27468
|
1 |
(* Title : HyperNat.thy
|
|
2 |
Author : Jacques D. Fleuriot
|
|
3 |
Copyright : 1998 University of Cambridge
|
|
4 |
|
|
5 |
Converted to Isar and polished by lcp
|
|
6 |
*)
|
|
7 |
|
|
8 |
header{*Hypernatural numbers*}
|
|
9 |
|
|
10 |
theory HyperNat
|
|
11 |
imports StarDef
|
|
12 |
begin
|
|
13 |
|
|
14 |
types hypnat = "nat star"
|
|
15 |
|
|
16 |
abbreviation
|
|
17 |
hypnat_of_nat :: "nat => nat star" where
|
|
18 |
"hypnat_of_nat == star_of"
|
|
19 |
|
|
20 |
definition
|
|
21 |
hSuc :: "hypnat => hypnat" where
|
28562
|
22 |
hSuc_def [transfer_unfold, code del]: "hSuc = *f* Suc"
|
27468
|
23 |
|
|
24 |
subsection{*Properties Transferred from Naturals*}
|
|
25 |
|
|
26 |
lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
|
|
27 |
by transfer (rule Suc_not_Zero)
|
|
28 |
|
|
29 |
lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
|
|
30 |
by transfer (rule Zero_not_Suc)
|
|
31 |
|
|
32 |
lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)"
|
|
33 |
by transfer (rule nat.inject)
|
|
34 |
|
|
35 |
lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
|
|
36 |
by transfer (rule zero_less_Suc)
|
|
37 |
|
|
38 |
lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)"
|
|
39 |
by transfer (rule diff_self_eq_0)
|
|
40 |
|
|
41 |
lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0"
|
|
42 |
by transfer (rule diff_0_eq_0)
|
|
43 |
|
|
44 |
lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)"
|
|
45 |
by transfer (rule add_is_0)
|
|
46 |
|
|
47 |
lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)"
|
|
48 |
by transfer (rule diff_diff_left)
|
|
49 |
|
|
50 |
lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j"
|
|
51 |
by transfer (rule diff_commute)
|
|
52 |
|
|
53 |
lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m"
|
|
54 |
by transfer (rule diff_add_inverse)
|
|
55 |
|
|
56 |
lemma hypnat_diff_add_inverse2 [simp]: "!!m n. ((m::hypnat) + n) - n = m"
|
|
57 |
by transfer (rule diff_add_inverse2)
|
|
58 |
|
|
59 |
lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n"
|
|
60 |
by transfer (rule diff_cancel)
|
|
61 |
|
|
62 |
lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n"
|
|
63 |
by transfer (rule diff_cancel2)
|
|
64 |
|
|
65 |
lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)"
|
|
66 |
by transfer (rule diff_add_0)
|
|
67 |
|
|
68 |
lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)"
|
|
69 |
by transfer (rule diff_mult_distrib)
|
|
70 |
|
|
71 |
lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)"
|
|
72 |
by transfer (rule diff_mult_distrib2)
|
|
73 |
|
|
74 |
lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)"
|
|
75 |
by transfer (rule le_0_eq)
|
|
76 |
|
|
77 |
lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)"
|
|
78 |
by transfer (rule mult_is_0)
|
|
79 |
|
|
80 |
lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)"
|
|
81 |
by transfer (rule diff_is_0_eq)
|
|
82 |
|
|
83 |
lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)"
|
|
84 |
by transfer (rule not_less0)
|
|
85 |
|
|
86 |
lemma hypnat_less_one [iff]:
|
|
87 |
"!!n. (n < (1::hypnat)) = (n=0)"
|
|
88 |
by transfer (rule less_one)
|
|
89 |
|
|
90 |
lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)"
|
|
91 |
by transfer (rule add_diff_inverse)
|
|
92 |
|
|
93 |
lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)"
|
|
94 |
by transfer (rule le_add_diff_inverse)
|
|
95 |
|
|
96 |
lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)"
|
|
97 |
by transfer (rule le_add_diff_inverse2)
|
|
98 |
|
|
99 |
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
|
|
100 |
|
|
101 |
lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n"
|
|
102 |
by transfer (rule le0)
|
|
103 |
|
|
104 |
lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n"
|
|
105 |
by transfer (rule le_add1)
|
|
106 |
|
|
107 |
lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x"
|
|
108 |
by transfer (rule le_add2)
|
|
109 |
|
|
110 |
lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
|
|
111 |
by (insert add_strict_left_mono [OF zero_less_one], auto)
|
|
112 |
|
|
113 |
lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))"
|
|
114 |
by transfer (rule neq0_conv)
|
|
115 |
|
|
116 |
lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
|
|
117 |
by (auto simp add: linorder_not_less [symmetric])
|
|
118 |
|
|
119 |
lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
|
|
120 |
apply safe
|
|
121 |
apply (rule_tac x = "n - (1::hypnat) " in exI)
|
|
122 |
apply (simp add: hypnat_gt_zero_iff)
|
|
123 |
apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto)
|
|
124 |
done
|
|
125 |
|
|
126 |
lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
|
|
127 |
by (simp add: linorder_not_le [symmetric] add_commute [of x])
|
|
128 |
|
|
129 |
lemma hypnat_diff_split:
|
|
130 |
"P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
|
|
131 |
-- {* elimination of @{text -} on @{text hypnat} *}
|
|
132 |
proof (cases "a<b" rule: case_split)
|
|
133 |
case True
|
|
134 |
thus ?thesis
|
|
135 |
by (auto simp add: hypnat_add_self_not_less order_less_imp_le
|
|
136 |
hypnat_diff_is_0_eq [THEN iffD2])
|
|
137 |
next
|
|
138 |
case False
|
|
139 |
thus ?thesis
|
|
140 |
by (auto simp add: linorder_not_less dest: order_le_less_trans)
|
|
141 |
qed
|
|
142 |
|
|
143 |
subsection{*Properties of the set of embedded natural numbers*}
|
|
144 |
|
|
145 |
lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
|
|
146 |
proof
|
|
147 |
fix n :: nat
|
|
148 |
show "of_nat n = star_of n" by transfer simp
|
|
149 |
qed
|
|
150 |
|
|
151 |
lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
|
|
152 |
by (auto simp add: Nats_def Standard_def)
|
|
153 |
|
|
154 |
lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
|
|
155 |
by (simp add: Nats_eq_Standard)
|
|
156 |
|
|
157 |
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
|
|
158 |
by transfer simp
|
|
159 |
|
|
160 |
lemma hypnat_of_nat_Suc [simp]:
|
|
161 |
"hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
|
|
162 |
by transfer simp
|
|
163 |
|
|
164 |
lemma of_nat_eq_add [rule_format]:
|
|
165 |
"\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
|
|
166 |
apply (induct n)
|
|
167 |
apply (auto simp add: add_assoc)
|
|
168 |
apply (case_tac x)
|
|
169 |
apply (auto simp add: add_commute [of 1])
|
|
170 |
done
|
|
171 |
|
|
172 |
lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
|
|
173 |
by (simp add: Nats_eq_Standard)
|
|
174 |
|
|
175 |
|
|
176 |
subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
|
|
177 |
|
|
178 |
definition
|
|
179 |
(* the set of infinite hypernatural numbers *)
|
|
180 |
HNatInfinite :: "hypnat set" where
|
|
181 |
"HNatInfinite = {n. n \<notin> Nats}"
|
|
182 |
|
|
183 |
lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
|
|
184 |
by (simp add: HNatInfinite_def)
|
|
185 |
|
|
186 |
lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
|
|
187 |
by (simp add: HNatInfinite_def)
|
|
188 |
|
|
189 |
lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
|
|
190 |
by (auto simp add: HNatInfinite_def Nats_eq_Standard)
|
|
191 |
|
|
192 |
lemma star_of_Suc_lessI:
|
|
193 |
"\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N"
|
|
194 |
by transfer (rule Suc_lessI)
|
|
195 |
|
|
196 |
lemma star_of_less_HNatInfinite:
|
|
197 |
assumes N: "N \<in> HNatInfinite"
|
|
198 |
shows "star_of n < N"
|
|
199 |
proof (induct n)
|
|
200 |
case 0
|
|
201 |
from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite)
|
|
202 |
thus "star_of 0 < N" by simp
|
|
203 |
next
|
|
204 |
case (Suc n)
|
|
205 |
from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite)
|
|
206 |
with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI)
|
|
207 |
qed
|
|
208 |
|
|
209 |
lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
|
|
210 |
by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
|
|
211 |
|
|
212 |
subsubsection {* Closure Rules *}
|
|
213 |
|
|
214 |
lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y"
|
|
215 |
by (auto simp add: Nats_def star_of_less_HNatInfinite)
|
|
216 |
|
|
217 |
lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y"
|
|
218 |
by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
|
|
219 |
|
|
220 |
lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
|
|
221 |
by (simp add: Nats_less_HNatInfinite)
|
|
222 |
|
|
223 |
lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
|
|
224 |
by (simp add: Nats_less_HNatInfinite)
|
|
225 |
|
|
226 |
lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
|
|
227 |
by (simp add: Nats_le_HNatInfinite)
|
|
228 |
|
|
229 |
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
|
|
230 |
by (simp add: HNatInfinite_def)
|
|
231 |
|
|
232 |
lemma Nats_downward_closed:
|
|
233 |
"\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats"
|
|
234 |
apply (simp only: linorder_not_less [symmetric])
|
|
235 |
apply (erule contrapos_np)
|
|
236 |
apply (drule HNatInfinite_not_Nats_iff [THEN iffD2])
|
|
237 |
apply (erule (1) Nats_less_HNatInfinite)
|
|
238 |
done
|
|
239 |
|
|
240 |
lemma HNatInfinite_upward_closed:
|
|
241 |
"\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite"
|
|
242 |
apply (simp only: HNatInfinite_not_Nats_iff)
|
|
243 |
apply (erule contrapos_nn)
|
|
244 |
apply (erule (1) Nats_downward_closed)
|
|
245 |
done
|
|
246 |
|
|
247 |
lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
|
|
248 |
apply (erule HNatInfinite_upward_closed)
|
|
249 |
apply (rule hypnat_le_add1)
|
|
250 |
done
|
|
251 |
|
|
252 |
lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite"
|
|
253 |
by (rule HNatInfinite_add)
|
|
254 |
|
|
255 |
lemma HNatInfinite_diff:
|
|
256 |
"\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
|
|
257 |
apply (frule (1) Nats_le_HNatInfinite)
|
|
258 |
apply (simp only: HNatInfinite_not_Nats_iff)
|
|
259 |
apply (erule contrapos_nn)
|
|
260 |
apply (drule (1) Nats_add, simp)
|
|
261 |
done
|
|
262 |
|
|
263 |
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
|
|
264 |
apply (rule_tac x = "x - (1::hypnat) " in exI)
|
|
265 |
apply (simp add: Nats_le_HNatInfinite)
|
|
266 |
done
|
|
267 |
|
|
268 |
|
|
269 |
subsection{*Existence of an infinite hypernatural number*}
|
|
270 |
|
|
271 |
definition
|
|
272 |
(* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
|
|
273 |
whn :: hypnat where
|
|
274 |
hypnat_omega_def: "whn = star_n (%n::nat. n)"
|
|
275 |
|
|
276 |
lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
|
|
277 |
by (simp add: hypnat_omega_def star_of_def star_n_eq_iff)
|
|
278 |
|
|
279 |
lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
|
|
280 |
by (simp add: hypnat_omega_def star_of_def star_n_eq_iff)
|
|
281 |
|
|
282 |
lemma whn_not_Nats [simp]: "whn \<notin> Nats"
|
|
283 |
by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
|
|
284 |
|
|
285 |
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
|
|
286 |
by (simp add: HNatInfinite_def)
|
|
287 |
|
|
288 |
lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
|
29920
|
289 |
apply (insert finite_atMost [of m])
|
27468
|
290 |
apply (drule FreeUltrafilterNat.finite)
|
|
291 |
apply (drule FreeUltrafilterNat.not_memD)
|
29920
|
292 |
apply (simp add: Collect_neg_eq [symmetric] linorder_not_le atMost_def)
|
27468
|
293 |
done
|
|
294 |
|
|
295 |
lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
|
|
296 |
by (simp add: Collect_neg_eq [symmetric] linorder_not_le)
|
|
297 |
|
|
298 |
lemma hypnat_of_nat_eq:
|
|
299 |
"hypnat_of_nat m = star_n (%n::nat. m)"
|
|
300 |
by (simp add: star_of_def)
|
|
301 |
|
|
302 |
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
|
|
303 |
by (simp add: Nats_def image_def)
|
|
304 |
|
|
305 |
lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
|
|
306 |
by (simp add: Nats_less_HNatInfinite)
|
|
307 |
|
|
308 |
lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
|
|
309 |
by (simp add: Nats_le_HNatInfinite)
|
|
310 |
|
|
311 |
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
|
|
312 |
by (simp add: Nats_less_whn)
|
|
313 |
|
|
314 |
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
|
|
315 |
by (simp add: Nats_le_whn)
|
|
316 |
|
|
317 |
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
|
|
318 |
by (simp add: Nats_less_whn)
|
|
319 |
|
|
320 |
lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
|
|
321 |
by (simp add: Nats_less_whn)
|
|
322 |
|
|
323 |
|
|
324 |
subsubsection{*Alternative characterization of the set of infinite hypernaturals*}
|
|
325 |
|
|
326 |
text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
|
|
327 |
|
|
328 |
(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
|
|
329 |
lemma HNatInfinite_FreeUltrafilterNat_lemma:
|
|
330 |
assumes "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat"
|
|
331 |
shows "{n. N < f n} \<in> FreeUltrafilterNat"
|
|
332 |
apply (induct N)
|
|
333 |
using assms
|
|
334 |
apply (drule_tac x = 0 in spec, simp)
|
|
335 |
using assms
|
|
336 |
apply (drule_tac x = "Suc N" in spec)
|
|
337 |
apply (elim ultra, auto)
|
|
338 |
done
|
|
339 |
|
|
340 |
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
|
|
341 |
apply (safe intro!: Nats_less_HNatInfinite)
|
|
342 |
apply (auto simp add: HNatInfinite_def)
|
|
343 |
done
|
|
344 |
|
|
345 |
|
|
346 |
subsubsection{*Alternative Characterization of @{term HNatInfinite} using
|
|
347 |
Free Ultrafilter*}
|
|
348 |
|
|
349 |
lemma HNatInfinite_FreeUltrafilterNat:
|
|
350 |
"star_n X \<in> HNatInfinite ==> \<forall>u. {n. u < X n}: FreeUltrafilterNat"
|
|
351 |
apply (auto simp add: HNatInfinite_iff SHNat_eq)
|
|
352 |
apply (drule_tac x="star_of u" in spec, simp)
|
|
353 |
apply (simp add: star_of_def star_less_def starP2_star_n)
|
|
354 |
done
|
|
355 |
|
|
356 |
lemma FreeUltrafilterNat_HNatInfinite:
|
|
357 |
"\<forall>u. {n. u < X n}: FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
|
|
358 |
by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
|
|
359 |
|
|
360 |
lemma HNatInfinite_FreeUltrafilterNat_iff:
|
|
361 |
"(star_n X \<in> HNatInfinite) = (\<forall>u. {n. u < X n}: FreeUltrafilterNat)"
|
|
362 |
by (rule iffI [OF HNatInfinite_FreeUltrafilterNat
|
|
363 |
FreeUltrafilterNat_HNatInfinite])
|
|
364 |
|
|
365 |
subsection {* Embedding of the Hypernaturals into other types *}
|
|
366 |
|
|
367 |
definition
|
|
368 |
of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where
|
28562
|
369 |
of_hypnat_def [transfer_unfold, code del]: "of_hypnat = *f* of_nat"
|
27468
|
370 |
|
|
371 |
lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
|
|
372 |
by transfer (rule of_nat_0)
|
|
373 |
|
|
374 |
lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
|
|
375 |
by transfer (rule of_nat_1)
|
|
376 |
|
|
377 |
lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
|
|
378 |
by transfer (rule of_nat_Suc)
|
|
379 |
|
|
380 |
lemma of_hypnat_add [simp]:
|
|
381 |
"\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
|
|
382 |
by transfer (rule of_nat_add)
|
|
383 |
|
|
384 |
lemma of_hypnat_mult [simp]:
|
|
385 |
"\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
|
|
386 |
by transfer (rule of_nat_mult)
|
|
387 |
|
|
388 |
lemma of_hypnat_less_iff [simp]:
|
|
389 |
"\<And>m n. (of_hypnat m < (of_hypnat n::'a::ordered_semidom star)) = (m < n)"
|
|
390 |
by transfer (rule of_nat_less_iff)
|
|
391 |
|
|
392 |
lemma of_hypnat_0_less_iff [simp]:
|
|
393 |
"\<And>n. (0 < (of_hypnat n::'a::ordered_semidom star)) = (0 < n)"
|
|
394 |
by transfer (rule of_nat_0_less_iff)
|
|
395 |
|
|
396 |
lemma of_hypnat_less_0_iff [simp]:
|
|
397 |
"\<And>m. \<not> (of_hypnat m::'a::ordered_semidom star) < 0"
|
|
398 |
by transfer (rule of_nat_less_0_iff)
|
|
399 |
|
|
400 |
lemma of_hypnat_le_iff [simp]:
|
|
401 |
"\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::ordered_semidom star)) = (m \<le> n)"
|
|
402 |
by transfer (rule of_nat_le_iff)
|
|
403 |
|
|
404 |
lemma of_hypnat_0_le_iff [simp]:
|
|
405 |
"\<And>n. 0 \<le> (of_hypnat n::'a::ordered_semidom star)"
|
|
406 |
by transfer (rule of_nat_0_le_iff)
|
|
407 |
|
|
408 |
lemma of_hypnat_le_0_iff [simp]:
|
|
409 |
"\<And>m. ((of_hypnat m::'a::ordered_semidom star) \<le> 0) = (m = 0)"
|
|
410 |
by transfer (rule of_nat_le_0_iff)
|
|
411 |
|
|
412 |
lemma of_hypnat_eq_iff [simp]:
|
|
413 |
"\<And>m n. (of_hypnat m = (of_hypnat n::'a::ordered_semidom star)) = (m = n)"
|
|
414 |
by transfer (rule of_nat_eq_iff)
|
|
415 |
|
|
416 |
lemma of_hypnat_eq_0_iff [simp]:
|
|
417 |
"\<And>m. ((of_hypnat m::'a::ordered_semidom star) = 0) = (m = 0)"
|
|
418 |
by transfer (rule of_nat_eq_0_iff)
|
|
419 |
|
|
420 |
lemma HNatInfinite_of_hypnat_gt_zero:
|
|
421 |
"N \<in> HNatInfinite \<Longrightarrow> (0::'a::ordered_semidom star) < of_hypnat N"
|
|
422 |
by (rule ccontr, simp add: linorder_not_less)
|
|
423 |
|
|
424 |
end
|