| author | nipkow | 
| Wed, 22 Jul 2009 10:49:26 +0200 | |
| changeset 32130 | 2a0645733185 | 
| parent 31718 | 7715d4d3586f | 
| child 33318 | ddd97d9dfbfb | 
| permissions | -rw-r--r-- | 
| 21263 | 1 | (* Title: HOL/Library/Parity.thy | 
| 25600 | 2 | Author: Jeremy Avigad, Jacques D. Fleuriot | 
| 21256 | 3 | *) | 
| 4 | ||
| 5 | header {* Even and Odd for int and nat *}
 | |
| 6 | ||
| 7 | theory Parity | |
| 30738 | 8 | imports Main | 
| 21256 | 9 | begin | 
| 10 | ||
| 29608 | 11 | class even_odd = | 
| 22390 | 12 | fixes even :: "'a \<Rightarrow> bool" | 
| 21256 | 13 | |
| 14 | abbreviation | |
| 22390 | 15 | odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where | 
| 16 | "odd x \<equiv> \<not> even x" | |
| 17 | ||
| 26259 | 18 | instantiation nat and int :: even_odd | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 19 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 20 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 21 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 22 | even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0" | 
| 22390 | 23 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 24 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 25 | even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 26 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 27 | instance .. | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 28 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 29 | end | 
| 21256 | 30 | |
| 31 | ||
| 31148 | 32 | lemma even_zero_int[simp]: "even (0::int)" by presburger | 
| 33 | ||
| 34 | lemma odd_one_int[simp]: "odd (1::int)" by presburger | |
| 35 | ||
| 36 | lemma even_zero_nat[simp]: "even (0::nat)" by presburger | |
| 37 | ||
| 31718 | 38 | lemma odd_1_nat [simp]: "odd (1::nat)" by presburger | 
| 31148 | 39 | |
| 40 | declare even_def[of "number_of v", standard, simp] | |
| 41 | ||
| 42 | declare even_nat_def[of "number_of v", standard, simp] | |
| 43 | ||
| 21256 | 44 | subsection {* Even and odd are mutually exclusive *}
 | 
| 45 | ||
| 21263 | 46 | lemma int_pos_lt_two_imp_zero_or_one: | 
| 21256 | 47 | "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1" | 
| 23522 | 48 | by presburger | 
| 21256 | 49 | |
| 23522 | 50 | lemma neq_one_mod_two [simp, presburger]: | 
| 51 | "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger | |
| 21256 | 52 | |
| 25600 | 53 | |
| 21256 | 54 | subsection {* Behavior under integer arithmetic operations *}
 | 
| 27668 | 55 | declare dvd_def[algebra] | 
| 56 | lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x" | |
| 57 | by (presburger add: even_nat_def even_def) | |
| 58 | lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x" | |
| 59 | by presburger | |
| 21256 | 60 | |
| 61 | lemma even_times_anything: "even (x::int) ==> even (x * y)" | |
| 27668 | 62 | by algebra | 
| 21256 | 63 | |
| 27668 | 64 | lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra | 
| 21256 | 65 | |
| 27668 | 66 | lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" | 
| 21256 | 67 | by (simp add: even_def zmod_zmult1_eq) | 
| 68 | ||
| 31148 | 69 | lemma even_product[simp,presburger]: "even((x::int) * y) = (even x | even y)" | 
| 21263 | 70 | apply (auto simp add: even_times_anything anything_times_even) | 
| 21256 | 71 | apply (rule ccontr) | 
| 72 | apply (auto simp add: odd_times_odd) | |
| 73 | done | |
| 74 | ||
| 75 | lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" | |
| 31148 | 76 | by presburger | 
| 21256 | 77 | |
| 78 | lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" | |
| 31148 | 79 | by presburger | 
| 21256 | 80 | |
| 81 | lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" | |
| 31148 | 82 | by presburger | 
| 21256 | 83 | |
| 23522 | 84 | lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger | 
| 21256 | 85 | |
| 31148 | 86 | lemma even_sum[simp,presburger]: | 
| 87 | "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" | |
| 88 | by presburger | |
| 21256 | 89 | |
| 31148 | 90 | lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x" | 
| 91 | by presburger | |
| 21256 | 92 | |
| 31148 | 93 | lemma even_difference[simp]: | 
| 23522 | 94 | "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger | 
| 21256 | 95 | |
| 31148 | 96 | lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)" | 
| 97 | by (induct n) auto | |
| 21256 | 98 | |
| 31148 | 99 | lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp | 
| 21256 | 100 | |
| 101 | ||
| 102 | subsection {* Equivalent definitions *}
 | |
| 103 | ||
| 23522 | 104 | lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" | 
| 31148 | 105 | by presburger | 
| 21256 | 106 | |
| 31148 | 107 | lemma two_times_odd_div_two_plus_one: | 
| 108 | "odd (x::int) ==> 2 * (x div 2) + 1 = x" | |
| 109 | by presburger | |
| 21256 | 110 | |
| 23522 | 111 | lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger | 
| 21256 | 112 | |
| 23522 | 113 | lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger | 
| 21256 | 114 | |
| 115 | subsection {* even and odd for nats *}
 | |
| 116 | ||
| 117 | lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)" | |
| 31148 | 118 | by (simp add: even_nat_def) | 
| 21256 | 119 | |
| 31148 | 120 | lemma even_product_nat[simp,presburger,algebra]: | 
| 121 | "even((x::nat) * y) = (even x | even y)" | |
| 122 | by (simp add: even_nat_def int_mult) | |
| 21256 | 123 | |
| 31148 | 124 | lemma even_sum_nat[simp,presburger,algebra]: | 
| 125 | "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" | |
| 23522 | 126 | by presburger | 
| 21256 | 127 | |
| 31148 | 128 | lemma even_difference_nat[simp,presburger,algebra]: | 
| 129 | "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" | |
| 130 | by presburger | |
| 21256 | 131 | |
| 31148 | 132 | lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x" | 
| 133 | by presburger | |
| 21256 | 134 | |
| 31148 | 135 | lemma even_power_nat[simp,presburger,algebra]: | 
| 136 | "even ((x::nat)^y) = (even x & 0 < y)" | |
| 137 | by (simp add: even_nat_def int_power) | |
| 21256 | 138 | |
| 139 | ||
| 140 | subsection {* Equivalent definitions *}
 | |
| 141 | ||
| 31148 | 142 | lemma nat_lt_two_imp_zero_or_one: | 
| 143 | "(x::nat) < Suc (Suc 0) ==> x = 0 | x = Suc 0" | |
| 144 | by presburger | |
| 21256 | 145 | |
| 146 | lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" | |
| 31148 | 147 | by presburger | 
| 21256 | 148 | |
| 149 | lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" | |
| 23522 | 150 | by presburger | 
| 21256 | 151 | |
| 21263 | 152 | lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" | 
| 31148 | 153 | by presburger | 
| 21256 | 154 | |
| 155 | lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" | |
| 31148 | 156 | by presburger | 
| 21256 | 157 | |
| 21263 | 158 | lemma even_nat_div_two_times_two: "even (x::nat) ==> | 
| 23522 | 159 | Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger | 
| 21256 | 160 | |
| 21263 | 161 | lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> | 
| 23522 | 162 | Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger | 
| 21256 | 163 | |
| 164 | lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" | |
| 31148 | 165 | by presburger | 
| 21256 | 166 | |
| 167 | lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" | |
| 31148 | 168 | by presburger | 
| 21256 | 169 | |
| 25600 | 170 | |
| 21256 | 171 | subsection {* Parity and powers *}
 | 
| 172 | ||
| 21263 | 173 | lemma minus_one_even_odd_power: | 
| 31017 | 174 |      "(even x --> (- 1::'a::{comm_ring_1})^x = 1) &
 | 
| 21256 | 175 | (odd x --> (- 1::'a)^x = - 1)" | 
| 176 | apply (induct x) | |
| 177 | apply (rule conjI) | |
| 178 | apply simp | |
| 31148 | 179 | apply (insert even_zero_nat, blast) | 
| 21256 | 180 | apply (simp add: power_Suc) | 
| 21263 | 181 | done | 
| 21256 | 182 | |
| 183 | lemma minus_one_even_power [simp]: | |
| 31017 | 184 |     "even x ==> (- 1::'a::{comm_ring_1})^x = 1"
 | 
| 21263 | 185 | using minus_one_even_odd_power by blast | 
| 21256 | 186 | |
| 187 | lemma minus_one_odd_power [simp]: | |
| 31017 | 188 |     "odd x ==> (- 1::'a::{comm_ring_1})^x = - 1"
 | 
| 21263 | 189 | using minus_one_even_odd_power by blast | 
| 21256 | 190 | |
| 191 | lemma neg_one_even_odd_power: | |
| 31017 | 192 |      "(even x --> (-1::'a::{number_ring})^x = 1) &
 | 
| 21256 | 193 | (odd x --> (-1::'a)^x = -1)" | 
| 194 | apply (induct x) | |
| 195 | apply (simp, simp add: power_Suc) | |
| 196 | done | |
| 197 | ||
| 198 | lemma neg_one_even_power [simp]: | |
| 31017 | 199 |     "even x ==> (-1::'a::{number_ring})^x = 1"
 | 
| 21263 | 200 | using neg_one_even_odd_power by blast | 
| 21256 | 201 | |
| 202 | lemma neg_one_odd_power [simp]: | |
| 31017 | 203 |     "odd x ==> (-1::'a::{number_ring})^x = -1"
 | 
| 21263 | 204 | using neg_one_even_odd_power by blast | 
| 21256 | 205 | |
| 206 | lemma neg_power_if: | |
| 31017 | 207 |      "(-x::'a::{comm_ring_1}) ^ n =
 | 
| 21256 | 208 | (if even n then (x ^ n) else -(x ^ n))" | 
| 21263 | 209 | apply (induct n) | 
| 210 | apply (simp_all split: split_if_asm add: power_Suc) | |
| 211 | done | |
| 21256 | 212 | |
| 21263 | 213 | lemma zero_le_even_power: "even n ==> | 
| 31017 | 214 |     0 <= (x::'a::{ordered_ring_strict,monoid_mult}) ^ n"
 | 
| 21256 | 215 | apply (simp add: even_nat_equiv_def2) | 
| 216 | apply (erule exE) | |
| 217 | apply (erule ssubst) | |
| 218 | apply (subst power_add) | |
| 219 | apply (rule zero_le_square) | |
| 220 | done | |
| 221 | ||
| 21263 | 222 | lemma zero_le_odd_power: "odd n ==> | 
| 31017 | 223 |     (0 <= (x::'a::{ordered_idom}) ^ n) = (0 <= x)"
 | 
| 30056 | 224 | apply (auto simp: odd_nat_equiv_def2 power_Suc power_add zero_le_mult_iff) | 
| 225 | apply (metis field_power_not_zero no_zero_divirors_neq0 order_antisym_conv zero_le_square) | |
| 226 | done | |
| 21256 | 227 | |
| 31017 | 228 | lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{ordered_idom}) ^ n) =
 | 
| 21256 | 229 | (even n | (odd n & 0 <= x))" | 
| 230 | apply auto | |
| 21263 | 231 | apply (subst zero_le_odd_power [symmetric]) | 
| 21256 | 232 | apply assumption+ | 
| 233 | apply (erule zero_le_even_power) | |
| 21263 | 234 | done | 
| 21256 | 235 | |
| 31017 | 236 | lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{ordered_idom}) ^ n) =
 | 
| 21256 | 237 | (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" | 
| 27668 | 238 | |
| 239 | unfolding order_less_le zero_le_power_eq by auto | |
| 21256 | 240 | |
| 31017 | 241 | lemma power_less_zero_eq[presburger]: "((x::'a::{ordered_idom}) ^ n < 0) =
 | 
| 27668 | 242 | (odd n & x < 0)" | 
| 21263 | 243 | apply (subst linorder_not_le [symmetric])+ | 
| 21256 | 244 | apply (subst zero_le_power_eq) | 
| 245 | apply auto | |
| 21263 | 246 | done | 
| 21256 | 247 | |
| 31017 | 248 | lemma power_le_zero_eq[presburger]: "((x::'a::{ordered_idom}) ^ n <= 0) =
 | 
| 21256 | 249 | (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" | 
| 21263 | 250 | apply (subst linorder_not_less [symmetric])+ | 
| 21256 | 251 | apply (subst zero_less_power_eq) | 
| 252 | apply auto | |
| 21263 | 253 | done | 
| 21256 | 254 | |
| 21263 | 255 | lemma power_even_abs: "even n ==> | 
| 31017 | 256 |     (abs (x::'a::{ordered_idom}))^n = x^n"
 | 
| 21263 | 257 | apply (subst power_abs [symmetric]) | 
| 21256 | 258 | apply (simp add: zero_le_even_power) | 
| 21263 | 259 | done | 
| 21256 | 260 | |
| 23522 | 261 | lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)" | 
| 21263 | 262 | by (induct n) auto | 
| 21256 | 263 | |
| 21263 | 264 | lemma power_minus_even [simp]: "even n ==> | 
| 31017 | 265 |     (- x)^n = (x^n::'a::{comm_ring_1})"
 | 
| 21256 | 266 | apply (subst power_minus) | 
| 267 | apply simp | |
| 21263 | 268 | done | 
| 21256 | 269 | |
| 21263 | 270 | lemma power_minus_odd [simp]: "odd n ==> | 
| 31017 | 271 |     (- x)^n = - (x^n::'a::{comm_ring_1})"
 | 
| 21256 | 272 | apply (subst power_minus) | 
| 273 | apply simp | |
| 21263 | 274 | done | 
| 21256 | 275 | |
| 31017 | 276 | lemma power_mono_even: fixes x y :: "'a :: {ordered_idom}"
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 277 | assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 278 | shows "x^n \<le> y^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 279 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 280 | have "0 \<le> \<bar>x\<bar>" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 281 | with `\<bar>x\<bar> \<le> \<bar>y\<bar>` | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 282 | have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 283 | thus ?thesis unfolding power_even_abs[OF `even n`] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 284 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 285 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 286 | lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 287 | |
| 31017 | 288 | lemma power_mono_odd: fixes x y :: "'a :: {ordered_idom}"
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 289 | assumes "odd n" and "x \<le> y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 290 | shows "x^n \<le> y^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 291 | proof (cases "y < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 292 | case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 293 | hence "(-y)^n \<le> (-x)^n" by (rule power_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 294 | thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 295 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 296 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 297 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 298 | proof (cases "x < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 299 | case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 300 | hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 301 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 302 | from `\<not> y < 0` have "0 \<le> y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 303 | hence "0 \<le> y^n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 304 | ultimately show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 305 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 306 | case False hence "0 \<le> x" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 307 | with `x \<le> y` show ?thesis using power_mono by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 308 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 309 | qed | 
| 21263 | 310 | |
| 25600 | 311 | subsection {* General Lemmas About Division *}
 | 
| 312 | ||
| 313 | lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" | |
| 314 | apply (induct "m") | |
| 315 | apply (simp_all add: mod_Suc) | |
| 316 | done | |
| 317 | ||
| 318 | declare Suc_times_mod_eq [of "number_of w", standard, simp] | |
| 319 | ||
| 320 | lemma [simp]: "n div k \<le> (Suc n) div k" | |
| 321 | by (simp add: div_le_mono) | |
| 322 | ||
| 323 | lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2" | |
| 324 | by arith | |
| 325 | ||
| 326 | lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2" | |
| 327 | by arith | |
| 328 | ||
| 27668 | 329 | (* Potential use of algebra : Equality modulo n*) | 
| 25600 | 330 | lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)" | 
| 331 | by (simp add: mult_ac add_ac) | |
| 332 | ||
| 333 | lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n" | |
| 334 | proof - | |
| 335 | have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp | |
| 336 | also have "... = Suc m mod n" by (rule mod_mult_self3) | |
| 337 | finally show ?thesis . | |
| 338 | qed | |
| 339 | ||
| 340 | lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n" | |
| 341 | apply (subst mod_Suc [of m]) | |
| 342 | apply (subst mod_Suc [of "m mod n"], simp) | |
| 343 | done | |
| 344 | ||
| 345 | ||
| 346 | subsection {* More Even/Odd Results *}
 | |
| 347 | ||
| 27668 | 348 | lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger | 
| 349 | lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger | |
| 350 | lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger | |
| 25600 | 351 | |
| 27668 | 352 | lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger | 
| 25600 | 353 | |
| 354 | lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + | |
| 355 | (a mod c + Suc 0 mod c) div c" | |
| 356 | apply (subgoal_tac "Suc a = a + Suc 0") | |
| 357 | apply (erule ssubst) | |
| 358 | apply (rule div_add1_eq, simp) | |
| 359 | done | |
| 360 | ||
| 27668 | 361 | lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger | 
| 25600 | 362 | |
| 363 | lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)" | |
| 27668 | 364 | by presburger | 
| 25600 | 365 | |
| 27668 | 366 | lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger | 
| 367 | lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger | |
| 25600 | 368 | |
| 27668 | 369 | lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger | 
| 25600 | 370 | |
| 371 | lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" | |
| 27668 | 372 | by presburger | 
| 25600 | 373 | |
| 21263 | 374 | text {* Simplify, when the exponent is a numeral *}
 | 
| 21256 | 375 | |
| 376 | lemmas power_0_left_number_of = power_0_left [of "number_of w", standard] | |
| 377 | declare power_0_left_number_of [simp] | |
| 378 | ||
| 21263 | 379 | lemmas zero_le_power_eq_number_of [simp] = | 
| 21256 | 380 | zero_le_power_eq [of _ "number_of w", standard] | 
| 381 | ||
| 21263 | 382 | lemmas zero_less_power_eq_number_of [simp] = | 
| 21256 | 383 | zero_less_power_eq [of _ "number_of w", standard] | 
| 384 | ||
| 21263 | 385 | lemmas power_le_zero_eq_number_of [simp] = | 
| 21256 | 386 | power_le_zero_eq [of _ "number_of w", standard] | 
| 387 | ||
| 21263 | 388 | lemmas power_less_zero_eq_number_of [simp] = | 
| 21256 | 389 | power_less_zero_eq [of _ "number_of w", standard] | 
| 390 | ||
| 21263 | 391 | lemmas zero_less_power_nat_eq_number_of [simp] = | 
| 21256 | 392 | zero_less_power_nat_eq [of _ "number_of w", standard] | 
| 393 | ||
| 21263 | 394 | lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard] | 
| 21256 | 395 | |
| 21263 | 396 | lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard] | 
| 21256 | 397 | |
| 398 | ||
| 399 | subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
 | |
| 400 | ||
| 401 | lemma even_power_le_0_imp_0: | |
| 31017 | 402 |     "a ^ (2*k) \<le> (0::'a::{ordered_idom}) ==> a=0"
 | 
| 21263 | 403 | by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc) | 
| 21256 | 404 | |
| 23522 | 405 | lemma zero_le_power_iff[presburger]: | 
| 31017 | 406 |   "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom}) | even n)"
 | 
| 21256 | 407 | proof cases | 
| 408 | assume even: "even n" | |
| 409 | then obtain k where "n = 2*k" | |
| 410 | by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) | |
| 21263 | 411 | thus ?thesis by (simp add: zero_le_even_power even) | 
| 21256 | 412 | next | 
| 413 | assume odd: "odd n" | |
| 414 | then obtain k where "n = Suc(2*k)" | |
| 415 | by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) | |
| 416 | thus ?thesis | |
| 21263 | 417 | by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power | 
| 418 | dest!: even_power_le_0_imp_0) | |
| 419 | qed | |
| 420 | ||
| 21256 | 421 | |
| 422 | subsection {* Miscellaneous *}
 | |
| 423 | ||
| 23522 | 424 | lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger | 
| 425 | lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger | |
| 426 | lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger | |
| 427 | lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger | |
| 21256 | 428 | |
| 23522 | 429 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | 
| 430 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | |
| 21263 | 431 | lemma even_nat_plus_one_div_two: "even (x::nat) ==> | 
| 23522 | 432 | (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger | 
| 21256 | 433 | |
| 21263 | 434 | lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> | 
| 23522 | 435 | (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger | 
| 21256 | 436 | |
| 437 | end |