24197
|
1 |
(* Title: HOL/Library/Abstract_Rat.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Amine Chaieb
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {* Abstract rational numbers *}
|
|
7 |
|
|
8 |
theory Abstract_Rat
|
|
9 |
imports GCD
|
|
10 |
begin
|
|
11 |
|
|
12 |
types Num = "int \<times> int"
|
25005
|
13 |
|
|
14 |
abbreviation
|
|
15 |
Num0_syn :: Num ("0\<^sub>N")
|
|
16 |
where "0\<^sub>N \<equiv> (0, 0)"
|
|
17 |
|
|
18 |
abbreviation
|
|
19 |
Numi_syn :: "int \<Rightarrow> Num" ("_\<^sub>N")
|
|
20 |
where "i\<^sub>N \<equiv> (i, 1)"
|
24197
|
21 |
|
|
22 |
definition
|
|
23 |
isnormNum :: "Num \<Rightarrow> bool"
|
|
24 |
where
|
|
25 |
"isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> igcd a b = 1))"
|
|
26 |
|
|
27 |
definition
|
|
28 |
normNum :: "Num \<Rightarrow> Num"
|
|
29 |
where
|
|
30 |
"normNum = (\<lambda>(a,b). (if a=0 \<or> b = 0 then (0,0) else
|
|
31 |
(let g = igcd a b
|
|
32 |
in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))"
|
|
33 |
|
|
34 |
lemma normNum_isnormNum [simp]: "isnormNum (normNum x)"
|
|
35 |
proof -
|
|
36 |
have " \<exists> a b. x = (a,b)" by auto
|
|
37 |
then obtain a b where x[simp]: "x = (a,b)" by blast
|
|
38 |
{assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)}
|
|
39 |
moreover
|
|
40 |
{assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0"
|
|
41 |
let ?g = "igcd a b"
|
|
42 |
let ?a' = "a div ?g"
|
|
43 |
let ?b' = "b div ?g"
|
|
44 |
let ?g' = "igcd ?a' ?b'"
|
|
45 |
from anz bnz have "?g \<noteq> 0" by simp with igcd_pos[of a b]
|
|
46 |
have gpos: "?g > 0" by arith
|
|
47 |
have gdvd: "?g dvd a" "?g dvd b" by (simp_all add: igcd_dvd1 igcd_dvd2)
|
|
48 |
from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)]
|
|
49 |
anz bnz
|
|
50 |
have nz':"?a' \<noteq> 0" "?b' \<noteq> 0"
|
|
51 |
by - (rule notI,simp add:igcd_def)+
|
|
52 |
from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by blast
|
|
53 |
from div_igcd_relprime[OF stupid] have gp1: "?g' = 1" .
|
|
54 |
from bnz have "b < 0 \<or> b > 0" by arith
|
|
55 |
moreover
|
|
56 |
{assume b: "b > 0"
|
|
57 |
from pos_imp_zdiv_nonneg_iff[OF gpos] b
|
|
58 |
have "?b' \<ge> 0" by simp
|
|
59 |
with nz' have b': "?b' > 0" by simp
|
|
60 |
from b b' anz bnz nz' gp1 have ?thesis
|
|
61 |
by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
|
|
62 |
moreover {assume b: "b < 0"
|
|
63 |
{assume b': "?b' \<ge> 0"
|
|
64 |
from gpos have th: "?g \<ge> 0" by arith
|
|
65 |
from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)]
|
|
66 |
have False using b by simp }
|
|
67 |
hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric])
|
|
68 |
from anz bnz nz' b b' gp1 have ?thesis
|
|
69 |
by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
|
|
70 |
ultimately have ?thesis by blast
|
|
71 |
}
|
|
72 |
ultimately show ?thesis by blast
|
|
73 |
qed
|
|
74 |
|
|
75 |
text {* Arithmetic over Num *}
|
|
76 |
|
|
77 |
definition
|
|
78 |
Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60)
|
|
79 |
where
|
|
80 |
"Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b')
|
|
81 |
else if a'=0 \<or> b' = 0 then normNum(a,b)
|
|
82 |
else normNum(a*b' + b*a', b*b'))"
|
|
83 |
|
|
84 |
definition
|
|
85 |
Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60)
|
|
86 |
where
|
|
87 |
"Nmul = (\<lambda>(a,b) (a',b'). let g = igcd (a*a') (b*b')
|
|
88 |
in (a*a' div g, b*b' div g))"
|
|
89 |
|
|
90 |
definition
|
|
91 |
Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
|
|
92 |
where
|
|
93 |
"Nneg \<equiv> (\<lambda>(a,b). (-a,b))"
|
|
94 |
|
|
95 |
definition
|
|
96 |
Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60)
|
|
97 |
where
|
|
98 |
"Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)"
|
|
99 |
|
|
100 |
definition
|
|
101 |
Ninv :: "Num \<Rightarrow> Num"
|
|
102 |
where
|
|
103 |
"Ninv \<equiv> \<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a)"
|
|
104 |
|
|
105 |
definition
|
|
106 |
Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60)
|
|
107 |
where
|
|
108 |
"Ndiv \<equiv> \<lambda>a b. a *\<^sub>N Ninv b"
|
|
109 |
|
|
110 |
lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)"
|
|
111 |
by(simp add: isnormNum_def Nneg_def split_def)
|
|
112 |
lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)"
|
|
113 |
by (simp add: Nadd_def split_def)
|
|
114 |
lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)"
|
|
115 |
by (simp add: Nsub_def split_def)
|
|
116 |
lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y"
|
|
117 |
shows "isnormNum (x *\<^sub>N y)"
|
|
118 |
proof-
|
|
119 |
have "\<exists>a b. x = (a,b)" and "\<exists> a' b'. y = (a',b')" by auto
|
|
120 |
then obtain a b a' b' where ab: "x = (a,b)" and ab': "y = (a',b')" by blast
|
|
121 |
{assume "a = 0"
|
|
122 |
hence ?thesis using xn ab ab'
|
|
123 |
by (simp add: igcd_def isnormNum_def Let_def Nmul_def split_def)}
|
|
124 |
moreover
|
|
125 |
{assume "a' = 0"
|
|
126 |
hence ?thesis using yn ab ab'
|
|
127 |
by (simp add: igcd_def isnormNum_def Let_def Nmul_def split_def)}
|
|
128 |
moreover
|
|
129 |
{assume a: "a \<noteq>0" and a': "a'\<noteq>0"
|
|
130 |
hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def)
|
|
131 |
from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a*a', b*b')"
|
|
132 |
using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def)
|
|
133 |
hence ?thesis by simp}
|
|
134 |
ultimately show ?thesis by blast
|
|
135 |
qed
|
|
136 |
|
|
137 |
lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)"
|
25005
|
138 |
by (simp add: Ninv_def isnormNum_def split_def)
|
|
139 |
(cases "fst x = 0", auto simp add: igcd_commute)
|
24197
|
140 |
|
|
141 |
lemma isnormNum_int[simp]:
|
|
142 |
"isnormNum 0\<^sub>N" "isnormNum (1::int)\<^sub>N" "i \<noteq> 0 \<Longrightarrow> isnormNum i\<^sub>N"
|
|
143 |
by (simp_all add: isnormNum_def igcd_def)
|
|
144 |
|
|
145 |
|
|
146 |
text {* Relations over Num *}
|
|
147 |
|
|
148 |
definition
|
|
149 |
Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N")
|
|
150 |
where
|
|
151 |
"Nlt0 = (\<lambda>(a,b). a < 0)"
|
|
152 |
|
|
153 |
definition
|
|
154 |
Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N")
|
|
155 |
where
|
|
156 |
"Nle0 = (\<lambda>(a,b). a \<le> 0)"
|
|
157 |
|
|
158 |
definition
|
|
159 |
Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N")
|
|
160 |
where
|
|
161 |
"Ngt0 = (\<lambda>(a,b). a > 0)"
|
|
162 |
|
|
163 |
definition
|
|
164 |
Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N")
|
|
165 |
where
|
|
166 |
"Nge0 = (\<lambda>(a,b). a \<ge> 0)"
|
|
167 |
|
|
168 |
definition
|
|
169 |
Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55)
|
|
170 |
where
|
|
171 |
"Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))"
|
|
172 |
|
|
173 |
definition
|
|
174 |
Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55)
|
|
175 |
where
|
|
176 |
"Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))"
|
|
177 |
|
|
178 |
definition
|
|
179 |
"INum = (\<lambda>(a,b). of_int a / of_int b)"
|
|
180 |
|
|
181 |
lemma INum_int [simp]: "INum i\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)"
|
|
182 |
by (simp_all add: INum_def)
|
|
183 |
|
|
184 |
lemma isnormNum_unique[simp]:
|
|
185 |
assumes na: "isnormNum x" and nb: "isnormNum y"
|
|
186 |
shows "((INum x ::'a::{ring_char_0,field, division_by_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
|
|
187 |
proof
|
|
188 |
have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto
|
|
189 |
then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast
|
|
190 |
assume H: ?lhs
|
|
191 |
{assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0" hence ?rhs
|
|
192 |
using na nb H
|
|
193 |
apply (simp add: INum_def split_def isnormNum_def)
|
|
194 |
apply (cases "a = 0", simp_all)
|
|
195 |
apply (cases "b = 0", simp_all)
|
|
196 |
apply (cases "a' = 0", simp_all)
|
|
197 |
apply (cases "a' = 0", simp_all add: of_int_eq_0_iff)
|
|
198 |
done}
|
|
199 |
moreover
|
|
200 |
{ assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0"
|
|
201 |
from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def)
|
|
202 |
from prems have eq:"a * b' = a'*b"
|
|
203 |
by (simp add: INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult)
|
|
204 |
from prems have gcd1: "igcd a b = 1" "igcd b a = 1" "igcd a' b' = 1" "igcd b' a' = 1"
|
|
205 |
by (simp_all add: isnormNum_def add: igcd_commute)
|
|
206 |
from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'"
|
|
207 |
apply(unfold dvd_def)
|
|
208 |
apply (rule_tac x="b'" in exI, simp add: mult_ac)
|
|
209 |
apply (rule_tac x="a'" in exI, simp add: mult_ac)
|
|
210 |
apply (rule_tac x="b" in exI, simp add: mult_ac)
|
|
211 |
apply (rule_tac x="a" in exI, simp add: mult_ac)
|
|
212 |
done
|
|
213 |
from zdvd_dvd_eq[OF bz zrelprime_dvd_mult[OF gcd1(2) raw_dvd(2)]
|
|
214 |
zrelprime_dvd_mult[OF gcd1(4) raw_dvd(4)]]
|
|
215 |
have eq1: "b = b'" using pos by simp_all
|
|
216 |
with eq have "a = a'" using pos by simp
|
|
217 |
with eq1 have ?rhs by simp}
|
|
218 |
ultimately show ?rhs by blast
|
|
219 |
next
|
|
220 |
assume ?rhs thus ?lhs by simp
|
|
221 |
qed
|
|
222 |
|
|
223 |
|
|
224 |
lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{ring_char_0, field,division_by_zero})) = (x = 0\<^sub>N)"
|
|
225 |
unfolding INum_int(2)[symmetric]
|
|
226 |
by (rule isnormNum_unique, simp_all)
|
|
227 |
|
|
228 |
lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) =
|
|
229 |
of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)"
|
|
230 |
proof -
|
|
231 |
assume "d ~= 0"
|
|
232 |
hence dz: "of_int d \<noteq> (0::'a)" by (simp add: of_int_eq_0_iff)
|
|
233 |
let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)"
|
|
234 |
let ?f = "\<lambda>x. x / of_int d"
|
|
235 |
have "x = (x div d) * d + x mod d"
|
|
236 |
by auto
|
|
237 |
then have eq: "of_int x = ?t"
|
|
238 |
by (simp only: of_int_mult[symmetric] of_int_add [symmetric])
|
|
239 |
then have "of_int x / of_int d = ?t / of_int d"
|
|
240 |
using cong[OF refl[of ?f] eq] by simp
|
|
241 |
then show ?thesis by (simp add: add_divide_distrib ring_simps prems)
|
|
242 |
qed
|
|
243 |
|
|
244 |
lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
|
|
245 |
(of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d"
|
|
246 |
apply (frule of_int_div_aux [of d n, where ?'a = 'a])
|
|
247 |
apply simp
|
|
248 |
apply (simp add: zdvd_iff_zmod_eq_0)
|
|
249 |
done
|
|
250 |
|
|
251 |
|
|
252 |
lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_by_zero})"
|
|
253 |
proof-
|
|
254 |
have "\<exists> a b. x = (a,b)" by auto
|
|
255 |
then obtain a b where x[simp]: "x = (a,b)" by blast
|
|
256 |
{assume "a=0 \<or> b = 0" hence ?thesis
|
|
257 |
by (simp add: INum_def normNum_def split_def Let_def)}
|
|
258 |
moreover
|
|
259 |
{assume a: "a\<noteq>0" and b: "b\<noteq>0"
|
|
260 |
let ?g = "igcd a b"
|
|
261 |
from a b have g: "?g \<noteq> 0"by simp
|
|
262 |
from of_int_div[OF g, where ?'a = 'a]
|
|
263 |
have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)}
|
|
264 |
ultimately show ?thesis by blast
|
|
265 |
qed
|
|
266 |
|
26509
|
267 |
lemma INum_normNum_iff: "(INum x ::'a::{field, division_by_zero, ring_char_0}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs")
|
24197
|
268 |
proof -
|
|
269 |
have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)"
|
|
270 |
by (simp del: normNum)
|
|
271 |
also have "\<dots> = ?lhs" by simp
|
|
272 |
finally show ?thesis by simp
|
|
273 |
qed
|
|
274 |
|
|
275 |
lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0,division_by_zero,field})"
|
|
276 |
proof-
|
|
277 |
let ?z = "0:: 'a"
|
|
278 |
have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
|
|
279 |
then obtain a b a' b' where x[simp]: "x = (a,b)"
|
|
280 |
and y[simp]: "y = (a',b')" by blast
|
|
281 |
{assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" hence ?thesis
|
|
282 |
apply (cases "a=0",simp_all add: Nadd_def)
|
|
283 |
apply (cases "b= 0",simp_all add: INum_def)
|
|
284 |
apply (cases "a'= 0",simp_all)
|
|
285 |
apply (cases "b'= 0",simp_all)
|
|
286 |
done }
|
|
287 |
moreover
|
|
288 |
{assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0"
|
|
289 |
{assume z: "a * b' + b * a' = 0"
|
|
290 |
hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp
|
|
291 |
hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z" by (simp add:add_divide_distrib)
|
|
292 |
hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp
|
|
293 |
from z aa' bb' have ?thesis
|
|
294 |
by (simp add: th Nadd_def normNum_def INum_def split_def)}
|
|
295 |
moreover {assume z: "a * b' + b * a' \<noteq> 0"
|
|
296 |
let ?g = "igcd (a * b' + b * a') (b*b')"
|
|
297 |
have gz: "?g \<noteq> 0" using z by simp
|
|
298 |
have ?thesis using aa' bb' z gz
|
|
299 |
of_int_div[where ?'a = 'a,
|
|
300 |
OF gz igcd_dvd1[where i="a * b' + b * a'" and j="b*b'"]]
|
|
301 |
of_int_div[where ?'a = 'a,
|
|
302 |
OF gz igcd_dvd2[where i="a * b' + b * a'" and j="b*b'"]]
|
|
303 |
by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib)}
|
|
304 |
ultimately have ?thesis using aa' bb'
|
|
305 |
by (simp add: Nadd_def INum_def normNum_def x y Let_def) }
|
|
306 |
ultimately show ?thesis by blast
|
|
307 |
qed
|
|
308 |
|
|
309 |
lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {ring_char_0,division_by_zero,field}) "
|
|
310 |
proof-
|
|
311 |
let ?z = "0::'a"
|
|
312 |
have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
|
|
313 |
then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast
|
|
314 |
{assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0" hence ?thesis
|
|
315 |
apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def)
|
|
316 |
apply (cases "b=0",simp_all)
|
|
317 |
apply (cases "a'=0",simp_all)
|
|
318 |
done }
|
|
319 |
moreover
|
|
320 |
{assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
|
|
321 |
let ?g="igcd (a*a') (b*b')"
|
|
322 |
have gz: "?g \<noteq> 0" using z by simp
|
|
323 |
from z of_int_div[where ?'a = 'a, OF gz igcd_dvd1[where i="a*a'" and j="b*b'"]]
|
|
324 |
of_int_div[where ?'a = 'a , OF gz igcd_dvd2[where i="a*a'" and j="b*b'"]]
|
|
325 |
have ?thesis by (simp add: Nmul_def x y Let_def INum_def)}
|
|
326 |
ultimately show ?thesis by blast
|
|
327 |
qed
|
|
328 |
|
|
329 |
lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)"
|
|
330 |
by (simp add: Nneg_def split_def INum_def)
|
|
331 |
|
|
332 |
lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {ring_char_0,division_by_zero,field})"
|
|
333 |
by (simp add: Nsub_def split_def)
|
|
334 |
|
|
335 |
lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_by_zero,field}) / (INum x)"
|
|
336 |
by (simp add: Ninv_def INum_def split_def)
|
|
337 |
|
|
338 |
lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_by_zero,field})" by (simp add: Ndiv_def)
|
|
339 |
|
|
340 |
lemma Nlt0_iff[simp]: assumes nx: "isnormNum x"
|
|
341 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})< 0) = 0>\<^sub>N x "
|
|
342 |
proof-
|
|
343 |
have " \<exists> a b. x = (a,b)" by simp
|
|
344 |
then obtain a b where x[simp]:"x = (a,b)" by blast
|
|
345 |
{assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) }
|
|
346 |
moreover
|
|
347 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
|
|
348 |
from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"]
|
|
349 |
have ?thesis by (simp add: Nlt0_def INum_def)}
|
|
350 |
ultimately show ?thesis by blast
|
|
351 |
qed
|
|
352 |
|
|
353 |
lemma Nle0_iff[simp]:assumes nx: "isnormNum x"
|
|
354 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<le> 0) = 0\<ge>\<^sub>N x"
|
|
355 |
proof-
|
|
356 |
have " \<exists> a b. x = (a,b)" by simp
|
|
357 |
then obtain a b where x[simp]:"x = (a,b)" by blast
|
|
358 |
{assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) }
|
|
359 |
moreover
|
|
360 |
{assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def)
|
|
361 |
from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"]
|
|
362 |
have ?thesis by (simp add: Nle0_def INum_def)}
|
|
363 |
ultimately show ?thesis by blast
|
|
364 |
qed
|
|
365 |
|
|
366 |
lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})> 0) = 0<\<^sub>N x"
|
|
367 |
proof-
|
|
368 |
have " \<exists> a b. x = (a,b)" by simp
|
|
369 |
then obtain a b where x[simp]:"x = (a,b)" by blast
|
|
370 |
{assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) }
|
|
371 |
moreover
|
|
372 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
|
|
373 |
from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"]
|
|
374 |
have ?thesis by (simp add: Ngt0_def INum_def)}
|
|
375 |
ultimately show ?thesis by blast
|
|
376 |
qed
|
|
377 |
lemma Nge0_iff[simp]:assumes nx: "isnormNum x"
|
|
378 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<ge> 0) = 0\<le>\<^sub>N x"
|
|
379 |
proof-
|
|
380 |
have " \<exists> a b. x = (a,b)" by simp
|
|
381 |
then obtain a b where x[simp]:"x = (a,b)" by blast
|
|
382 |
{assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) }
|
|
383 |
moreover
|
|
384 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
|
|
385 |
from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"]
|
|
386 |
have ?thesis by (simp add: Nge0_def INum_def)}
|
|
387 |
ultimately show ?thesis by blast
|
|
388 |
qed
|
|
389 |
|
|
390 |
lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
|
|
391 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) < INum y) = (x <\<^sub>N y)"
|
|
392 |
proof-
|
|
393 |
let ?z = "0::'a"
|
|
394 |
have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp
|
|
395 |
also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp
|
|
396 |
finally show ?thesis by (simp add: Nlt_def)
|
|
397 |
qed
|
|
398 |
|
|
399 |
lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
|
|
400 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})\<le> INum y) = (x \<le>\<^sub>N y)"
|
|
401 |
proof-
|
|
402 |
have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp
|
|
403 |
also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp
|
|
404 |
finally show ?thesis by (simp add: Nle_def)
|
|
405 |
qed
|
|
406 |
|
|
407 |
lemma Nadd_commute: "x +\<^sub>N y = y +\<^sub>N x"
|
|
408 |
proof-
|
|
409 |
have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all
|
|
410 |
have "(INum (x +\<^sub>N y)::'a :: {ring_char_0,division_by_zero,field}) = INum (y +\<^sub>N x)" by simp
|
|
411 |
with isnormNum_unique[OF n] show ?thesis by simp
|
|
412 |
qed
|
|
413 |
|
|
414 |
lemma[simp]: "(0, b) +\<^sub>N y = normNum y" "(a, 0) +\<^sub>N y = normNum y"
|
|
415 |
"x +\<^sub>N (0, b) = normNum x" "x +\<^sub>N (a, 0) = normNum x"
|
|
416 |
apply (simp add: Nadd_def split_def, simp add: Nadd_def split_def)
|
|
417 |
apply (subst Nadd_commute,simp add: Nadd_def split_def)
|
|
418 |
apply (subst Nadd_commute,simp add: Nadd_def split_def)
|
|
419 |
done
|
|
420 |
|
|
421 |
lemma normNum_nilpotent_aux[simp]: assumes nx: "isnormNum x"
|
|
422 |
shows "normNum x = x"
|
|
423 |
proof-
|
|
424 |
let ?a = "normNum x"
|
|
425 |
have n: "isnormNum ?a" by simp
|
|
426 |
have th:"INum ?a = (INum x ::'a :: {ring_char_0, division_by_zero,field})" by simp
|
|
427 |
with isnormNum_unique[OF n nx]
|
|
428 |
show ?thesis by simp
|
|
429 |
qed
|
|
430 |
|
|
431 |
lemma normNum_nilpotent[simp]: "normNum (normNum x) = normNum x"
|
|
432 |
by simp
|
|
433 |
lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N"
|
|
434 |
by (simp_all add: normNum_def)
|
|
435 |
lemma normNum_Nadd: "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp
|
|
436 |
lemma Nadd_normNum1[simp]: "normNum x +\<^sub>N y = x +\<^sub>N y"
|
|
437 |
proof-
|
|
438 |
have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all
|
|
439 |
have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp
|
|
440 |
also have "\<dots> = INum (x +\<^sub>N y)" by simp
|
|
441 |
finally show ?thesis using isnormNum_unique[OF n] by simp
|
|
442 |
qed
|
|
443 |
lemma Nadd_normNum2[simp]: "x +\<^sub>N normNum y = x +\<^sub>N y"
|
|
444 |
proof-
|
|
445 |
have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all
|
|
446 |
have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp
|
|
447 |
also have "\<dots> = INum (x +\<^sub>N y)" by simp
|
|
448 |
finally show ?thesis using isnormNum_unique[OF n] by simp
|
|
449 |
qed
|
|
450 |
|
|
451 |
lemma Nadd_assoc: "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)"
|
|
452 |
proof-
|
|
453 |
have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all
|
|
454 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp
|
|
455 |
with isnormNum_unique[OF n] show ?thesis by simp
|
|
456 |
qed
|
|
457 |
|
|
458 |
lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x"
|
|
459 |
by (simp add: Nmul_def split_def Let_def igcd_commute mult_commute)
|
|
460 |
|
|
461 |
lemma Nmul_assoc: assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z"
|
|
462 |
shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)"
|
|
463 |
proof-
|
|
464 |
from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))"
|
|
465 |
by simp_all
|
|
466 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp
|
|
467 |
with isnormNum_unique[OF n] show ?thesis by simp
|
|
468 |
qed
|
|
469 |
|
|
470 |
lemma Nsub0: assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)"
|
|
471 |
proof-
|
|
472 |
{fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}"
|
|
473 |
from isnormNum_unique[where ?'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"]
|
|
474 |
have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp
|
|
475 |
also have "\<dots> = (INum x = (INum y:: 'a))" by simp
|
|
476 |
also have "\<dots> = (x = y)" using x y by simp
|
|
477 |
finally show ?thesis .}
|
|
478 |
qed
|
|
479 |
|
|
480 |
lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N"
|
|
481 |
by (simp_all add: Nmul_def Let_def split_def)
|
|
482 |
|
|
483 |
lemma Nmul_eq0[simp]: assumes nx:"isnormNum x" and ny: "isnormNum y"
|
|
484 |
shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)"
|
|
485 |
proof-
|
|
486 |
{fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}"
|
|
487 |
have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto
|
|
488 |
then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast
|
|
489 |
have n0: "isnormNum 0\<^sub>N" by simp
|
|
490 |
show ?thesis using nx ny
|
|
491 |
apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a])
|
|
492 |
apply (simp add: INum_def split_def isnormNum_def fst_conv snd_conv)
|
|
493 |
apply (cases "a=0",simp_all)
|
|
494 |
apply (cases "a'=0",simp_all)
|
|
495 |
done }
|
|
496 |
qed
|
|
497 |
lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c"
|
|
498 |
by (simp add: Nneg_def split_def)
|
|
499 |
|
|
500 |
lemma Nmul1[simp]:
|
|
501 |
"isnormNum c \<Longrightarrow> 1\<^sub>N *\<^sub>N c = c"
|
|
502 |
"isnormNum c \<Longrightarrow> c *\<^sub>N 1\<^sub>N = c"
|
|
503 |
apply (simp_all add: Nmul_def Let_def split_def isnormNum_def)
|
|
504 |
by (cases "fst c = 0", simp_all,cases c, simp_all)+
|
|
505 |
|
|
506 |
end |