13403
|
1 |
(* Title: HOL/Extraction.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Stefan Berghofer, TU Muenchen
|
|
4 |
License: GPL (GNU GENERAL PUBLIC LICENSE)
|
|
5 |
*)
|
|
6 |
|
|
7 |
header {* Program extraction for HOL *}
|
|
8 |
|
|
9 |
theory Extraction = Datatype
|
|
10 |
files
|
|
11 |
"Tools/rewrite_hol_proof.ML":
|
|
12 |
|
|
13 |
subsection {* Setup *}
|
|
14 |
|
|
15 |
ML_setup {*
|
|
16 |
Context.>> (fn thy => thy |>
|
|
17 |
Extraction.set_preprocessor (fn sg =>
|
|
18 |
Proofterm.rewrite_proof_notypes
|
|
19 |
([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
|
|
20 |
ProofRewriteRules.rprocs true) o
|
|
21 |
Proofterm.rewrite_proof (Sign.tsig_of sg)
|
|
22 |
(RewriteHOLProof.rews, ProofRewriteRules.rprocs true)))
|
|
23 |
*}
|
|
24 |
|
|
25 |
lemmas [extraction_expand] =
|
|
26 |
nat.exhaust atomize_eq atomize_all atomize_imp
|
|
27 |
allE rev_mp conjE Eq_TrueI Eq_FalseI eqTrueI eqTrueE eq_cong2
|
|
28 |
notE' impE' impE iffE imp_cong simp_thms
|
|
29 |
induct_forall_eq induct_implies_eq induct_equal_eq
|
|
30 |
induct_forall_def induct_implies_def
|
|
31 |
induct_atomize induct_rulify1 induct_rulify2
|
|
32 |
|
|
33 |
datatype sumbool = Left | Right
|
|
34 |
|
|
35 |
subsection {* Type of extracted program *}
|
|
36 |
|
|
37 |
extract_type
|
|
38 |
"typeof (Trueprop P) \<equiv> typeof P"
|
|
39 |
|
|
40 |
"typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
|
|
41 |
typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('Q))"
|
|
42 |
|
|
43 |
"typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE(Null))"
|
|
44 |
|
|
45 |
"typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
|
|
46 |
typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('P \<Rightarrow> 'Q))"
|
|
47 |
|
|
48 |
"(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
|
|
49 |
typeof (\<forall>x. P x) \<equiv> Type (TYPE(Null))"
|
|
50 |
|
|
51 |
"(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
|
|
52 |
typeof (\<forall>x::'a. P x) \<equiv> Type (TYPE('a \<Rightarrow> 'P))"
|
|
53 |
|
|
54 |
"(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
|
|
55 |
typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a))"
|
|
56 |
|
|
57 |
"(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
|
|
58 |
typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a \<times> 'P))"
|
|
59 |
|
|
60 |
"typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
|
|
61 |
typeof (P \<or> Q) \<equiv> Type (TYPE(sumbool))"
|
|
62 |
|
|
63 |
"typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
|
|
64 |
typeof (P \<or> Q) \<equiv> Type (TYPE('Q option))"
|
|
65 |
|
|
66 |
"typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
|
|
67 |
typeof (P \<or> Q) \<equiv> Type (TYPE('P option))"
|
|
68 |
|
|
69 |
"typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
|
|
70 |
typeof (P \<or> Q) \<equiv> Type (TYPE('P + 'Q))"
|
|
71 |
|
|
72 |
"typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
|
|
73 |
typeof (P \<and> Q) \<equiv> Type (TYPE('Q))"
|
|
74 |
|
|
75 |
"typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
|
|
76 |
typeof (P \<and> Q) \<equiv> Type (TYPE('P))"
|
|
77 |
|
|
78 |
"typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
|
|
79 |
typeof (P \<and> Q) \<equiv> Type (TYPE('P \<times> 'Q))"
|
|
80 |
|
|
81 |
"typeof (P = Q) \<equiv> typeof ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P))"
|
|
82 |
|
|
83 |
"typeof (x \<in> P) \<equiv> typeof P"
|
|
84 |
|
|
85 |
subsection {* Realizability *}
|
|
86 |
|
|
87 |
realizability
|
|
88 |
"(realizes t (Trueprop P)) \<equiv> (Trueprop (realizes t P))"
|
|
89 |
|
|
90 |
"(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
91 |
(realizes t (P \<longrightarrow> Q)) \<equiv> (realizes Null P \<longrightarrow> realizes t Q)"
|
|
92 |
|
|
93 |
"(typeof P) \<equiv> (Type (TYPE('P))) \<Longrightarrow>
|
|
94 |
(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
95 |
(realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x::'P. realizes x P \<longrightarrow> realizes Null Q)"
|
|
96 |
|
|
97 |
"(realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x. realizes x P \<longrightarrow> realizes (t x) Q)"
|
|
98 |
|
|
99 |
"(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
|
|
100 |
(realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes Null (P x))"
|
|
101 |
|
|
102 |
"(realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes (t x) (P x))"
|
|
103 |
|
|
104 |
"(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
|
|
105 |
(realizes t (\<exists>x. P x)) \<equiv> (realizes Null (P t))"
|
|
106 |
|
|
107 |
"(realizes t (\<exists>x. P x)) \<equiv> (realizes (snd t) (P (fst t)))"
|
|
108 |
|
|
109 |
"(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
110 |
(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
111 |
(realizes t (P \<or> Q)) \<equiv>
|
|
112 |
(case t of Left \<Rightarrow> realizes Null P | Right \<Rightarrow> realizes Null Q)"
|
|
113 |
|
|
114 |
"(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
115 |
(realizes t (P \<or> Q)) \<equiv>
|
|
116 |
(case t of None \<Rightarrow> realizes Null P | Some q \<Rightarrow> realizes q Q)"
|
|
117 |
|
|
118 |
"(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
119 |
(realizes t (P \<or> Q)) \<equiv>
|
|
120 |
(case t of None \<Rightarrow> realizes Null Q | Some p \<Rightarrow> realizes p P)"
|
|
121 |
|
|
122 |
"(realizes t (P \<or> Q)) \<equiv>
|
|
123 |
(case t of Inl p \<Rightarrow> realizes p P | Inr q \<Rightarrow> realizes q Q)"
|
|
124 |
|
|
125 |
"(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
126 |
(realizes t (P \<and> Q)) \<equiv> (realizes Null P \<and> realizes t Q)"
|
|
127 |
|
|
128 |
"(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
|
|
129 |
(realizes t (P \<and> Q)) \<equiv> (realizes t P \<and> realizes Null Q)"
|
|
130 |
|
|
131 |
"(realizes t (P \<and> Q)) \<equiv> (realizes (fst t) P \<and> realizes (snd t) Q)"
|
|
132 |
|
|
133 |
"typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow>
|
|
134 |
realizes t (\<not> P) \<equiv> \<not> realizes Null P"
|
|
135 |
|
|
136 |
"typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow>
|
|
137 |
realizes t (\<not> P) \<equiv> (\<forall>x::'P. \<not> realizes x P)"
|
|
138 |
|
|
139 |
"typeof (P::bool) \<equiv> Type (TYPE(Null)) \<Longrightarrow>
|
|
140 |
typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
|
|
141 |
realizes t (P = Q) \<equiv> realizes Null P = realizes Null Q"
|
|
142 |
|
|
143 |
"(realizes t (P = Q)) \<equiv> (realizes t ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)))"
|
|
144 |
|
|
145 |
subsection {* Computational content of basic inference rules *}
|
|
146 |
|
|
147 |
theorem disjE_realizer:
|
|
148 |
assumes r: "case x of Inl p \<Rightarrow> P p | Inr q \<Rightarrow> Q q"
|
|
149 |
and r1: "\<And>p. P p \<Longrightarrow> R (f p)" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
|
|
150 |
shows "R (case x of Inl p \<Rightarrow> f p | Inr q \<Rightarrow> g q)"
|
|
151 |
proof (cases x)
|
|
152 |
case Inl
|
|
153 |
with r show ?thesis by simp (rule r1)
|
|
154 |
next
|
|
155 |
case Inr
|
|
156 |
with r show ?thesis by simp (rule r2)
|
|
157 |
qed
|
|
158 |
|
|
159 |
theorem disjE_realizer2:
|
|
160 |
assumes r: "case x of None \<Rightarrow> P | Some q \<Rightarrow> Q q"
|
|
161 |
and r1: "P \<Longrightarrow> R f" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
|
|
162 |
shows "R (case x of None \<Rightarrow> f | Some q \<Rightarrow> g q)"
|
|
163 |
proof (cases x)
|
|
164 |
case None
|
|
165 |
with r show ?thesis by simp (rule r1)
|
|
166 |
next
|
|
167 |
case Some
|
|
168 |
with r show ?thesis by simp (rule r2)
|
|
169 |
qed
|
|
170 |
|
|
171 |
theorem disjE_realizer3:
|
|
172 |
assumes r: "case x of Left \<Rightarrow> P | Right \<Rightarrow> Q"
|
|
173 |
and r1: "P \<Longrightarrow> R f" and r2: "Q \<Longrightarrow> R g"
|
|
174 |
shows "R (case x of Left \<Rightarrow> f | Right \<Rightarrow> g)"
|
|
175 |
proof (cases x)
|
|
176 |
case Left
|
|
177 |
with r show ?thesis by simp (rule r1)
|
|
178 |
next
|
|
179 |
case Right
|
|
180 |
with r show ?thesis by simp (rule r2)
|
|
181 |
qed
|
|
182 |
|
|
183 |
theorem conjI_realizer:
|
|
184 |
"P p \<Longrightarrow> Q q \<Longrightarrow> P (fst (p, q)) \<and> Q (snd (p, q))"
|
|
185 |
by simp
|
|
186 |
|
|
187 |
theorem exI_realizer:
|
|
188 |
"P x y \<Longrightarrow> P (fst (x, y)) (snd (x, y))" by simp
|
|
189 |
|
|
190 |
realizers
|
|
191 |
impI (P, Q): "\<lambda>P Q pq. pq"
|
|
192 |
"\<Lambda>P Q pq (h: _). allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
|
|
193 |
|
|
194 |
impI (P): "Null"
|
|
195 |
"\<Lambda>P Q (h: _). allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
|
|
196 |
|
|
197 |
impI (Q): "\<lambda>P Q q. q" "\<Lambda>P Q q. impI \<cdot> _ \<cdot> _"
|
|
198 |
|
|
199 |
impI: "Null" "\<Lambda>P Q. impI \<cdot> _ \<cdot> _"
|
|
200 |
|
|
201 |
mp (P, Q): "\<lambda>P Q pq. pq"
|
|
202 |
"\<Lambda>P Q pq (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
|
|
203 |
|
|
204 |
mp (P): "Null"
|
|
205 |
"\<Lambda>P Q (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
|
|
206 |
|
|
207 |
mp (Q): "\<lambda>P Q q. q" "\<Lambda>P Q q. mp \<cdot> _ \<cdot> _"
|
|
208 |
|
|
209 |
mp: "Null" "\<Lambda>P Q. mp \<cdot> _ \<cdot> _"
|
|
210 |
|
|
211 |
allI (P): "\<lambda>P p. p" "\<Lambda>P p. allI \<cdot> _"
|
|
212 |
|
|
213 |
allI: "Null" "\<Lambda>P. allI \<cdot> _"
|
|
214 |
|
|
215 |
spec (P): "\<lambda>P x p. p x" "\<Lambda>P x p. spec \<cdot> _ \<cdot> x"
|
|
216 |
|
|
217 |
spec: "Null" "\<Lambda>P x. spec \<cdot> _ \<cdot> x"
|
|
218 |
|
|
219 |
exI (P): "\<lambda>P x p. (x, p)" "\<Lambda>P. exI_realizer \<cdot> _"
|
|
220 |
|
|
221 |
exI: "\<lambda>P x. x" "\<Lambda>P x (h: _). h"
|
|
222 |
|
|
223 |
exE (P, Q): "\<lambda>P Q p pq. pq (fst p) (snd p)"
|
|
224 |
"\<Lambda>P Q p (h1: _) pq (h2: _). h2 \<cdot> (fst p) \<cdot> (snd p) \<bullet> h1"
|
|
225 |
|
|
226 |
exE (P): "Null"
|
|
227 |
"\<Lambda>P Q p (h1: _) (h2: _). h2 \<cdot> (fst p) \<cdot> (snd p) \<bullet> h1"
|
|
228 |
|
|
229 |
exE (Q): "\<lambda>P Q x pq. pq x"
|
|
230 |
"\<Lambda>P Q x (h1: _) pq (h2: _). h2 \<cdot> x \<bullet> h1"
|
|
231 |
|
|
232 |
exE: "Null"
|
|
233 |
"\<Lambda>P Q x (h1: _) (h2: _). h2 \<cdot> x \<bullet> h1"
|
|
234 |
|
|
235 |
conjI (P, Q): "\<lambda>P Q p q. (p, q)"
|
|
236 |
"\<Lambda>P Q p (h: _) q. conjI_realizer \<cdot>
|
|
237 |
(\<lambda>p. realizes p P) \<cdot> p \<cdot> (\<lambda>q. realizes q Q) \<cdot> q \<bullet> h"
|
|
238 |
|
|
239 |
conjI (P): "\<lambda>P Q p. p"
|
|
240 |
"\<Lambda>P Q p. conjI \<cdot> _ \<cdot> _"
|
|
241 |
|
|
242 |
conjI (Q): "\<lambda>P Q q. q"
|
|
243 |
"\<Lambda>P Q (h: _) q. conjI \<cdot> _ \<cdot> _ \<bullet> h"
|
|
244 |
|
|
245 |
conjI: "Null"
|
|
246 |
"\<Lambda>P Q. conjI \<cdot> _ \<cdot> _"
|
|
247 |
|
|
248 |
conjunct1 (P, Q): "\<lambda>P Q. fst"
|
|
249 |
"\<Lambda>P Q pq. conjunct1 \<cdot> _ \<cdot> _"
|
|
250 |
|
|
251 |
conjunct1 (P): "\<lambda>P Q p. p"
|
|
252 |
"\<Lambda>P Q p. conjunct1 \<cdot> _ \<cdot> _"
|
|
253 |
|
|
254 |
conjunct1 (Q): "Null"
|
|
255 |
"\<Lambda>P Q q. conjunct1 \<cdot> _ \<cdot> _"
|
|
256 |
|
|
257 |
conjunct1: "Null"
|
|
258 |
"\<Lambda>P Q. conjunct1 \<cdot> _ \<cdot> _"
|
|
259 |
|
|
260 |
conjunct2 (P, Q): "\<lambda>P Q. snd"
|
|
261 |
"\<Lambda>P Q pq. conjunct2 \<cdot> _ \<cdot> _"
|
|
262 |
|
|
263 |
conjunct2 (P): "Null"
|
|
264 |
"\<Lambda>P Q p. conjunct2 \<cdot> _ \<cdot> _"
|
|
265 |
|
|
266 |
conjunct2 (Q): "\<lambda>P Q p. p"
|
|
267 |
"\<Lambda>P Q p. conjunct2 \<cdot> _ \<cdot> _"
|
|
268 |
|
|
269 |
conjunct2: "Null"
|
|
270 |
"\<Lambda>P Q. conjunct2 \<cdot> _ \<cdot> _"
|
|
271 |
|
|
272 |
disjI1 (P, Q): "\<lambda>P Q. Inl"
|
|
273 |
"\<Lambda>P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_1 \<cdot> (\<lambda>p. realizes p P) \<cdot> _ \<cdot> p)"
|
|
274 |
|
|
275 |
disjI1 (P): "\<lambda>P Q. Some"
|
|
276 |
"\<Lambda>P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> (\<lambda>p. realizes p P) \<cdot> p)"
|
|
277 |
|
|
278 |
disjI1 (Q): "\<lambda>P Q. None"
|
|
279 |
"\<Lambda>P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
|
|
280 |
|
|
281 |
disjI1: "\<lambda>P Q. Left"
|
|
282 |
"\<Lambda>P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_1 \<cdot> _ \<cdot> _)"
|
|
283 |
|
|
284 |
disjI2 (P, Q): "\<lambda>Q P. Inr"
|
|
285 |
"\<Lambda>Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_2 \<cdot> _ \<cdot> (\<lambda>q. realizes q Q) \<cdot> q)"
|
|
286 |
|
|
287 |
disjI2 (P): "\<lambda>Q P. None"
|
|
288 |
"\<Lambda>Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
|
|
289 |
|
|
290 |
disjI2 (Q): "\<lambda>Q P. Some"
|
|
291 |
"\<Lambda>Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> (\<lambda>q. realizes q Q) \<cdot> q)"
|
|
292 |
|
|
293 |
disjI2: "\<lambda>Q P. Right"
|
|
294 |
"\<Lambda>Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_2 \<cdot> _ \<cdot> _)"
|
|
295 |
|
|
296 |
disjE (P, Q, R): "\<lambda>P Q R pq pr qr.
|
|
297 |
(case pq of Inl p \<Rightarrow> pr p | Inr q \<Rightarrow> qr q)"
|
|
298 |
"\<Lambda>P Q R pq (h1: _) pr (h2: _) qr.
|
|
299 |
disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
|
|
300 |
|
|
301 |
disjE (Q, R): "\<lambda>P Q R pq pr qr.
|
|
302 |
(case pq of None \<Rightarrow> pr | Some q \<Rightarrow> qr q)"
|
|
303 |
"\<Lambda>P Q R pq (h1: _) pr (h2: _) qr.
|
|
304 |
disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
|
|
305 |
|
|
306 |
disjE (P, R): "\<lambda>P Q R pq pr qr.
|
|
307 |
(case pq of None \<Rightarrow> qr | Some p \<Rightarrow> pr p)"
|
|
308 |
"\<Lambda>P Q R pq (h1: _) pr (h2: _) qr (h3: _).
|
|
309 |
disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> qr \<cdot> pr \<bullet> h1 \<bullet> h3 \<bullet> h2"
|
|
310 |
|
|
311 |
disjE (R): "\<lambda>P Q R pq pr qr.
|
|
312 |
(case pq of Left \<Rightarrow> pr | Right \<Rightarrow> qr)"
|
|
313 |
"\<Lambda>P Q R pq (h1: _) pr (h2: _) qr.
|
|
314 |
disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
|
|
315 |
|
|
316 |
disjE (P, Q): "Null"
|
|
317 |
"\<Lambda>P Q R pq. disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _"
|
|
318 |
|
|
319 |
disjE (Q): "Null"
|
|
320 |
"\<Lambda>P Q R pq. disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _"
|
|
321 |
|
|
322 |
disjE (P): "Null"
|
|
323 |
"\<Lambda>P Q R pq (h1: _) (h2: _) (h3: _).
|
|
324 |
disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _ \<bullet> h1 \<bullet> h3 \<bullet> h2"
|
|
325 |
|
|
326 |
disjE: "Null"
|
|
327 |
"\<Lambda>P Q R pq. disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _"
|
|
328 |
|
|
329 |
FalseE (P): "\<lambda>P. arbitrary"
|
|
330 |
"\<Lambda>P. FalseE \<cdot> _"
|
|
331 |
|
|
332 |
FalseE: "Null"
|
|
333 |
"\<Lambda>P. FalseE \<cdot> _"
|
|
334 |
|
|
335 |
notI (P): "Null"
|
|
336 |
"\<Lambda>P (h: _). allI \<cdot> _ \<bullet> (\<Lambda>x. notI \<cdot> _ \<bullet> (h \<cdot> x))"
|
|
337 |
|
|
338 |
notI: "Null"
|
|
339 |
"\<Lambda>P. notI \<cdot> _"
|
|
340 |
|
|
341 |
notE (P, R): "\<lambda>P R p. arbitrary"
|
|
342 |
"\<Lambda>P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
|
|
343 |
|
|
344 |
notE (P): "Null"
|
|
345 |
"\<Lambda>P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
|
|
346 |
|
|
347 |
notE (R): "\<lambda>P R. arbitrary"
|
|
348 |
"\<Lambda>P R. notE \<cdot> _ \<cdot> _"
|
|
349 |
|
|
350 |
notE: "Null"
|
|
351 |
"\<Lambda>P R. notE \<cdot> _ \<cdot> _"
|
|
352 |
|
|
353 |
subst (P): "\<lambda>s t P ps. ps"
|
|
354 |
"\<Lambda>s t P (h: _) ps. subst \<cdot> s \<cdot> t \<cdot> (\<lambda>x. realizes ps (P x)) \<bullet> h"
|
|
355 |
|
|
356 |
subst: "Null"
|
|
357 |
"\<Lambda>s t P. subst \<cdot> s \<cdot> t \<cdot> (\<lambda>x. realizes Null (P x))"
|
|
358 |
|
|
359 |
iffD1 (P, Q): "\<lambda>Q P. fst"
|
|
360 |
"\<Lambda>Q P pq (h: _) p.
|
|
361 |
mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
|
|
362 |
|
|
363 |
iffD1 (P): "\<lambda>Q P p. p"
|
|
364 |
"\<Lambda>Q P p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h)"
|
|
365 |
|
|
366 |
iffD1 (Q): "Null"
|
|
367 |
"\<Lambda>Q P q1 (h: _) q2.
|
|
368 |
mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
|
|
369 |
|
|
370 |
iffD1: "Null"
|
|
371 |
"\<Lambda>Q P. iffD1 \<cdot> _ \<cdot> _"
|
|
372 |
|
|
373 |
iffD2 (P, Q): "\<lambda>P Q. snd"
|
|
374 |
"\<Lambda>P Q pq (h: _) q.
|
|
375 |
mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
|
|
376 |
|
|
377 |
iffD2 (P): "\<lambda>P Q p. p"
|
|
378 |
"\<Lambda>P Q p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h)"
|
|
379 |
|
|
380 |
iffD2 (Q): "Null"
|
|
381 |
"\<Lambda>P Q q1 (h: _) q2.
|
|
382 |
mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
|
|
383 |
|
|
384 |
iffD2: "Null"
|
|
385 |
"\<Lambda>P Q. iffD2 \<cdot> _ \<cdot> _"
|
|
386 |
|
|
387 |
iffI (P, Q): "\<lambda>P Q pq qp. (pq, qp)"
|
|
388 |
"\<Lambda>P Q pq (h1 : _) qp (h2 : _). conjI_realizer \<cdot>
|
|
389 |
(\<lambda>pq. \<forall>x. realizes x P \<longrightarrow> realizes (pq x) Q) \<cdot> pq \<cdot>
|
|
390 |
(\<lambda>qp. \<forall>x. realizes x Q \<longrightarrow> realizes (qp x) P) \<cdot> qp \<bullet>
|
|
391 |
(allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
|
|
392 |
(allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
|
|
393 |
|
|
394 |
iffI (P): "\<lambda>P Q p. p"
|
|
395 |
"\<Lambda>P Q (h1 : _) p (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
|
|
396 |
(allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
|
|
397 |
(impI \<cdot> _ \<cdot> _ \<bullet> h2)"
|
|
398 |
|
|
399 |
iffI (Q): "\<lambda>P Q q. q"
|
|
400 |
"\<Lambda>P Q q (h1 : _) (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
|
|
401 |
(impI \<cdot> _ \<cdot> _ \<bullet> h1) \<bullet>
|
|
402 |
(allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
|
|
403 |
|
|
404 |
iffI: "Null"
|
|
405 |
"\<Lambda>P Q. iffI \<cdot> _ \<cdot> _"
|
|
406 |
|
|
407 |
classical: "Null"
|
|
408 |
"\<Lambda>P. classical \<cdot> _"
|
|
409 |
|
|
410 |
|
|
411 |
subsection {* Induction on natural numbers *}
|
|
412 |
|
|
413 |
theorem nat_ind_realizer:
|
|
414 |
"R f 0 \<Longrightarrow> (\<And>y h. R h y \<Longrightarrow> R (g y h) (Suc y)) \<Longrightarrow>
|
|
415 |
(R::'a \<Rightarrow> nat \<Rightarrow> bool) (nat_rec f g x) x"
|
|
416 |
proof -
|
|
417 |
assume r1: "R f 0"
|
|
418 |
assume r2: "\<And>y h. R h y \<Longrightarrow> R (g y h) (Suc y)"
|
|
419 |
show "R (nat_rec f g x) x"
|
|
420 |
proof (induct x)
|
|
421 |
case 0
|
|
422 |
from r1 show ?case by simp
|
|
423 |
next
|
|
424 |
case (Suc n)
|
|
425 |
from Suc have "R (g n (nat_rec f g n)) (Suc n)" by (rule r2)
|
|
426 |
thus ?case by simp
|
|
427 |
qed
|
|
428 |
qed
|
|
429 |
|
|
430 |
realizers
|
13452
|
431 |
Nat.nat_induct (P): "\<lambda>P n p0 ps. nat_rec p0 ps n"
|
13403
|
432 |
"\<Lambda>P n p0 (h: _) ps. nat_ind_realizer \<cdot> _ \<cdot> _ \<cdot> _ \<cdot> _ \<bullet> h"
|
|
433 |
|
13452
|
434 |
Nat.nat_induct: "Null"
|
13403
|
435 |
"\<Lambda>P n. nat_induct \<cdot> _ \<cdot> _"
|
|
436 |
|
|
437 |
Nat.nat.induct (P): "\<lambda>P n p0 ps. nat_rec p0 ps n"
|
|
438 |
"\<Lambda>P n p0 (h: _) ps. nat_ind_realizer \<cdot> _ \<cdot> _ \<cdot> _ \<cdot> _ \<bullet> h"
|
|
439 |
|
|
440 |
Nat.nat.induct: "Null"
|
|
441 |
"\<Lambda>P n. nat_induct \<cdot> _ \<cdot> _"
|
|
442 |
|
|
443 |
end
|