31719
|
1 |
(* Title: HOL/Library/Cong.thy
|
|
2 |
ID:
|
|
3 |
Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
|
|
4 |
Thomas M. Rasmussen, Jeremy Avigad
|
|
5 |
|
|
6 |
|
|
7 |
Defines congruence (notation: [x = y] (mod z)) for natural numbers and
|
|
8 |
integers.
|
|
9 |
|
|
10 |
This file combines and revises a number of prior developments.
|
|
11 |
|
|
12 |
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
|
|
13 |
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
|
|
14 |
gcd, lcm, and prime for the natural numbers.
|
|
15 |
|
|
16 |
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
|
|
17 |
extended gcd, lcm, primes to the integers. Amine Chaieb provided
|
|
18 |
another extension of the notions to the integers, and added a number
|
|
19 |
of results to "Primes" and "GCD".
|
|
20 |
|
|
21 |
The original theory, "IntPrimes", by Thomas M. Rasmussen, defined and
|
|
22 |
developed the congruence relations on the integers. The notion was
|
|
23 |
extended to the natural numbers by Chiaeb. Jeremy Avigad combined
|
|
24 |
these, revised and tidied them, made the development uniform for the
|
|
25 |
natural numbers and the integers, and added a number of new theorems.
|
|
26 |
|
|
27 |
*)
|
|
28 |
|
|
29 |
|
|
30 |
header {* Congruence *}
|
|
31 |
|
|
32 |
theory Cong
|
|
33 |
imports GCD
|
|
34 |
begin
|
|
35 |
|
|
36 |
subsection {* Turn off One_nat_def *}
|
|
37 |
|
|
38 |
lemma nat_induct' [case_names zero plus1, induct type: nat]:
|
|
39 |
"\<lbrakk> P (0::nat); !!n. P n \<Longrightarrow> P (n + 1)\<rbrakk> \<Longrightarrow> P n"
|
|
40 |
by (erule nat_induct) (simp add:One_nat_def)
|
|
41 |
|
|
42 |
lemma nat_cases [case_names zero plus1, cases type: nat]:
|
|
43 |
"P (0::nat) \<Longrightarrow> (!!n. P (n + 1)) \<Longrightarrow> P n"
|
|
44 |
by(metis nat_induct')
|
|
45 |
|
|
46 |
lemma power_plus_one [simp]: "(x::'a::power)^(n + 1) = x * x^n"
|
|
47 |
by (simp add: One_nat_def)
|
|
48 |
|
|
49 |
lemma nat_power_eq_one_eq [simp]:
|
|
50 |
"((x::nat)^m = 1) = (m = 0 | x = 1)"
|
|
51 |
by (induct m, auto)
|
|
52 |
|
|
53 |
lemma card_insert_if' [simp]: "finite A \<Longrightarrow>
|
|
54 |
card (insert x A) = (if x \<in> A then (card A) else (card A) + 1)"
|
|
55 |
by (auto simp add: insert_absorb)
|
|
56 |
|
|
57 |
(* why wasn't card_insert_if a simp rule? *)
|
|
58 |
declare card_insert_disjoint [simp del]
|
|
59 |
|
|
60 |
lemma nat_1' [simp]: "nat 1 = 1"
|
|
61 |
by simp
|
|
62 |
|
|
63 |
(* For those annoying moments where Suc reappears *)
|
|
64 |
lemma Suc_remove: "Suc n = n + 1"
|
|
65 |
by simp
|
|
66 |
|
|
67 |
declare nat_1 [simp del]
|
|
68 |
declare add_2_eq_Suc [simp del]
|
|
69 |
declare add_2_eq_Suc' [simp del]
|
|
70 |
|
|
71 |
|
|
72 |
declare mod_pos_pos_trivial [simp]
|
|
73 |
|
|
74 |
|
|
75 |
subsection {* Main definitions *}
|
|
76 |
|
|
77 |
class cong =
|
|
78 |
|
|
79 |
fixes
|
|
80 |
cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ = _] '(mod _'))")
|
|
81 |
|
|
82 |
begin
|
|
83 |
|
|
84 |
abbreviation
|
|
85 |
notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ \<noteq> _] '(mod _'))")
|
|
86 |
where
|
|
87 |
"notcong x y m == (~cong x y m)"
|
|
88 |
|
|
89 |
end
|
|
90 |
|
|
91 |
(* definitions for the natural numbers *)
|
|
92 |
|
|
93 |
instantiation nat :: cong
|
|
94 |
|
|
95 |
begin
|
|
96 |
|
|
97 |
definition
|
|
98 |
cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
|
|
99 |
where
|
|
100 |
"cong_nat x y m = ((x mod m) = (y mod m))"
|
|
101 |
|
|
102 |
instance proof qed
|
|
103 |
|
|
104 |
end
|
|
105 |
|
|
106 |
|
|
107 |
(* definitions for the integers *)
|
|
108 |
|
|
109 |
instantiation int :: cong
|
|
110 |
|
|
111 |
begin
|
|
112 |
|
|
113 |
definition
|
|
114 |
cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool"
|
|
115 |
where
|
|
116 |
"cong_int x y m = ((x mod m) = (y mod m))"
|
|
117 |
|
|
118 |
instance proof qed
|
|
119 |
|
|
120 |
end
|
|
121 |
|
|
122 |
|
|
123 |
subsection {* Set up Transfer *}
|
|
124 |
|
|
125 |
|
|
126 |
lemma transfer_nat_int_cong:
|
|
127 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> m >= 0 \<Longrightarrow>
|
|
128 |
([(nat x) = (nat y)] (mod (nat m))) = ([x = y] (mod m))"
|
|
129 |
unfolding cong_int_def cong_nat_def
|
|
130 |
apply (auto simp add: nat_mod_distrib [symmetric])
|
|
131 |
apply (subst (asm) eq_nat_nat_iff)
|
|
132 |
apply (case_tac "m = 0", force, rule pos_mod_sign, force)+
|
|
133 |
apply assumption
|
|
134 |
done
|
|
135 |
|
|
136 |
declare TransferMorphism_nat_int[transfer add return:
|
|
137 |
transfer_nat_int_cong]
|
|
138 |
|
|
139 |
lemma transfer_int_nat_cong:
|
|
140 |
"[(int x) = (int y)] (mod (int m)) = [x = y] (mod m)"
|
|
141 |
apply (auto simp add: cong_int_def cong_nat_def)
|
|
142 |
apply (auto simp add: zmod_int [symmetric])
|
|
143 |
done
|
|
144 |
|
|
145 |
declare TransferMorphism_int_nat[transfer add return:
|
|
146 |
transfer_int_nat_cong]
|
|
147 |
|
|
148 |
|
|
149 |
subsection {* Congruence *}
|
|
150 |
|
|
151 |
(* was zcong_0, etc. *)
|
|
152 |
lemma nat_cong_0 [simp, presburger]: "([(a::nat) = b] (mod 0)) = (a = b)"
|
|
153 |
by (unfold cong_nat_def, auto)
|
|
154 |
|
|
155 |
lemma int_cong_0 [simp, presburger]: "([(a::int) = b] (mod 0)) = (a = b)"
|
|
156 |
by (unfold cong_int_def, auto)
|
|
157 |
|
|
158 |
lemma nat_cong_1 [simp, presburger]: "[(a::nat) = b] (mod 1)"
|
|
159 |
by (unfold cong_nat_def, auto)
|
|
160 |
|
|
161 |
lemma nat_cong_Suc_0 [simp, presburger]: "[(a::nat) = b] (mod Suc 0)"
|
|
162 |
by (unfold cong_nat_def, auto simp add: One_nat_def)
|
|
163 |
|
|
164 |
lemma int_cong_1 [simp, presburger]: "[(a::int) = b] (mod 1)"
|
|
165 |
by (unfold cong_int_def, auto)
|
|
166 |
|
|
167 |
lemma nat_cong_refl [simp]: "[(k::nat) = k] (mod m)"
|
|
168 |
by (unfold cong_nat_def, auto)
|
|
169 |
|
|
170 |
lemma int_cong_refl [simp]: "[(k::int) = k] (mod m)"
|
|
171 |
by (unfold cong_int_def, auto)
|
|
172 |
|
|
173 |
lemma nat_cong_sym: "[(a::nat) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
|
|
174 |
by (unfold cong_nat_def, auto)
|
|
175 |
|
|
176 |
lemma int_cong_sym: "[(a::int) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
|
|
177 |
by (unfold cong_int_def, auto)
|
|
178 |
|
|
179 |
lemma nat_cong_sym_eq: "[(a::nat) = b] (mod m) = [b = a] (mod m)"
|
|
180 |
by (unfold cong_nat_def, auto)
|
|
181 |
|
|
182 |
lemma int_cong_sym_eq: "[(a::int) = b] (mod m) = [b = a] (mod m)"
|
|
183 |
by (unfold cong_int_def, auto)
|
|
184 |
|
|
185 |
lemma nat_cong_trans [trans]:
|
|
186 |
"[(a::nat) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
|
|
187 |
by (unfold cong_nat_def, auto)
|
|
188 |
|
|
189 |
lemma int_cong_trans [trans]:
|
|
190 |
"[(a::int) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
|
|
191 |
by (unfold cong_int_def, auto)
|
|
192 |
|
|
193 |
lemma nat_cong_add:
|
|
194 |
"[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
|
|
195 |
apply (unfold cong_nat_def)
|
|
196 |
apply (subst (1 2) mod_add_eq)
|
|
197 |
apply simp
|
|
198 |
done
|
|
199 |
|
|
200 |
lemma int_cong_add:
|
|
201 |
"[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
|
|
202 |
apply (unfold cong_int_def)
|
|
203 |
apply (subst (1 2) mod_add_left_eq)
|
|
204 |
apply (subst (1 2) mod_add_right_eq)
|
|
205 |
apply simp
|
|
206 |
done
|
|
207 |
|
|
208 |
lemma int_cong_diff:
|
|
209 |
"[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)"
|
|
210 |
apply (unfold cong_int_def)
|
|
211 |
apply (subst (1 2) mod_diff_eq)
|
|
212 |
apply simp
|
|
213 |
done
|
|
214 |
|
|
215 |
lemma int_cong_diff_aux:
|
|
216 |
"(a::int) >= c \<Longrightarrow> b >= d \<Longrightarrow> [(a::int) = b] (mod m) \<Longrightarrow>
|
|
217 |
[c = d] (mod m) \<Longrightarrow> [tsub a c = tsub b d] (mod m)"
|
|
218 |
apply (subst (1 2) tsub_eq)
|
|
219 |
apply (auto intro: int_cong_diff)
|
|
220 |
done;
|
|
221 |
|
|
222 |
lemma nat_cong_diff:
|
|
223 |
assumes "(a::nat) >= c" and "b >= d" and "[a = b] (mod m)" and
|
|
224 |
"[c = d] (mod m)"
|
|
225 |
shows "[a - c = b - d] (mod m)"
|
|
226 |
|
|
227 |
using prems by (rule int_cong_diff_aux [transferred]);
|
|
228 |
|
|
229 |
lemma nat_cong_mult:
|
|
230 |
"[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
|
|
231 |
apply (unfold cong_nat_def)
|
|
232 |
apply (subst (1 2) mod_mult_eq)
|
|
233 |
apply simp
|
|
234 |
done
|
|
235 |
|
|
236 |
lemma int_cong_mult:
|
|
237 |
"[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
|
|
238 |
apply (unfold cong_int_def)
|
|
239 |
apply (subst (1 2) zmod_zmult1_eq)
|
|
240 |
apply (subst (1 2) mult_commute)
|
|
241 |
apply (subst (1 2) zmod_zmult1_eq)
|
|
242 |
apply simp
|
|
243 |
done
|
|
244 |
|
|
245 |
lemma nat_cong_exp: "[(x::nat) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
|
|
246 |
apply (induct k)
|
|
247 |
apply (auto simp add: nat_cong_refl nat_cong_mult)
|
|
248 |
done
|
|
249 |
|
|
250 |
lemma int_cong_exp: "[(x::int) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
|
|
251 |
apply (induct k)
|
|
252 |
apply (auto simp add: int_cong_refl int_cong_mult)
|
|
253 |
done
|
|
254 |
|
|
255 |
lemma nat_cong_setsum [rule_format]:
|
|
256 |
"(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow>
|
|
257 |
[(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
|
|
258 |
apply (case_tac "finite A")
|
|
259 |
apply (induct set: finite)
|
|
260 |
apply (auto intro: nat_cong_add)
|
|
261 |
done
|
|
262 |
|
|
263 |
lemma int_cong_setsum [rule_format]:
|
|
264 |
"(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow>
|
|
265 |
[(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
|
|
266 |
apply (case_tac "finite A")
|
|
267 |
apply (induct set: finite)
|
|
268 |
apply (auto intro: int_cong_add)
|
|
269 |
done
|
|
270 |
|
|
271 |
lemma nat_cong_setprod [rule_format]:
|
|
272 |
"(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow>
|
|
273 |
[(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
|
|
274 |
apply (case_tac "finite A")
|
|
275 |
apply (induct set: finite)
|
|
276 |
apply (auto intro: nat_cong_mult)
|
|
277 |
done
|
|
278 |
|
|
279 |
lemma int_cong_setprod [rule_format]:
|
|
280 |
"(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow>
|
|
281 |
[(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
|
|
282 |
apply (case_tac "finite A")
|
|
283 |
apply (induct set: finite)
|
|
284 |
apply (auto intro: int_cong_mult)
|
|
285 |
done
|
|
286 |
|
|
287 |
lemma nat_cong_scalar: "[(a::nat)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
|
|
288 |
by (rule nat_cong_mult, simp_all)
|
|
289 |
|
|
290 |
lemma int_cong_scalar: "[(a::int)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
|
|
291 |
by (rule int_cong_mult, simp_all)
|
|
292 |
|
|
293 |
lemma nat_cong_scalar2: "[(a::nat)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
|
|
294 |
by (rule nat_cong_mult, simp_all)
|
|
295 |
|
|
296 |
lemma int_cong_scalar2: "[(a::int)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
|
|
297 |
by (rule int_cong_mult, simp_all)
|
|
298 |
|
|
299 |
lemma nat_cong_mult_self: "[(a::nat) * m = 0] (mod m)"
|
|
300 |
by (unfold cong_nat_def, auto)
|
|
301 |
|
|
302 |
lemma int_cong_mult_self: "[(a::int) * m = 0] (mod m)"
|
|
303 |
by (unfold cong_int_def, auto)
|
|
304 |
|
|
305 |
lemma int_cong_eq_diff_cong_0: "[(a::int) = b] (mod m) = [a - b = 0] (mod m)"
|
|
306 |
apply (rule iffI)
|
|
307 |
apply (erule int_cong_diff [of a b m b b, simplified])
|
|
308 |
apply (erule int_cong_add [of "a - b" 0 m b b, simplified])
|
|
309 |
done
|
|
310 |
|
|
311 |
lemma int_cong_eq_diff_cong_0_aux: "a >= b \<Longrightarrow>
|
|
312 |
[(a::int) = b] (mod m) = [tsub a b = 0] (mod m)"
|
|
313 |
by (subst tsub_eq, assumption, rule int_cong_eq_diff_cong_0)
|
|
314 |
|
|
315 |
lemma nat_cong_eq_diff_cong_0:
|
|
316 |
assumes "(a::nat) >= b"
|
|
317 |
shows "[a = b] (mod m) = [a - b = 0] (mod m)"
|
|
318 |
|
|
319 |
using prems by (rule int_cong_eq_diff_cong_0_aux [transferred])
|
|
320 |
|
|
321 |
lemma nat_cong_diff_cong_0':
|
|
322 |
"[(x::nat) = y] (mod n) \<longleftrightarrow>
|
|
323 |
(if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
|
|
324 |
apply (case_tac "y <= x")
|
|
325 |
apply (frule nat_cong_eq_diff_cong_0 [where m = n])
|
|
326 |
apply auto [1]
|
|
327 |
apply (subgoal_tac "x <= y")
|
|
328 |
apply (frule nat_cong_eq_diff_cong_0 [where m = n])
|
|
329 |
apply (subst nat_cong_sym_eq)
|
|
330 |
apply auto
|
|
331 |
done
|
|
332 |
|
|
333 |
lemma nat_cong_altdef: "(a::nat) >= b \<Longrightarrow> [a = b] (mod m) = (m dvd (a - b))"
|
|
334 |
apply (subst nat_cong_eq_diff_cong_0, assumption)
|
|
335 |
apply (unfold cong_nat_def)
|
|
336 |
apply (simp add: dvd_eq_mod_eq_0 [symmetric])
|
|
337 |
done
|
|
338 |
|
|
339 |
lemma int_cong_altdef: "[(a::int) = b] (mod m) = (m dvd (a - b))"
|
|
340 |
apply (subst int_cong_eq_diff_cong_0)
|
|
341 |
apply (unfold cong_int_def)
|
|
342 |
apply (simp add: dvd_eq_mod_eq_0 [symmetric])
|
|
343 |
done
|
|
344 |
|
|
345 |
lemma int_cong_abs: "[(x::int) = y] (mod abs m) = [x = y] (mod m)"
|
|
346 |
by (simp add: int_cong_altdef)
|
|
347 |
|
|
348 |
lemma int_cong_square:
|
|
349 |
"\<lbrakk> prime (p::int); 0 < a; [a * a = 1] (mod p) \<rbrakk>
|
|
350 |
\<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)"
|
|
351 |
apply (simp only: int_cong_altdef)
|
|
352 |
apply (subst int_prime_dvd_mult_eq [symmetric], assumption)
|
|
353 |
(* any way around this? *)
|
|
354 |
apply (subgoal_tac "a * a - 1 = (a - 1) * (a - -1)")
|
|
355 |
apply (auto simp add: ring_simps)
|
|
356 |
done
|
|
357 |
|
|
358 |
lemma int_cong_mult_rcancel:
|
|
359 |
"coprime k (m::int) \<Longrightarrow> [a * k = b * k] (mod m) = [a = b] (mod m)"
|
|
360 |
apply (subst (1 2) int_cong_altdef)
|
|
361 |
apply (subst left_diff_distrib [symmetric])
|
|
362 |
apply (rule int_coprime_dvd_mult_iff)
|
|
363 |
apply (subst int_gcd_commute, assumption)
|
|
364 |
done
|
|
365 |
|
|
366 |
lemma nat_cong_mult_rcancel:
|
|
367 |
assumes "coprime k (m::nat)"
|
|
368 |
shows "[a * k = b * k] (mod m) = [a = b] (mod m)"
|
|
369 |
|
|
370 |
apply (rule int_cong_mult_rcancel [transferred])
|
|
371 |
using prems apply auto
|
|
372 |
done
|
|
373 |
|
|
374 |
lemma nat_cong_mult_lcancel:
|
|
375 |
"coprime k (m::nat) \<Longrightarrow> [k * a = k * b ] (mod m) = [a = b] (mod m)"
|
|
376 |
by (simp add: mult_commute nat_cong_mult_rcancel)
|
|
377 |
|
|
378 |
lemma int_cong_mult_lcancel:
|
|
379 |
"coprime k (m::int) \<Longrightarrow> [k * a = k * b] (mod m) = [a = b] (mod m)"
|
|
380 |
by (simp add: mult_commute int_cong_mult_rcancel)
|
|
381 |
|
|
382 |
(* was zcong_zgcd_zmult_zmod *)
|
|
383 |
lemma int_coprime_cong_mult:
|
|
384 |
"[(a::int) = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n
|
|
385 |
\<Longrightarrow> [a = b] (mod m * n)"
|
|
386 |
apply (simp only: int_cong_altdef)
|
|
387 |
apply (erule (2) int_divides_mult)
|
|
388 |
done
|
|
389 |
|
|
390 |
lemma nat_coprime_cong_mult:
|
|
391 |
assumes "[(a::nat) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n"
|
|
392 |
shows "[a = b] (mod m * n)"
|
|
393 |
|
|
394 |
apply (rule int_coprime_cong_mult [transferred])
|
|
395 |
using prems apply auto
|
|
396 |
done
|
|
397 |
|
|
398 |
lemma nat_cong_less_imp_eq: "0 \<le> (a::nat) \<Longrightarrow>
|
|
399 |
a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
|
|
400 |
by (auto simp add: cong_nat_def mod_pos_pos_trivial)
|
|
401 |
|
|
402 |
lemma int_cong_less_imp_eq: "0 \<le> (a::int) \<Longrightarrow>
|
|
403 |
a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
|
|
404 |
by (auto simp add: cong_int_def mod_pos_pos_trivial)
|
|
405 |
|
|
406 |
lemma nat_cong_less_unique:
|
|
407 |
"0 < (m::nat) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
|
|
408 |
apply auto
|
|
409 |
apply (rule_tac x = "a mod m" in exI)
|
|
410 |
apply (unfold cong_nat_def, auto)
|
|
411 |
done
|
|
412 |
|
|
413 |
lemma int_cong_less_unique:
|
|
414 |
"0 < (m::int) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
|
|
415 |
apply auto
|
|
416 |
apply (rule_tac x = "a mod m" in exI)
|
|
417 |
apply (unfold cong_int_def, auto simp add: mod_pos_pos_trivial)
|
|
418 |
done
|
|
419 |
|
|
420 |
lemma int_cong_iff_lin: "([(a::int) = b] (mod m)) = (\<exists>k. b = a + m * k)"
|
|
421 |
apply (auto simp add: int_cong_altdef dvd_def ring_simps)
|
|
422 |
apply (rule_tac [!] x = "-k" in exI, auto)
|
|
423 |
done
|
|
424 |
|
|
425 |
lemma nat_cong_iff_lin: "([(a::nat) = b] (mod m)) =
|
|
426 |
(\<exists>k1 k2. b + k1 * m = a + k2 * m)"
|
|
427 |
apply (rule iffI)
|
|
428 |
apply (case_tac "b <= a")
|
|
429 |
apply (subst (asm) nat_cong_altdef, assumption)
|
|
430 |
apply (unfold dvd_def, auto)
|
|
431 |
apply (rule_tac x = k in exI)
|
|
432 |
apply (rule_tac x = 0 in exI)
|
|
433 |
apply (auto simp add: ring_simps)
|
|
434 |
apply (subst (asm) nat_cong_sym_eq)
|
|
435 |
apply (subst (asm) nat_cong_altdef)
|
|
436 |
apply force
|
|
437 |
apply (unfold dvd_def, auto)
|
|
438 |
apply (rule_tac x = 0 in exI)
|
|
439 |
apply (rule_tac x = k in exI)
|
|
440 |
apply (auto simp add: ring_simps)
|
|
441 |
apply (unfold cong_nat_def)
|
|
442 |
apply (subgoal_tac "a mod m = (a + k2 * m) mod m")
|
|
443 |
apply (erule ssubst)back
|
|
444 |
apply (erule subst)
|
|
445 |
apply auto
|
|
446 |
done
|
|
447 |
|
|
448 |
lemma int_cong_gcd_eq: "[(a::int) = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
|
|
449 |
apply (subst (asm) int_cong_iff_lin, auto)
|
|
450 |
apply (subst add_commute)
|
|
451 |
apply (subst (2) int_gcd_commute)
|
|
452 |
apply (subst mult_commute)
|
|
453 |
apply (subst int_gcd_add_mult)
|
|
454 |
apply (rule int_gcd_commute)
|
|
455 |
done
|
|
456 |
|
|
457 |
lemma nat_cong_gcd_eq:
|
|
458 |
assumes "[(a::nat) = b] (mod m)"
|
|
459 |
shows "gcd a m = gcd b m"
|
|
460 |
|
|
461 |
apply (rule int_cong_gcd_eq [transferred])
|
|
462 |
using prems apply auto
|
|
463 |
done
|
|
464 |
|
|
465 |
lemma nat_cong_imp_coprime: "[(a::nat) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow>
|
|
466 |
coprime b m"
|
|
467 |
by (auto simp add: nat_cong_gcd_eq)
|
|
468 |
|
|
469 |
lemma int_cong_imp_coprime: "[(a::int) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow>
|
|
470 |
coprime b m"
|
|
471 |
by (auto simp add: int_cong_gcd_eq)
|
|
472 |
|
|
473 |
lemma nat_cong_cong_mod: "[(a::nat) = b] (mod m) =
|
|
474 |
[a mod m = b mod m] (mod m)"
|
|
475 |
by (auto simp add: cong_nat_def)
|
|
476 |
|
|
477 |
lemma int_cong_cong_mod: "[(a::int) = b] (mod m) =
|
|
478 |
[a mod m = b mod m] (mod m)"
|
|
479 |
by (auto simp add: cong_int_def)
|
|
480 |
|
|
481 |
lemma int_cong_minus [iff]: "[(a::int) = b] (mod -m) = [a = b] (mod m)"
|
|
482 |
by (subst (1 2) int_cong_altdef, auto)
|
|
483 |
|
|
484 |
lemma nat_cong_zero [iff]: "[(a::nat) = b] (mod 0) = (a = b)"
|
|
485 |
by (auto simp add: cong_nat_def)
|
|
486 |
|
|
487 |
lemma int_cong_zero [iff]: "[(a::int) = b] (mod 0) = (a = b)"
|
|
488 |
by (auto simp add: cong_int_def)
|
|
489 |
|
|
490 |
(*
|
|
491 |
lemma int_mod_dvd_mod:
|
|
492 |
"0 < (m::int) \<Longrightarrow> m dvd b \<Longrightarrow> (a mod b mod m) = (a mod m)"
|
|
493 |
apply (unfold dvd_def, auto)
|
|
494 |
apply (rule mod_mod_cancel)
|
|
495 |
apply auto
|
|
496 |
done
|
|
497 |
|
|
498 |
lemma mod_dvd_mod:
|
|
499 |
assumes "0 < (m::nat)" and "m dvd b"
|
|
500 |
shows "(a mod b mod m) = (a mod m)"
|
|
501 |
|
|
502 |
apply (rule int_mod_dvd_mod [transferred])
|
|
503 |
using prems apply auto
|
|
504 |
done
|
|
505 |
*)
|
|
506 |
|
|
507 |
lemma nat_cong_add_lcancel:
|
|
508 |
"[(a::nat) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
|
|
509 |
by (simp add: nat_cong_iff_lin)
|
|
510 |
|
|
511 |
lemma int_cong_add_lcancel:
|
|
512 |
"[(a::int) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
|
|
513 |
by (simp add: int_cong_iff_lin)
|
|
514 |
|
|
515 |
lemma nat_cong_add_rcancel: "[(x::nat) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
|
|
516 |
by (simp add: nat_cong_iff_lin)
|
|
517 |
|
|
518 |
lemma int_cong_add_rcancel: "[(x::int) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
|
|
519 |
by (simp add: int_cong_iff_lin)
|
|
520 |
|
|
521 |
lemma nat_cong_add_lcancel_0: "[(a::nat) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
|
|
522 |
by (simp add: nat_cong_iff_lin)
|
|
523 |
|
|
524 |
lemma int_cong_add_lcancel_0: "[(a::int) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
|
|
525 |
by (simp add: int_cong_iff_lin)
|
|
526 |
|
|
527 |
lemma nat_cong_add_rcancel_0: "[x + (a::nat) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
|
|
528 |
by (simp add: nat_cong_iff_lin)
|
|
529 |
|
|
530 |
lemma int_cong_add_rcancel_0: "[x + (a::int) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
|
|
531 |
by (simp add: int_cong_iff_lin)
|
|
532 |
|
|
533 |
lemma nat_cong_dvd_modulus: "[(x::nat) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow>
|
|
534 |
[x = y] (mod n)"
|
|
535 |
apply (auto simp add: nat_cong_iff_lin dvd_def)
|
|
536 |
apply (rule_tac x="k1 * k" in exI)
|
|
537 |
apply (rule_tac x="k2 * k" in exI)
|
|
538 |
apply (simp add: ring_simps)
|
|
539 |
done
|
|
540 |
|
|
541 |
lemma int_cong_dvd_modulus: "[(x::int) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow>
|
|
542 |
[x = y] (mod n)"
|
|
543 |
by (auto simp add: int_cong_altdef dvd_def)
|
|
544 |
|
|
545 |
lemma nat_cong_dvd_eq: "[(x::nat) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
|
|
546 |
by (unfold cong_nat_def, auto simp add: dvd_eq_mod_eq_0)
|
|
547 |
|
|
548 |
lemma int_cong_dvd_eq: "[(x::int) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
|
|
549 |
by (unfold cong_int_def, auto simp add: dvd_eq_mod_eq_0)
|
|
550 |
|
|
551 |
lemma nat_cong_mod: "(n::nat) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)"
|
|
552 |
by (simp add: cong_nat_def)
|
|
553 |
|
|
554 |
lemma int_cong_mod: "(n::int) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)"
|
|
555 |
by (simp add: cong_int_def)
|
|
556 |
|
|
557 |
lemma nat_mod_mult_cong: "(a::nat) ~= 0 \<Longrightarrow> b ~= 0
|
|
558 |
\<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
|
|
559 |
by (simp add: cong_nat_def mod_mult2_eq mod_add_left_eq)
|
|
560 |
|
|
561 |
lemma int_neg_cong: "([(a::int) = b] (mod m)) = ([-a = -b] (mod m))"
|
|
562 |
apply (simp add: int_cong_altdef)
|
|
563 |
apply (subst dvd_minus_iff [symmetric])
|
|
564 |
apply (simp add: ring_simps)
|
|
565 |
done
|
|
566 |
|
|
567 |
lemma int_cong_modulus_neg: "([(a::int) = b] (mod m)) = ([a = b] (mod -m))"
|
|
568 |
by (auto simp add: int_cong_altdef)
|
|
569 |
|
|
570 |
lemma int_mod_mult_cong: "(a::int) ~= 0 \<Longrightarrow> b ~= 0
|
|
571 |
\<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
|
|
572 |
apply (case_tac "b > 0")
|
|
573 |
apply (simp add: cong_int_def mod_mod_cancel mod_add_left_eq)
|
|
574 |
apply (subst (1 2) int_cong_modulus_neg)
|
|
575 |
apply (unfold cong_int_def)
|
|
576 |
apply (subgoal_tac "a * b = (-a * -b)")
|
|
577 |
apply (erule ssubst)
|
|
578 |
apply (subst zmod_zmult2_eq)
|
|
579 |
apply (auto simp add: mod_add_left_eq)
|
|
580 |
done
|
|
581 |
|
|
582 |
lemma nat_cong_to_1: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))"
|
|
583 |
apply (case_tac "a = 0")
|
|
584 |
apply force
|
|
585 |
apply (subst (asm) nat_cong_altdef)
|
|
586 |
apply auto
|
|
587 |
done
|
|
588 |
|
|
589 |
lemma nat_0_cong_1: "[(0::nat) = 1] (mod n) = (n = 1)"
|
|
590 |
by (unfold cong_nat_def, auto)
|
|
591 |
|
|
592 |
lemma int_0_cong_1: "[(0::int) = 1] (mod n) = ((n = 1) | (n = -1))"
|
|
593 |
by (unfold cong_int_def, auto simp add: zmult_eq_1_iff)
|
|
594 |
|
|
595 |
lemma nat_cong_to_1': "[(a::nat) = 1] (mod n) \<longleftrightarrow>
|
|
596 |
a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
|
|
597 |
apply (case_tac "n = 1")
|
|
598 |
apply auto [1]
|
|
599 |
apply (drule_tac x = "a - 1" in spec)
|
|
600 |
apply force
|
|
601 |
apply (case_tac "a = 0")
|
|
602 |
apply (auto simp add: nat_0_cong_1) [1]
|
|
603 |
apply (rule iffI)
|
|
604 |
apply (drule nat_cong_to_1)
|
|
605 |
apply (unfold dvd_def)
|
|
606 |
apply auto [1]
|
|
607 |
apply (rule_tac x = k in exI)
|
|
608 |
apply (auto simp add: ring_simps) [1]
|
|
609 |
apply (subst nat_cong_altdef)
|
|
610 |
apply (auto simp add: dvd_def)
|
|
611 |
done
|
|
612 |
|
|
613 |
lemma nat_cong_le: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
|
|
614 |
apply (subst nat_cong_altdef)
|
|
615 |
apply assumption
|
|
616 |
apply (unfold dvd_def, auto simp add: ring_simps)
|
|
617 |
apply (rule_tac x = k in exI)
|
|
618 |
apply auto
|
|
619 |
done
|
|
620 |
|
|
621 |
lemma nat_cong_solve: "(a::nat) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
|
|
622 |
apply (case_tac "n = 0")
|
|
623 |
apply force
|
|
624 |
apply (frule nat_bezout [of a n], auto)
|
|
625 |
apply (rule exI, erule ssubst)
|
|
626 |
apply (rule nat_cong_trans)
|
|
627 |
apply (rule nat_cong_add)
|
|
628 |
apply (subst mult_commute)
|
|
629 |
apply (rule nat_cong_mult_self)
|
|
630 |
prefer 2
|
|
631 |
apply simp
|
|
632 |
apply (rule nat_cong_refl)
|
|
633 |
apply (rule nat_cong_refl)
|
|
634 |
done
|
|
635 |
|
|
636 |
lemma int_cong_solve: "(a::int) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
|
|
637 |
apply (case_tac "n = 0")
|
|
638 |
apply (case_tac "a \<ge> 0")
|
|
639 |
apply auto
|
|
640 |
apply (rule_tac x = "-1" in exI)
|
|
641 |
apply auto
|
|
642 |
apply (insert int_bezout [of a n], auto)
|
|
643 |
apply (rule exI)
|
|
644 |
apply (erule subst)
|
|
645 |
apply (rule int_cong_trans)
|
|
646 |
prefer 2
|
|
647 |
apply (rule int_cong_add)
|
|
648 |
apply (rule int_cong_refl)
|
|
649 |
apply (rule int_cong_sym)
|
|
650 |
apply (rule int_cong_mult_self)
|
|
651 |
apply simp
|
|
652 |
apply (subst mult_commute)
|
|
653 |
apply (rule int_cong_refl)
|
|
654 |
done
|
|
655 |
|
|
656 |
lemma nat_cong_solve_dvd:
|
|
657 |
assumes a: "(a::nat) \<noteq> 0" and b: "gcd a n dvd d"
|
|
658 |
shows "EX x. [a * x = d] (mod n)"
|
|
659 |
proof -
|
|
660 |
from nat_cong_solve [OF a] obtain x where
|
|
661 |
"[a * x = gcd a n](mod n)"
|
|
662 |
by auto
|
|
663 |
hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
|
|
664 |
by (elim nat_cong_scalar2)
|
|
665 |
also from b have "(d div gcd a n) * gcd a n = d"
|
|
666 |
by (rule dvd_div_mult_self)
|
|
667 |
also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
|
|
668 |
by auto
|
|
669 |
finally show ?thesis
|
|
670 |
by auto
|
|
671 |
qed
|
|
672 |
|
|
673 |
lemma int_cong_solve_dvd:
|
|
674 |
assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d"
|
|
675 |
shows "EX x. [a * x = d] (mod n)"
|
|
676 |
proof -
|
|
677 |
from int_cong_solve [OF a] obtain x where
|
|
678 |
"[a * x = gcd a n](mod n)"
|
|
679 |
by auto
|
|
680 |
hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
|
|
681 |
by (elim int_cong_scalar2)
|
|
682 |
also from b have "(d div gcd a n) * gcd a n = d"
|
|
683 |
by (rule dvd_div_mult_self)
|
|
684 |
also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
|
|
685 |
by auto
|
|
686 |
finally show ?thesis
|
|
687 |
by auto
|
|
688 |
qed
|
|
689 |
|
|
690 |
lemma nat_cong_solve_coprime: "coprime (a::nat) n \<Longrightarrow>
|
|
691 |
EX x. [a * x = 1] (mod n)"
|
|
692 |
apply (case_tac "a = 0")
|
|
693 |
apply force
|
|
694 |
apply (frule nat_cong_solve [of a n])
|
|
695 |
apply auto
|
|
696 |
done
|
|
697 |
|
|
698 |
lemma int_cong_solve_coprime: "coprime (a::int) n \<Longrightarrow>
|
|
699 |
EX x. [a * x = 1] (mod n)"
|
|
700 |
apply (case_tac "a = 0")
|
|
701 |
apply auto
|
|
702 |
apply (case_tac "n \<ge> 0")
|
|
703 |
apply auto
|
|
704 |
apply (subst cong_int_def, auto)
|
|
705 |
apply (frule int_cong_solve [of a n])
|
|
706 |
apply auto
|
|
707 |
done
|
|
708 |
|
|
709 |
lemma nat_coprime_iff_invertible: "m > (1::nat) \<Longrightarrow> coprime a m =
|
|
710 |
(EX x. [a * x = 1] (mod m))"
|
|
711 |
apply (auto intro: nat_cong_solve_coprime)
|
|
712 |
apply (unfold cong_nat_def, auto intro: nat_invertible_coprime)
|
|
713 |
done
|
|
714 |
|
|
715 |
lemma int_coprime_iff_invertible: "m > (1::int) \<Longrightarrow> coprime a m =
|
|
716 |
(EX x. [a * x = 1] (mod m))"
|
|
717 |
apply (auto intro: int_cong_solve_coprime)
|
|
718 |
apply (unfold cong_int_def)
|
|
719 |
apply (auto intro: int_invertible_coprime)
|
|
720 |
done
|
|
721 |
|
|
722 |
lemma int_coprime_iff_invertible': "m > (1::int) \<Longrightarrow> coprime a m =
|
|
723 |
(EX x. 0 <= x & x < m & [a * x = 1] (mod m))"
|
|
724 |
apply (subst int_coprime_iff_invertible)
|
|
725 |
apply auto
|
|
726 |
apply (auto simp add: cong_int_def)
|
|
727 |
apply (rule_tac x = "x mod m" in exI)
|
|
728 |
apply (auto simp add: mod_mult_right_eq [symmetric])
|
|
729 |
done
|
|
730 |
|
|
731 |
|
|
732 |
lemma nat_cong_cong_lcm: "[(x::nat) = y] (mod a) \<Longrightarrow>
|
|
733 |
[x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
|
|
734 |
apply (case_tac "y \<le> x")
|
|
735 |
apply (auto simp add: nat_cong_altdef nat_lcm_least) [1]
|
|
736 |
apply (rule nat_cong_sym)
|
|
737 |
apply (subst (asm) (1 2) nat_cong_sym_eq)
|
|
738 |
apply (auto simp add: nat_cong_altdef nat_lcm_least)
|
|
739 |
done
|
|
740 |
|
|
741 |
lemma int_cong_cong_lcm: "[(x::int) = y] (mod a) \<Longrightarrow>
|
|
742 |
[x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
|
|
743 |
by (auto simp add: int_cong_altdef int_lcm_least) [1]
|
|
744 |
|
|
745 |
lemma nat_cong_cong_coprime: "coprime a b \<Longrightarrow> [(x::nat) = y] (mod a) \<Longrightarrow>
|
|
746 |
[x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
|
|
747 |
apply (frule (1) nat_cong_cong_lcm)back
|
|
748 |
apply (simp add: lcm_nat_def)
|
|
749 |
done
|
|
750 |
|
|
751 |
lemma int_cong_cong_coprime: "coprime a b \<Longrightarrow> [(x::int) = y] (mod a) \<Longrightarrow>
|
|
752 |
[x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
|
|
753 |
apply (frule (1) int_cong_cong_lcm)back
|
|
754 |
apply (simp add: int_lcm_altdef int_cong_abs abs_mult [symmetric])
|
|
755 |
done
|
|
756 |
|
|
757 |
lemma nat_cong_cong_setprod_coprime [rule_format]: "finite A \<Longrightarrow>
|
|
758 |
(ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
|
|
759 |
(ALL i:A. [(x::nat) = y] (mod m i)) \<longrightarrow>
|
|
760 |
[x = y] (mod (PROD i:A. m i))"
|
|
761 |
apply (induct set: finite)
|
|
762 |
apply auto
|
|
763 |
apply (rule nat_cong_cong_coprime)
|
|
764 |
apply (subst nat_gcd_commute)
|
|
765 |
apply (rule nat_setprod_coprime)
|
|
766 |
apply auto
|
|
767 |
done
|
|
768 |
|
|
769 |
lemma int_cong_cong_setprod_coprime [rule_format]: "finite A \<Longrightarrow>
|
|
770 |
(ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
|
|
771 |
(ALL i:A. [(x::int) = y] (mod m i)) \<longrightarrow>
|
|
772 |
[x = y] (mod (PROD i:A. m i))"
|
|
773 |
apply (induct set: finite)
|
|
774 |
apply auto
|
|
775 |
apply (rule int_cong_cong_coprime)
|
|
776 |
apply (subst int_gcd_commute)
|
|
777 |
apply (rule int_setprod_coprime)
|
|
778 |
apply auto
|
|
779 |
done
|
|
780 |
|
|
781 |
lemma nat_binary_chinese_remainder_aux:
|
|
782 |
assumes a: "coprime (m1::nat) m2"
|
|
783 |
shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
|
|
784 |
[b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
|
|
785 |
proof -
|
|
786 |
from nat_cong_solve_coprime [OF a]
|
|
787 |
obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
|
|
788 |
by auto
|
|
789 |
from a have b: "coprime m2 m1"
|
|
790 |
by (subst nat_gcd_commute)
|
|
791 |
from nat_cong_solve_coprime [OF b]
|
|
792 |
obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
|
|
793 |
by auto
|
|
794 |
have "[m1 * x1 = 0] (mod m1)"
|
|
795 |
by (subst mult_commute, rule nat_cong_mult_self)
|
|
796 |
moreover have "[m2 * x2 = 0] (mod m2)"
|
|
797 |
by (subst mult_commute, rule nat_cong_mult_self)
|
|
798 |
moreover note one two
|
|
799 |
ultimately show ?thesis by blast
|
|
800 |
qed
|
|
801 |
|
|
802 |
lemma int_binary_chinese_remainder_aux:
|
|
803 |
assumes a: "coprime (m1::int) m2"
|
|
804 |
shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
|
|
805 |
[b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
|
|
806 |
proof -
|
|
807 |
from int_cong_solve_coprime [OF a]
|
|
808 |
obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
|
|
809 |
by auto
|
|
810 |
from a have b: "coprime m2 m1"
|
|
811 |
by (subst int_gcd_commute)
|
|
812 |
from int_cong_solve_coprime [OF b]
|
|
813 |
obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
|
|
814 |
by auto
|
|
815 |
have "[m1 * x1 = 0] (mod m1)"
|
|
816 |
by (subst mult_commute, rule int_cong_mult_self)
|
|
817 |
moreover have "[m2 * x2 = 0] (mod m2)"
|
|
818 |
by (subst mult_commute, rule int_cong_mult_self)
|
|
819 |
moreover note one two
|
|
820 |
ultimately show ?thesis by blast
|
|
821 |
qed
|
|
822 |
|
|
823 |
lemma nat_binary_chinese_remainder:
|
|
824 |
assumes a: "coprime (m1::nat) m2"
|
|
825 |
shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
|
|
826 |
proof -
|
|
827 |
from nat_binary_chinese_remainder_aux [OF a] obtain b1 b2
|
|
828 |
where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
|
|
829 |
"[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
|
|
830 |
by blast
|
|
831 |
let ?x = "u1 * b1 + u2 * b2"
|
|
832 |
have "[?x = u1 * 1 + u2 * 0] (mod m1)"
|
|
833 |
apply (rule nat_cong_add)
|
|
834 |
apply (rule nat_cong_scalar2)
|
|
835 |
apply (rule `[b1 = 1] (mod m1)`)
|
|
836 |
apply (rule nat_cong_scalar2)
|
|
837 |
apply (rule `[b2 = 0] (mod m1)`)
|
|
838 |
done
|
|
839 |
hence "[?x = u1] (mod m1)" by simp
|
|
840 |
have "[?x = u1 * 0 + u2 * 1] (mod m2)"
|
|
841 |
apply (rule nat_cong_add)
|
|
842 |
apply (rule nat_cong_scalar2)
|
|
843 |
apply (rule `[b1 = 0] (mod m2)`)
|
|
844 |
apply (rule nat_cong_scalar2)
|
|
845 |
apply (rule `[b2 = 1] (mod m2)`)
|
|
846 |
done
|
|
847 |
hence "[?x = u2] (mod m2)" by simp
|
|
848 |
with `[?x = u1] (mod m1)` show ?thesis by blast
|
|
849 |
qed
|
|
850 |
|
|
851 |
lemma int_binary_chinese_remainder:
|
|
852 |
assumes a: "coprime (m1::int) m2"
|
|
853 |
shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
|
|
854 |
proof -
|
|
855 |
from int_binary_chinese_remainder_aux [OF a] obtain b1 b2
|
|
856 |
where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
|
|
857 |
"[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
|
|
858 |
by blast
|
|
859 |
let ?x = "u1 * b1 + u2 * b2"
|
|
860 |
have "[?x = u1 * 1 + u2 * 0] (mod m1)"
|
|
861 |
apply (rule int_cong_add)
|
|
862 |
apply (rule int_cong_scalar2)
|
|
863 |
apply (rule `[b1 = 1] (mod m1)`)
|
|
864 |
apply (rule int_cong_scalar2)
|
|
865 |
apply (rule `[b2 = 0] (mod m1)`)
|
|
866 |
done
|
|
867 |
hence "[?x = u1] (mod m1)" by simp
|
|
868 |
have "[?x = u1 * 0 + u2 * 1] (mod m2)"
|
|
869 |
apply (rule int_cong_add)
|
|
870 |
apply (rule int_cong_scalar2)
|
|
871 |
apply (rule `[b1 = 0] (mod m2)`)
|
|
872 |
apply (rule int_cong_scalar2)
|
|
873 |
apply (rule `[b2 = 1] (mod m2)`)
|
|
874 |
done
|
|
875 |
hence "[?x = u2] (mod m2)" by simp
|
|
876 |
with `[?x = u1] (mod m1)` show ?thesis by blast
|
|
877 |
qed
|
|
878 |
|
|
879 |
lemma nat_cong_modulus_mult: "[(x::nat) = y] (mod m * n) \<Longrightarrow>
|
|
880 |
[x = y] (mod m)"
|
|
881 |
apply (case_tac "y \<le> x")
|
|
882 |
apply (simp add: nat_cong_altdef)
|
|
883 |
apply (erule dvd_mult_left)
|
|
884 |
apply (rule nat_cong_sym)
|
|
885 |
apply (subst (asm) nat_cong_sym_eq)
|
|
886 |
apply (simp add: nat_cong_altdef)
|
|
887 |
apply (erule dvd_mult_left)
|
|
888 |
done
|
|
889 |
|
|
890 |
lemma int_cong_modulus_mult: "[(x::int) = y] (mod m * n) \<Longrightarrow>
|
|
891 |
[x = y] (mod m)"
|
|
892 |
apply (simp add: int_cong_altdef)
|
|
893 |
apply (erule dvd_mult_left)
|
|
894 |
done
|
|
895 |
|
|
896 |
lemma nat_cong_less_modulus_unique:
|
|
897 |
"[(x::nat) = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
|
|
898 |
by (simp add: cong_nat_def)
|
|
899 |
|
|
900 |
lemma nat_binary_chinese_remainder_unique:
|
|
901 |
assumes a: "coprime (m1::nat) m2" and
|
|
902 |
nz: "m1 \<noteq> 0" "m2 \<noteq> 0"
|
|
903 |
shows "EX! x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
|
|
904 |
proof -
|
|
905 |
from nat_binary_chinese_remainder [OF a] obtain y where
|
|
906 |
"[y = u1] (mod m1)" and "[y = u2] (mod m2)"
|
|
907 |
by blast
|
|
908 |
let ?x = "y mod (m1 * m2)"
|
|
909 |
from nz have less: "?x < m1 * m2"
|
|
910 |
by auto
|
|
911 |
have one: "[?x = u1] (mod m1)"
|
|
912 |
apply (rule nat_cong_trans)
|
|
913 |
prefer 2
|
|
914 |
apply (rule `[y = u1] (mod m1)`)
|
|
915 |
apply (rule nat_cong_modulus_mult)
|
|
916 |
apply (rule nat_cong_mod)
|
|
917 |
using nz apply auto
|
|
918 |
done
|
|
919 |
have two: "[?x = u2] (mod m2)"
|
|
920 |
apply (rule nat_cong_trans)
|
|
921 |
prefer 2
|
|
922 |
apply (rule `[y = u2] (mod m2)`)
|
|
923 |
apply (subst mult_commute)
|
|
924 |
apply (rule nat_cong_modulus_mult)
|
|
925 |
apply (rule nat_cong_mod)
|
|
926 |
using nz apply auto
|
|
927 |
done
|
|
928 |
have "ALL z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow>
|
|
929 |
z = ?x"
|
|
930 |
proof (clarify)
|
|
931 |
fix z
|
|
932 |
assume "z < m1 * m2"
|
|
933 |
assume "[z = u1] (mod m1)" and "[z = u2] (mod m2)"
|
|
934 |
have "[?x = z] (mod m1)"
|
|
935 |
apply (rule nat_cong_trans)
|
|
936 |
apply (rule `[?x = u1] (mod m1)`)
|
|
937 |
apply (rule nat_cong_sym)
|
|
938 |
apply (rule `[z = u1] (mod m1)`)
|
|
939 |
done
|
|
940 |
moreover have "[?x = z] (mod m2)"
|
|
941 |
apply (rule nat_cong_trans)
|
|
942 |
apply (rule `[?x = u2] (mod m2)`)
|
|
943 |
apply (rule nat_cong_sym)
|
|
944 |
apply (rule `[z = u2] (mod m2)`)
|
|
945 |
done
|
|
946 |
ultimately have "[?x = z] (mod m1 * m2)"
|
|
947 |
by (auto intro: nat_coprime_cong_mult a)
|
|
948 |
with `z < m1 * m2` `?x < m1 * m2` show "z = ?x"
|
|
949 |
apply (intro nat_cong_less_modulus_unique)
|
|
950 |
apply (auto, erule nat_cong_sym)
|
|
951 |
done
|
|
952 |
qed
|
|
953 |
with less one two show ?thesis
|
|
954 |
by auto
|
|
955 |
qed
|
|
956 |
|
|
957 |
lemma nat_chinese_remainder_aux:
|
|
958 |
fixes A :: "'a set" and
|
|
959 |
m :: "'a \<Rightarrow> nat"
|
|
960 |
assumes fin: "finite A" and
|
|
961 |
cop: "ALL i : A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
|
|
962 |
shows "EX b. (ALL i : A.
|
|
963 |
[b i = 1] (mod m i) \<and> [b i = 0] (mod (PROD j : A - {i}. m j)))"
|
|
964 |
proof (rule finite_set_choice, rule fin, rule ballI)
|
|
965 |
fix i
|
|
966 |
assume "i : A"
|
|
967 |
with cop have "coprime (PROD j : A - {i}. m j) (m i)"
|
|
968 |
by (intro nat_setprod_coprime, auto)
|
|
969 |
hence "EX x. [(PROD j : A - {i}. m j) * x = 1] (mod m i)"
|
|
970 |
by (elim nat_cong_solve_coprime)
|
|
971 |
then obtain x where "[(PROD j : A - {i}. m j) * x = 1] (mod m i)"
|
|
972 |
by auto
|
|
973 |
moreover have "[(PROD j : A - {i}. m j) * x = 0]
|
|
974 |
(mod (PROD j : A - {i}. m j))"
|
|
975 |
by (subst mult_commute, rule nat_cong_mult_self)
|
|
976 |
ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0]
|
|
977 |
(mod setprod m (A - {i}))"
|
|
978 |
by blast
|
|
979 |
qed
|
|
980 |
|
|
981 |
lemma nat_chinese_remainder:
|
|
982 |
fixes A :: "'a set" and
|
|
983 |
m :: "'a \<Rightarrow> nat" and
|
|
984 |
u :: "'a \<Rightarrow> nat"
|
|
985 |
assumes
|
|
986 |
fin: "finite A" and
|
|
987 |
cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
|
|
988 |
shows "EX x. (ALL i:A. [x = u i] (mod m i))"
|
|
989 |
proof -
|
|
990 |
from nat_chinese_remainder_aux [OF fin cop] obtain b where
|
|
991 |
bprop: "ALL i:A. [b i = 1] (mod m i) \<and>
|
|
992 |
[b i = 0] (mod (PROD j : A - {i}. m j))"
|
|
993 |
by blast
|
|
994 |
let ?x = "SUM i:A. (u i) * (b i)"
|
|
995 |
show "?thesis"
|
|
996 |
proof (rule exI, clarify)
|
|
997 |
fix i
|
|
998 |
assume a: "i : A"
|
|
999 |
show "[?x = u i] (mod m i)"
|
|
1000 |
proof -
|
|
1001 |
from fin a have "?x = (SUM j:{i}. u j * b j) +
|
|
1002 |
(SUM j:A-{i}. u j * b j)"
|
|
1003 |
by (subst setsum_Un_disjoint [symmetric], auto intro: setsum_cong)
|
|
1004 |
hence "[?x = u i * b i + (SUM j:A-{i}. u j * b j)] (mod m i)"
|
|
1005 |
by auto
|
|
1006 |
also have "[u i * b i + (SUM j:A-{i}. u j * b j) =
|
|
1007 |
u i * 1 + (SUM j:A-{i}. u j * 0)] (mod m i)"
|
|
1008 |
apply (rule nat_cong_add)
|
|
1009 |
apply (rule nat_cong_scalar2)
|
|
1010 |
using bprop a apply blast
|
|
1011 |
apply (rule nat_cong_setsum)
|
|
1012 |
apply (rule nat_cong_scalar2)
|
|
1013 |
using bprop apply auto
|
|
1014 |
apply (rule nat_cong_dvd_modulus)
|
|
1015 |
apply (drule (1) bspec)
|
|
1016 |
apply (erule conjE)
|
|
1017 |
apply assumption
|
|
1018 |
apply (rule dvd_setprod)
|
|
1019 |
using fin a apply auto
|
|
1020 |
done
|
|
1021 |
finally show ?thesis
|
|
1022 |
by simp
|
|
1023 |
qed
|
|
1024 |
qed
|
|
1025 |
qed
|
|
1026 |
|
|
1027 |
lemma nat_coprime_cong_prod [rule_format]: "finite A \<Longrightarrow>
|
|
1028 |
(ALL i: A. (ALL j: A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
|
|
1029 |
(ALL i: A. [(x::nat) = y] (mod m i)) \<longrightarrow>
|
|
1030 |
[x = y] (mod (PROD i:A. m i))"
|
|
1031 |
apply (induct set: finite)
|
|
1032 |
apply auto
|
|
1033 |
apply (erule (1) nat_coprime_cong_mult)
|
|
1034 |
apply (subst nat_gcd_commute)
|
|
1035 |
apply (rule nat_setprod_coprime)
|
|
1036 |
apply auto
|
|
1037 |
done
|
|
1038 |
|
|
1039 |
lemma nat_chinese_remainder_unique:
|
|
1040 |
fixes A :: "'a set" and
|
|
1041 |
m :: "'a \<Rightarrow> nat" and
|
|
1042 |
u :: "'a \<Rightarrow> nat"
|
|
1043 |
assumes
|
|
1044 |
fin: "finite A" and
|
|
1045 |
nz: "ALL i:A. m i \<noteq> 0" and
|
|
1046 |
cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
|
|
1047 |
shows "EX! x. x < (PROD i:A. m i) \<and> (ALL i:A. [x = u i] (mod m i))"
|
|
1048 |
proof -
|
|
1049 |
from nat_chinese_remainder [OF fin cop] obtain y where
|
|
1050 |
one: "(ALL i:A. [y = u i] (mod m i))"
|
|
1051 |
by blast
|
|
1052 |
let ?x = "y mod (PROD i:A. m i)"
|
|
1053 |
from fin nz have prodnz: "(PROD i:A. m i) \<noteq> 0"
|
|
1054 |
by auto
|
|
1055 |
hence less: "?x < (PROD i:A. m i)"
|
|
1056 |
by auto
|
|
1057 |
have cong: "ALL i:A. [?x = u i] (mod m i)"
|
|
1058 |
apply auto
|
|
1059 |
apply (rule nat_cong_trans)
|
|
1060 |
prefer 2
|
|
1061 |
using one apply auto
|
|
1062 |
apply (rule nat_cong_dvd_modulus)
|
|
1063 |
apply (rule nat_cong_mod)
|
|
1064 |
using prodnz apply auto
|
|
1065 |
apply (rule dvd_setprod)
|
|
1066 |
apply (rule fin)
|
|
1067 |
apply assumption
|
|
1068 |
done
|
|
1069 |
have unique: "ALL z. z < (PROD i:A. m i) \<and>
|
|
1070 |
(ALL i:A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
|
|
1071 |
proof (clarify)
|
|
1072 |
fix z
|
|
1073 |
assume zless: "z < (PROD i:A. m i)"
|
|
1074 |
assume zcong: "(ALL i:A. [z = u i] (mod m i))"
|
|
1075 |
have "ALL i:A. [?x = z] (mod m i)"
|
|
1076 |
apply clarify
|
|
1077 |
apply (rule nat_cong_trans)
|
|
1078 |
using cong apply (erule bspec)
|
|
1079 |
apply (rule nat_cong_sym)
|
|
1080 |
using zcong apply auto
|
|
1081 |
done
|
|
1082 |
with fin cop have "[?x = z] (mod (PROD i:A. m i))"
|
|
1083 |
by (intro nat_coprime_cong_prod, auto)
|
|
1084 |
with zless less show "z = ?x"
|
|
1085 |
apply (intro nat_cong_less_modulus_unique)
|
|
1086 |
apply (auto, erule nat_cong_sym)
|
|
1087 |
done
|
|
1088 |
qed
|
|
1089 |
from less cong unique show ?thesis
|
|
1090 |
by blast
|
|
1091 |
qed
|
|
1092 |
|
|
1093 |
end
|