN C:B. A Int C)"
|
|
476 |
by (blast intro: equalityI)
|
|
477 |
|
|
478 |
lemma Un_Inter_image: "A Un Inter(B) = (INT C:B. A Un C)"
|
|
479 |
by (blast intro: equalityI)
|
|
480 |
|
|
481 |
|
|
482 |
section {* Monotonicity of various operations *}
|
|
483 |
|
|
484 |
lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"
|
|
485 |
by blast
|
|
486 |
|
|
487 |
lemma Inter_anti_mono: "[| B<=A |] ==> Inter(A) <= Inter(B)"
|
|
488 |
by blast
|
|
489 |
|
|
490 |
lemma UN_mono:
|
|
491 |
"[| A<=B; !!x. x:A ==> f(x)<=g(x) |] ==>
|
|
492 |
(UN x:A. f(x)) <= (UN x:B. g(x))"
|
|
493 |
by blast
|
|
494 |
|
|
495 |
lemma INT_anti_mono:
|
|
496 |
"[| B<=A; !!x. x:A ==> f(x)<=g(x) |] ==>
|
|
497 |
(INT x:A. f(x)) <= (INT x:A. g(x))"
|
|
498 |
by blast
|
|
499 |
|
|
500 |
lemma Un_mono: "[| A<=C; B<=D |] ==> A Un B <= C Un D"
|
|
501 |
by blast
|
|
502 |
|
|
503 |
lemma Int_mono: "[| A<=C; B<=D |] ==> A Int B <= C Int D"
|
|
504 |
by blast
|
|
505 |
|
|
506 |
lemma Compl_anti_mono: "[| A<=B |] ==> Compl(B) <= Compl(A)"
|
|
507 |
by blast
|
0
|
508 |
|
|
509 |
end
|