| author | kleing | 
| Fri, 14 Jun 2002 23:25:36 +0200 | |
| changeset 13214 | 2aa33ed5f526 | 
| parent 12110 | f8b4b11cd79d | 
| child 14565 | c6dc17aab88a | 
| permissions | -rw-r--r-- | 
| 0 | 1 | (* Title: CTT/ctt.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | Constructive Type Theory | |
| 7 | *) | |
| 8 | ||
| 9 | CTT = Pure + | |
| 10 | ||
| 283 | 11 | types | 
| 12 | i | |
| 13 | t | |
| 14 | o | |
| 0 | 15 | |
| 283 | 16 | arities | 
| 17 | i,t,o :: logic | |
| 0 | 18 | |
| 19 | consts | |
| 20 | (*Types*) | |
| 21 | F,T :: "t" (*F is empty, T contains one element*) | |
| 22 | contr :: "i=>i" | |
| 23 | tt :: "i" | |
| 24 | (*Natural numbers*) | |
| 25 | N :: "t" | |
| 26 | succ :: "i=>i" | |
| 27 | rec :: "[i, i, [i,i]=>i] => i" | |
| 28 | (*Unions*) | |
| 29 | inl,inr :: "i=>i" | |
| 30 | when :: "[i, i=>i, i=>i]=>i" | |
| 31 | (*General Sum and Binary Product*) | |
| 32 | Sum :: "[t, i=>t]=>t" | |
| 33 | fst,snd :: "i=>i" | |
| 34 | split :: "[i, [i,i]=>i] =>i" | |
| 35 | (*General Product and Function Space*) | |
| 36 | Prod :: "[t, i=>t]=>t" | |
| 37 | (*Equality type*) | |
| 38 | Eq :: "[t,i,i]=>t" | |
| 39 | eq :: "i" | |
| 40 | (*Judgements*) | |
| 41 |   Type      :: "t => prop"          ("(_ type)" [10] 5)
 | |
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 42 |   Eqtype    :: "[t,t]=>prop"        ("(_ =/ _)" [10,10] 5)
 | 
| 0 | 43 |   Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
 | 
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 44 |   Eqelem    :: "[i,i,t]=>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
 | 
| 0 | 45 |   Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
 | 
| 46 | (*Types*) | |
| 23 | 47 |   "@PROD"   :: "[idt,t,t]=>t"       ("(3PROD _:_./ _)" 10)
 | 
| 48 |   "@SUM"    :: "[idt,t,t]=>t"       ("(3SUM _:_./ _)" 10)
 | |
| 0 | 49 | "+" :: "[t,t]=>t" (infixr 40) | 
| 50 | (*Invisible infixes!*) | |
| 51 |   "@-->"    :: "[t,t]=>t"           ("(_ -->/ _)" [31,30] 30)
 | |
| 52 |   "@*"      :: "[t,t]=>t"           ("(_ */ _)" [51,50] 50)
 | |
| 53 | (*Functions*) | |
| 54 | lambda :: "(i => i) => i" (binder "lam " 10) | |
| 55 | "`" :: "[i,i]=>i" (infixl 60) | |
| 56 | (*Natural numbers*) | |
| 57 |   "0"       :: "i"                  ("0")
 | |
| 58 | (*Pairing*) | |
| 59 |   pair      :: "[i,i]=>i"           ("(1<_,/_>)")
 | |
| 60 | ||
| 61 | translations | |
| 62 | "PROD x:A. B" => "Prod(A, %x. B)" | |
| 23 | 63 | "A --> B" => "Prod(A, _K(B))" | 
| 0 | 64 | "SUM x:A. B" => "Sum(A, %x. B)" | 
| 23 | 65 | "A * B" => "Sum(A, _K(B))" | 
| 0 | 66 | |
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 67 | syntax (xsymbols) | 
| 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 68 |   "@-->"    :: "[t,t]=>t"           ("(_ \\<longrightarrow>/ _)" [31,30] 30)
 | 
| 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 69 |   "@*"      :: "[t,t]=>t"           ("(_ \\<times>/ _)"          [51,50] 50)
 | 
| 12110 
f8b4b11cd79d
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10467diff
changeset | 70 |   Elem      :: "[i, t]=>prop"       ("(_ /\\<in> _)" [10,10] 5)
 | 
| 
f8b4b11cd79d
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10467diff
changeset | 71 |   Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5)
 | 
| 
f8b4b11cd79d
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10467diff
changeset | 72 |   "@SUM"    :: "[idt,t,t] => t"     ("(3\\<Sigma> _\\<in>_./ _)" 10)
 | 
| 
f8b4b11cd79d
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10467diff
changeset | 73 |   "@PROD"   :: "[idt,t,t] => t"     ("(3\\<Pi> _\\<in>_./ _)"    10)
 | 
| 
f8b4b11cd79d
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10467diff
changeset | 74 |   "lam "    :: "[idts, i] => i"     ("(3\\<lambda>\\<lambda>_./ _)" 10)
 | 
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 75 | |
| 0 | 76 | rules | 
| 77 | ||
| 78 | (*Reduction: a weaker notion than equality; a hack for simplification. | |
| 79 | Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" | |
| 80 | are textually identical.*) | |
| 81 | ||
| 82 | (*does not verify a:A! Sound because only trans_red uses a Reduce premise | |
| 83 | No new theorems can be proved about the standard judgements.*) | |
| 84 | refl_red "Reduce[a,a]" | |
| 85 | red_if_equal "a = b : A ==> Reduce[a,b]" | |
| 86 | trans_red "[| a = b : A; Reduce[b,c] |] ==> a = c : A" | |
| 87 | ||
| 88 | (*Reflexivity*) | |
| 89 | ||
| 90 | refl_type "A type ==> A = A" | |
| 91 | refl_elem "a : A ==> a = a : A" | |
| 92 | ||
| 93 | (*Symmetry*) | |
| 94 | ||
| 95 | sym_type "A = B ==> B = A" | |
| 96 | sym_elem "a = b : A ==> b = a : A" | |
| 97 | ||
| 98 | (*Transitivity*) | |
| 99 | ||
| 100 | trans_type "[| A = B; B = C |] ==> A = C" | |
| 101 | trans_elem "[| a = b : A; b = c : A |] ==> a = c : A" | |
| 102 | ||
| 103 | equal_types "[| a : A; A = B |] ==> a : B" | |
| 104 | equal_typesL "[| a = b : A; A = B |] ==> a = b : B" | |
| 105 | ||
| 106 | (*Substitution*) | |
| 107 | ||
| 108 | subst_type "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type" | |
| 109 | subst_typeL "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)" | |
| 110 | ||
| 111 | subst_elem "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)" | |
| 112 | subst_elemL | |
| 113 | "[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)" | |
| 114 | ||
| 115 | ||
| 116 | (*The type N -- natural numbers*) | |
| 117 | ||
| 118 | NF "N type" | |
| 119 | NI0 "0 : N" | |
| 120 | NI_succ "a : N ==> succ(a) : N" | |
| 121 | NI_succL "a = b : N ==> succ(a) = succ(b) : N" | |
| 122 | ||
| 123 | NE | |
| 1149 | 124 | "[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] | 
| 3837 | 125 | ==> rec(p, a, %u v. b(u,v)) : C(p)" | 
| 0 | 126 | |
| 127 | NEL | |
| 1149 | 128 | "[| p = q : N; a = c : C(0); | 
| 129 | !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] | |
| 3837 | 130 | ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)" | 
| 0 | 131 | |
| 132 | NC0 | |
| 1149 | 133 | "[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] | 
| 3837 | 134 | ==> rec(0, a, %u v. b(u,v)) = a : C(0)" | 
| 0 | 135 | |
| 136 | NC_succ | |
| 1149 | 137 | "[| p: N; a: C(0); | 
| 138 | !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> | |
| 3837 | 139 | rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))" | 
| 0 | 140 | |
| 141 | (*The fourth Peano axiom. See page 91 of Martin-Lof's book*) | |
| 142 | zero_ne_succ | |
| 143 | "[| a: N; 0 = succ(a) : N |] ==> 0: F" | |
| 144 | ||
| 145 | ||
| 146 | (*The Product of a family of types*) | |
| 147 | ||
| 3837 | 148 | ProdF "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type" | 
| 0 | 149 | |
| 150 | ProdFL | |
| 1149 | 151 | "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> | 
| 3837 | 152 | PROD x:A. B(x) = PROD x:C. D(x)" | 
| 0 | 153 | |
| 154 | ProdI | |
| 3837 | 155 | "[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)" | 
| 0 | 156 | |
| 157 | ProdIL | |
| 1149 | 158 | "[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> | 
| 3837 | 159 | lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" | 
| 0 | 160 | |
| 3837 | 161 | ProdE "[| p : PROD x:A. B(x); a : A |] ==> p`a : B(a)" | 
| 162 | ProdEL "[| p=q: PROD x:A. B(x); a=b : A |] ==> p`a = q`b : B(a)" | |
| 0 | 163 | |
| 164 | ProdC | |
| 1149 | 165 | "[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> | 
| 3837 | 166 | (lam x. b(x)) ` a = b(a) : B(a)" | 
| 0 | 167 | |
| 168 | ProdC2 | |
| 3837 | 169 | "p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)" | 
| 0 | 170 | |
| 171 | ||
| 172 | (*The Sum of a family of types*) | |
| 173 | ||
| 3837 | 174 | SumF "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type" | 
| 0 | 175 | SumFL | 
| 3837 | 176 | "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)" | 
| 0 | 177 | |
| 3837 | 178 | SumI "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)" | 
| 179 | SumIL "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)" | |
| 0 | 180 | |
| 181 | SumE | |
| 3837 | 182 | "[| p: SUM x:A. B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] | 
| 183 | ==> split(p, %x y. c(x,y)) : C(p)" | |
| 0 | 184 | |
| 185 | SumEL | |
| 3837 | 186 | "[| p=q : SUM x:A. B(x); | 
| 1149 | 187 | !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] | 
| 3837 | 188 | ==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)" | 
| 0 | 189 | |
| 190 | SumC | |
| 1149 | 191 | "[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] | 
| 3837 | 192 | ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)" | 
| 0 | 193 | |
| 3837 | 194 | fst_def "fst(a) == split(a, %x y. x)" | 
| 195 | snd_def "snd(a) == split(a, %x y. y)" | |
| 0 | 196 | |
| 197 | ||
| 198 | (*The sum of two types*) | |
| 199 | ||
| 200 | PlusF "[| A type; B type |] ==> A+B type" | |
| 201 | PlusFL "[| A = C; B = D |] ==> A+B = C+D" | |
| 202 | ||
| 203 | PlusI_inl "[| a : A; B type |] ==> inl(a) : A+B" | |
| 204 | PlusI_inlL "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B" | |
| 205 | ||
| 206 | PlusI_inr "[| A type; b : B |] ==> inr(b) : A+B" | |
| 207 | PlusI_inrL "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" | |
| 208 | ||
| 209 | PlusE | |
| 1149 | 210 | "[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); | 
| 211 | !!y. y:B ==> d(y): C(inr(y)) |] | |
| 3837 | 212 | ==> when(p, %x. c(x), %y. d(y)) : C(p)" | 
| 0 | 213 | |
| 214 | PlusEL | |
| 1149 | 215 | "[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); | 
| 216 | !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] | |
| 3837 | 217 | ==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)" | 
| 0 | 218 | |
| 219 | PlusC_inl | |
| 1149 | 220 | "[| a: A; !!x. x:A ==> c(x): C(inl(x)); | 
| 221 | !!y. y:B ==> d(y): C(inr(y)) |] | |
| 3837 | 222 | ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))" | 
| 0 | 223 | |
| 224 | PlusC_inr | |
| 1149 | 225 | "[| b: B; !!x. x:A ==> c(x): C(inl(x)); | 
| 226 | !!y. y:B ==> d(y): C(inr(y)) |] | |
| 3837 | 227 | ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))" | 
| 0 | 228 | |
| 229 | ||
| 230 | (*The type Eq*) | |
| 231 | ||
| 232 | EqF "[| A type; a : A; b : A |] ==> Eq(A,a,b) type" | |
| 233 | EqFL "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)" | |
| 234 | EqI "a = b : A ==> eq : Eq(A,a,b)" | |
| 235 | EqE "p : Eq(A,a,b) ==> a = b : A" | |
| 236 | ||
| 237 | (*By equality of types, can prove C(p) from C(eq), an elimination rule*) | |
| 238 | EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" | |
| 239 | ||
| 240 | (*The type F*) | |
| 241 | ||
| 242 | FF "F type" | |
| 243 | FE "[| p: F; C type |] ==> contr(p) : C" | |
| 244 | FEL "[| p = q : F; C type |] ==> contr(p) = contr(q) : C" | |
| 245 | ||
| 246 | (*The type T | |
| 247 | Martin-Lof's book (page 68) discusses elimination and computation. | |
| 248 | Elimination can be derived by computation and equality of types, | |
| 249 | but with an extra premise C(x) type x:T. | |
| 250 | Also computation can be derived from elimination. *) | |
| 251 | ||
| 252 | TF "T type" | |
| 253 | TI "tt : T" | |
| 254 | TE "[| p : T; c : C(tt) |] ==> c : C(p)" | |
| 255 | TEL "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)" | |
| 256 | TC "p : T ==> p = tt : T" | |
| 257 | end | |
| 258 | ||
| 259 | ||
| 260 | ML | |
| 261 | ||
| 262 | val print_translation = | |
| 263 |   [("Prod", dependent_tr' ("@PROD", "@-->")),
 | |
| 264 |    ("Sum", dependent_tr' ("@SUM", "@*"))];
 | |
| 265 |