17456

1 
(* Title: CCL/Set.thy

0

2 
ID: $Id$


3 
*)


4 

17456

5 
header {* Extending FOL by a modified version of HOL set theory *}


6 


7 
theory Set


8 
imports FOL


9 
begin

0

10 

3935

11 
global


12 

17456

13 
typedecl 'a set


14 
arities set :: ("term") "term"

0

15 


16 
consts


17 
Collect :: "['a => o] => 'a set" (*comprehension*)


18 
Compl :: "('a set) => 'a set" (*complement*)

24825

19 
Int :: "['a set, 'a set] => 'a set" (infixl "Int" 70)


20 
Un :: "['a set, 'a set] => 'a set" (infixl "Un" 65)

17456

21 
Union :: "(('a set)set) => 'a set" (*...of a set*)


22 
Inter :: "(('a set)set) => 'a set" (*...of a set*)


23 
UNION :: "['a set, 'a => 'b set] => 'b set" (*general*)


24 
INTER :: "['a set, 'a => 'b set] => 'b set" (*general*)


25 
Ball :: "['a set, 'a => o] => o" (*bounded quants*)


26 
Bex :: "['a set, 'a => o] => o" (*bounded quants*)

0

27 
mono :: "['a set => 'b set] => o" (*monotonicity*)

24825

28 
mem :: "['a, 'a set] => o" (infixl ":" 50) (*membership*)


29 
subset :: "['a set, 'a set] => o" (infixl "<=" 50)

0

30 
singleton :: "'a => 'a set" ("{_}")


31 
empty :: "'a set" ("{}")


32 

3935

33 
syntax

0

34 
"@Coll" :: "[idt, o] => 'a set" ("(1{_./ _})") (*collection*)


35 


36 
(* Big Intersection / Union *)


37 


38 
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(INT _:_./ _)" [0, 0, 0] 10)


39 
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(UN _:_./ _)" [0, 0, 0] 10)


40 


41 
(* Bounded Quantifiers *)


42 


43 
"@Ball" :: "[idt, 'a set, o] => o" ("(ALL _:_./ _)" [0, 0, 0] 10)


44 
"@Bex" :: "[idt, 'a set, o] => o" ("(EX _:_./ _)" [0, 0, 0] 10)


45 


46 
translations


47 
"{x. P}" == "Collect(%x. P)"


48 
"INT x:A. B" == "INTER(A, %x. B)"


49 
"UN x:A. B" == "UNION(A, %x. B)"


50 
"ALL x:A. P" == "Ball(A, %x. P)"


51 
"EX x:A. P" == "Bex(A, %x. P)"


52 

3935

53 
local

0

54 

17456

55 
axioms


56 
mem_Collect_iff: "(a : {x. P(x)}) <> P(a)"


57 
set_extension: "A=B <> (ALL x. x:A <> x:B)"

0

58 

17456

59 
defs


60 
Ball_def: "Ball(A, P) == ALL x. x:A > P(x)"


61 
Bex_def: "Bex(A, P) == EX x. x:A & P(x)"


62 
mono_def: "mono(f) == (ALL A B. A <= B > f(A) <= f(B))"


63 
subset_def: "A <= B == ALL x:A. x:B"


64 
singleton_def: "{a} == {x. x=a}"


65 
empty_def: "{} == {x. False}"


66 
Un_def: "A Un B == {x. x:A  x:B}"


67 
Int_def: "A Int B == {x. x:A & x:B}"


68 
Compl_def: "Compl(A) == {x. ~x:A}"


69 
INTER_def: "INTER(A, B) == {y. ALL x:A. y: B(x)}"


70 
UNION_def: "UNION(A, B) == {y. EX x:A. y: B(x)}"


71 
Inter_def: "Inter(S) == (INT x:S. x)"


72 
Union_def: "Union(S) == (UN x:S. x)"


73 

20140

74 


75 
lemma CollectI: "[ P(a) ] ==> a : {x. P(x)}"


76 
apply (rule mem_Collect_iff [THEN iffD2])


77 
apply assumption


78 
done


79 


80 
lemma CollectD: "[ a : {x. P(x)} ] ==> P(a)"


81 
apply (erule mem_Collect_iff [THEN iffD1])


82 
done


83 


84 
lemmas CollectE = CollectD [elim_format]


85 


86 
lemma set_ext: "[ !!x. x:A <> x:B ] ==> A = B"


87 
apply (rule set_extension [THEN iffD2])


88 
apply simp


89 
done


90 


91 


92 
subsection {* Bounded quantifiers *}


93 


94 
lemma ballI: "[ !!x. x:A ==> P(x) ] ==> ALL x:A. P(x)"


95 
by (simp add: Ball_def)


96 


97 
lemma bspec: "[ ALL x:A. P(x); x:A ] ==> P(x)"


98 
by (simp add: Ball_def)


99 


100 
lemma ballE: "[ ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q ] ==> Q"


101 
unfolding Ball_def by blast


102 


103 
lemma bexI: "[ P(x); x:A ] ==> EX x:A. P(x)"


104 
unfolding Bex_def by blast


105 


106 
lemma bexCI: "[ EX x:A. ~P(x) ==> P(a); a:A ] ==> EX x:A. P(x)"


107 
unfolding Bex_def by blast


108 


109 
lemma bexE: "[ EX x:A. P(x); !!x. [ x:A; P(x) ] ==> Q ] ==> Q"


110 
unfolding Bex_def by blast


111 


112 
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)


113 
lemma ball_rew: "(ALL x:A. True) <> True"


114 
by (blast intro: ballI)


115 


116 


117 
subsection {* Congruence rules *}


118 


119 
lemma ball_cong:


120 
"[ A=A'; !!x. x:A' ==> P(x) <> P'(x) ] ==>


121 
(ALL x:A. P(x)) <> (ALL x:A'. P'(x))"


122 
by (blast intro: ballI elim: ballE)


123 


124 
lemma bex_cong:


125 
"[ A=A'; !!x. x:A' ==> P(x) <> P'(x) ] ==>


126 
(EX x:A. P(x)) <> (EX x:A'. P'(x))"


127 
by (blast intro: bexI elim: bexE)


128 


129 


130 
subsection {* Rules for subsets *}


131 


132 
lemma subsetI: "(!!x. x:A ==> x:B) ==> A <= B"


133 
unfolding subset_def by (blast intro: ballI)


134 


135 
(*Rule in Modus Ponens style*)


136 
lemma subsetD: "[ A <= B; c:A ] ==> c:B"


137 
unfolding subset_def by (blast elim: ballE)


138 


139 
(*Classical elimination rule*)


140 
lemma subsetCE: "[ A <= B; ~(c:A) ==> P; c:B ==> P ] ==> P"


141 
by (blast dest: subsetD)


142 


143 
lemma subset_refl: "A <= A"


144 
by (blast intro: subsetI)


145 


146 
lemma subset_trans: "[ A<=B; B<=C ] ==> A<=C"


147 
by (blast intro: subsetI dest: subsetD)


148 


149 


150 
subsection {* Rules for equality *}


151 


152 
(*Antisymmetry of the subset relation*)


153 
lemma subset_antisym: "[ A <= B; B <= A ] ==> A = B"


154 
by (blast intro: set_ext dest: subsetD)


155 


156 
lemmas equalityI = subset_antisym


157 


158 
(* Equality rules from ZF set theory  are they appropriate here? *)


159 
lemma equalityD1: "A = B ==> A<=B"


160 
and equalityD2: "A = B ==> B<=A"


161 
by (simp_all add: subset_refl)


162 


163 
lemma equalityE: "[ A = B; [ A<=B; B<=A ] ==> P ] ==> P"


164 
by (simp add: subset_refl)


165 


166 
lemma equalityCE:


167 
"[ A = B; [ c:A; c:B ] ==> P; [ ~ c:A; ~ c:B ] ==> P ] ==> P"


168 
by (blast elim: equalityE subsetCE)


169 


170 
lemma trivial_set: "{x. x:A} = A"


171 
by (blast intro: equalityI subsetI CollectI dest: CollectD)


172 


173 


174 
subsection {* Rules for binary union *}


175 


176 
lemma UnI1: "c:A ==> c : A Un B"


177 
and UnI2: "c:B ==> c : A Un B"


178 
unfolding Un_def by (blast intro: CollectI)+


179 


180 
(*Classical introduction rule: no commitment to A vs B*)


181 
lemma UnCI: "(~c:B ==> c:A) ==> c : A Un B"


182 
by (blast intro: UnI1 UnI2)


183 


184 
lemma UnE: "[ c : A Un B; c:A ==> P; c:B ==> P ] ==> P"


185 
unfolding Un_def by (blast dest: CollectD)


186 


187 


188 
subsection {* Rules for small intersection *}


189 


190 
lemma IntI: "[ c:A; c:B ] ==> c : A Int B"


191 
unfolding Int_def by (blast intro: CollectI)


192 


193 
lemma IntD1: "c : A Int B ==> c:A"


194 
and IntD2: "c : A Int B ==> c:B"


195 
unfolding Int_def by (blast dest: CollectD)+


196 


197 
lemma IntE: "[ c : A Int B; [ c:A; c:B ] ==> P ] ==> P"


198 
by (blast dest: IntD1 IntD2)


199 


200 


201 
subsection {* Rules for set complement *}


202 


203 
lemma ComplI: "[ c:A ==> False ] ==> c : Compl(A)"


204 
unfolding Compl_def by (blast intro: CollectI)


205 


206 
(*This form, with negated conclusion, works well with the Classical prover.


207 
Negated assumptions behave like formulae on the right side of the notional


208 
turnstile...*)


209 
lemma ComplD: "[ c : Compl(A) ] ==> ~c:A"


210 
unfolding Compl_def by (blast dest: CollectD)


211 


212 
lemmas ComplE = ComplD [elim_format]


213 


214 


215 
subsection {* Empty sets *}


216 


217 
lemma empty_eq: "{x. False} = {}"


218 
by (simp add: empty_def)


219 


220 
lemma emptyD: "a : {} ==> P"


221 
unfolding empty_def by (blast dest: CollectD)


222 


223 
lemmas emptyE = emptyD [elim_format]


224 


225 
lemma not_emptyD:


226 
assumes "~ A={}"


227 
shows "EX x. x:A"


228 
proof 


229 
have "\<not> (EX x. x:A) \<Longrightarrow> A = {}"


230 
by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+


231 
with prems show ?thesis by blast


232 
qed


233 


234 


235 
subsection {* Singleton sets *}


236 


237 
lemma singletonI: "a : {a}"


238 
unfolding singleton_def by (blast intro: CollectI)


239 


240 
lemma singletonD: "b : {a} ==> b=a"


241 
unfolding singleton_def by (blast dest: CollectD)


242 


243 
lemmas singletonE = singletonD [elim_format]


244 


245 


246 
subsection {* Unions of families *}


247 


248 
(*The order of the premises presupposes that A is rigid; b may be flexible*)


249 
lemma UN_I: "[ a:A; b: B(a) ] ==> b: (UN x:A. B(x))"


250 
unfolding UNION_def by (blast intro: bexI CollectI)


251 


252 
lemma UN_E: "[ b : (UN x:A. B(x)); !!x.[ x:A; b: B(x) ] ==> R ] ==> R"


253 
unfolding UNION_def by (blast dest: CollectD elim: bexE)


254 


255 
lemma UN_cong:


256 
"[ A=B; !!x. x:B ==> C(x) = D(x) ] ==>


257 
(UN x:A. C(x)) = (UN x:B. D(x))"


258 
by (simp add: UNION_def cong: bex_cong)


259 


260 


261 
subsection {* Intersections of families *}


262 


263 
lemma INT_I: "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"


264 
unfolding INTER_def by (blast intro: CollectI ballI)


265 


266 
lemma INT_D: "[ b : (INT x:A. B(x)); a:A ] ==> b: B(a)"


267 
unfolding INTER_def by (blast dest: CollectD bspec)


268 


269 
(*"Classical" elimination rule  does not require proving X:C *)


270 
lemma INT_E: "[ b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R ] ==> R"


271 
unfolding INTER_def by (blast dest: CollectD bspec)


272 


273 
lemma INT_cong:


274 
"[ A=B; !!x. x:B ==> C(x) = D(x) ] ==>


275 
(INT x:A. C(x)) = (INT x:B. D(x))"


276 
by (simp add: INTER_def cong: ball_cong)


277 


278 


279 
subsection {* Rules for Unions *}


280 


281 
(*The order of the premises presupposes that C is rigid; A may be flexible*)


282 
lemma UnionI: "[ X:C; A:X ] ==> A : Union(C)"


283 
unfolding Union_def by (blast intro: UN_I)


284 


285 
lemma UnionE: "[ A : Union(C); !!X.[ A:X; X:C ] ==> R ] ==> R"


286 
unfolding Union_def by (blast elim: UN_E)


287 


288 


289 
subsection {* Rules for Inter *}


290 


291 
lemma InterI: "[ !!X. X:C ==> A:X ] ==> A : Inter(C)"


292 
unfolding Inter_def by (blast intro: INT_I)


293 


294 
(*A "destruct" rule  every X in C contains A as an element, but


295 
A:X can hold when X:C does not! This rule is analogous to "spec". *)


296 
lemma InterD: "[ A : Inter(C); X:C ] ==> A:X"


297 
unfolding Inter_def by (blast dest: INT_D)


298 


299 
(*"Classical" elimination rule  does not require proving X:C *)


300 
lemma InterE: "[ A : Inter(C); A:X ==> R; ~ X:C ==> R ] ==> R"


301 
unfolding Inter_def by (blast elim: INT_E)


302 


303 


304 
section {* Derived rules involving subsets; Union and Intersection as lattice operations *}


305 


306 
subsection {* Big Union  least upper bound of a set *}


307 


308 
lemma Union_upper: "B:A ==> B <= Union(A)"


309 
by (blast intro: subsetI UnionI)


310 


311 
lemma Union_least: "[ !!X. X:A ==> X<=C ] ==> Union(A) <= C"


312 
by (blast intro: subsetI dest: subsetD elim: UnionE)


313 


314 


315 
subsection {* Big Intersection  greatest lower bound of a set *}


316 


317 
lemma Inter_lower: "B:A ==> Inter(A) <= B"


318 
by (blast intro: subsetI dest: InterD)


319 


320 
lemma Inter_greatest: "[ !!X. X:A ==> C<=X ] ==> C <= Inter(A)"


321 
by (blast intro: subsetI InterI dest: subsetD)


322 


323 


324 
subsection {* Finite Union  the least upper bound of 2 sets *}


325 


326 
lemma Un_upper1: "A <= A Un B"


327 
by (blast intro: subsetI UnI1)


328 


329 
lemma Un_upper2: "B <= A Un B"


330 
by (blast intro: subsetI UnI2)


331 


332 
lemma Un_least: "[ A<=C; B<=C ] ==> A Un B <= C"


333 
by (blast intro: subsetI elim: UnE dest: subsetD)


334 


335 


336 
subsection {* Finite Intersection  the greatest lower bound of 2 sets *}


337 


338 
lemma Int_lower1: "A Int B <= A"


339 
by (blast intro: subsetI elim: IntE)


340 


341 
lemma Int_lower2: "A Int B <= B"


342 
by (blast intro: subsetI elim: IntE)


343 


344 
lemma Int_greatest: "[ C<=A; C<=B ] ==> C <= A Int B"


345 
by (blast intro: subsetI IntI dest: subsetD)


346 


347 


348 
subsection {* Monotonicity *}


349 


350 
lemma monoI: "[ !!A B. A <= B ==> f(A) <= f(B) ] ==> mono(f)"


351 
unfolding mono_def by blast


352 


353 
lemma monoD: "[ mono(f); A <= B ] ==> f(A) <= f(B)"


354 
unfolding mono_def by blast


355 


356 
lemma mono_Un: "mono(f) ==> f(A) Un f(B) <= f(A Un B)"


357 
by (blast intro: Un_least dest: monoD intro: Un_upper1 Un_upper2)


358 


359 
lemma mono_Int: "mono(f) ==> f(A Int B) <= f(A) Int f(B)"


360 
by (blast intro: Int_greatest dest: monoD intro: Int_lower1 Int_lower2)


361 


362 


363 
subsection {* Automated reasoning setup *}


364 


365 
lemmas [intro!] = ballI subsetI InterI INT_I CollectI ComplI IntI UnCI singletonI


366 
and [intro] = bexI UnionI UN_I


367 
and [elim!] = bexE UnionE UN_E CollectE ComplE IntE UnE emptyE singletonE


368 
and [elim] = ballE InterD InterE INT_D INT_E subsetD subsetCE


369 


370 
lemma mem_rews:


371 
"(a : A Un B) <> (a:A  a:B)"


372 
"(a : A Int B) <> (a:A & a:B)"


373 
"(a : Compl(B)) <> (~a:B)"


374 
"(a : {b}) <> (a=b)"


375 
"(a : {}) <> False"


376 
"(a : {x. P(x)}) <> P(a)"


377 
by blast+


378 


379 
lemmas [simp] = trivial_set empty_eq mem_rews


380 
and [cong] = ball_cong bex_cong INT_cong UN_cong


381 


382 


383 
section {* Equalities involving union, intersection, inclusion, etc. *}


384 


385 
subsection {* Binary Intersection *}


386 


387 
lemma Int_absorb: "A Int A = A"


388 
by (blast intro: equalityI)


389 


390 
lemma Int_commute: "A Int B = B Int A"


391 
by (blast intro: equalityI)


392 


393 
lemma Int_assoc: "(A Int B) Int C = A Int (B Int C)"


394 
by (blast intro: equalityI)


395 


396 
lemma Int_Un_distrib: "(A Un B) Int C = (A Int C) Un (B Int C)"


397 
by (blast intro: equalityI)


398 


399 
lemma subset_Int_eq: "(A<=B) <> (A Int B = A)"


400 
by (blast intro: equalityI elim: equalityE)


401 


402 


403 
subsection {* Binary Union *}


404 


405 
lemma Un_absorb: "A Un A = A"


406 
by (blast intro: equalityI)


407 


408 
lemma Un_commute: "A Un B = B Un A"


409 
by (blast intro: equalityI)


410 


411 
lemma Un_assoc: "(A Un B) Un C = A Un (B Un C)"


412 
by (blast intro: equalityI)


413 


414 
lemma Un_Int_distrib: "(A Int B) Un C = (A Un C) Int (B Un C)"


415 
by (blast intro: equalityI)


416 


417 
lemma Un_Int_crazy:


418 
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"


419 
by (blast intro: equalityI)


420 


421 
lemma subset_Un_eq: "(A<=B) <> (A Un B = B)"


422 
by (blast intro: equalityI elim: equalityE)


423 


424 


425 
subsection {* Simple properties of @{text "Compl"}  complement of a set *}


426 


427 
lemma Compl_disjoint: "A Int Compl(A) = {x. False}"


428 
by (blast intro: equalityI)


429 


430 
lemma Compl_partition: "A Un Compl(A) = {x. True}"


431 
by (blast intro: equalityI)


432 


433 
lemma double_complement: "Compl(Compl(A)) = A"


434 
by (blast intro: equalityI)


435 


436 
lemma Compl_Un: "Compl(A Un B) = Compl(A) Int Compl(B)"


437 
by (blast intro: equalityI)


438 


439 
lemma Compl_Int: "Compl(A Int B) = Compl(A) Un Compl(B)"


440 
by (blast intro: equalityI)


441 


442 
lemma Compl_UN: "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"


443 
by (blast intro: equalityI)


444 


445 
lemma Compl_INT: "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"


446 
by (blast intro: equalityI)


447 


448 
(*Halmos, Naive Set Theory, page 16.*)


449 
lemma Un_Int_assoc_eq: "((A Int B) Un C = A Int (B Un C)) <> (C<=A)"


450 
by (blast intro: equalityI elim: equalityE)


451 


452 


453 
subsection {* Big Union and Intersection *}


454 


455 
lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"


456 
by (blast intro: equalityI)


457 


458 
lemma Union_disjoint:


459 
"(Union(C) Int A = {x. False}) <> (ALL B:C. B Int A = {x. False})"


460 
by (blast intro: equalityI elim: equalityE)


461 


462 
lemma Inter_Un_distrib: "Inter(A Un B) = Inter(A) Int Inter(B)"


463 
by (blast intro: equalityI)


464 


465 


466 
subsection {* Unions and Intersections of Families *}


467 


468 
lemma UN_eq: "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"


469 
by (blast intro: equalityI)


470 


471 
(*Look: it has an EXISTENTIAL quantifier*)


472 
lemma INT_eq: "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"


473 
by (blast intro: equalityI)


474 


475 
lemma Int_Union_image: "A Int Union(B) = (UN C:B. A Int C)"


476 
by (blast intro: equalityI)


477 


478 
lemma Un_Inter_image: "A Un Inter(B) = (INT C:B. A Un C)"


479 
by (blast intro: equalityI)


480 


481 


482 
section {* Monotonicity of various operations *}


483 


484 
lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"


485 
by blast


486 


487 
lemma Inter_anti_mono: "[ B<=A ] ==> Inter(A) <= Inter(B)"


488 
by blast


489 


490 
lemma UN_mono:


491 
"[ A<=B; !!x. x:A ==> f(x)<=g(x) ] ==>


492 
(UN x:A. f(x)) <= (UN x:B. g(x))"


493 
by blast


494 


495 
lemma INT_anti_mono:


496 
"[ B<=A; !!x. x:A ==> f(x)<=g(x) ] ==>


497 
(INT x:A. f(x)) <= (INT x:A. g(x))"


498 
by blast


499 


500 
lemma Un_mono: "[ A<=C; B<=D ] ==> A Un B <= C Un D"


501 
by blast


502 


503 
lemma Int_mono: "[ A<=C; B<=D ] ==> A Int B <= C Int D"


504 
by blast


505 


506 
lemma Compl_anti_mono: "[ A<=B ] ==> Compl(B) <= Compl(A)"


507 
by blast

0

508 


509 
end
