author | haftmann |
Sun, 18 May 2025 14:33:01 +0000 | |
changeset 82630 | 2bb4a8d0111d |
parent 81182 | fc5066122e68 |
permissions | -rw-r--r-- |
37936 | 1 |
(* Title: HOL/Auth/Message.thy |
1839 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1996 University of Cambridge |
|
4 |
||
5 |
Datatypes of agents and messages; |
|
1913 | 6 |
Inductive relations "parts", "analz" and "synth" |
1839 | 7 |
*) |
8 |
||
61830 | 9 |
section\<open>Theory of Agents and Messages for Security Protocols\<close> |
13956 | 10 |
|
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
11 |
theory Message |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
12 |
imports Main |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
13 |
begin |
11189 | 14 |
|
15 |
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) |
|
13926 | 16 |
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
17 |
by blast |
1839 | 18 |
|
41774 | 19 |
type_synonym |
1839 | 20 |
key = nat |
21 |
||
22 |
consts |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
23 |
all_symmetric :: bool \<comment> \<open>true if all keys are symmetric\<close> |
67613 | 24 |
invKey :: "key\<Rightarrow>key" \<comment> \<open>inverse of a symmetric key\<close> |
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
25 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
26 |
specification (invKey) |
14181 | 27 |
invKey [simp]: "invKey (invKey K) = K" |
67613 | 28 |
invKey_symmetric: "all_symmetric \<longrightarrow> invKey = id" |
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
29 |
by (rule exI [of _ id], auto) |
1839 | 30 |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
31 |
|
61830 | 32 |
text\<open>The inverse of a symmetric key is itself; that of a public key |
33 |
is the private key and vice versa\<close> |
|
1839 | 34 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
35 |
definition symKeys :: "key set" where |
11230
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents:
11192
diff
changeset
|
36 |
"symKeys == {K. invKey K = K}" |
1839 | 37 |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
38 |
datatype \<comment> \<open>We allow any number of friendly agents\<close> |
2032 | 39 |
agent = Server | Friend nat | Spy |
1839 | 40 |
|
58310 | 41 |
datatype |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
42 |
msg = Agent agent \<comment> \<open>Agent names\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
43 |
| Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
44 |
| Nonce nat \<comment> \<open>Unguessable nonces\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
45 |
| Key key \<comment> \<open>Crypto keys\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
46 |
| Hash msg \<comment> \<open>Hashing\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
47 |
| MPair msg msg \<comment> \<open>Compound messages\<close> |
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
48 |
| Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> |
1839 | 49 |
|
5234 | 50 |
|
61956 | 51 |
text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close> |
5234 | 52 |
syntax |
81019
dd59daa3c37a
clarified inner-syntax markup, notably for enumerations: prefer "notation=mixfix" over "entity" via 'syntax_consts' (see also 70076ba563d2);
wenzelm
parents:
80914
diff
changeset
|
53 |
"_MTuple" :: "['a, args] \<Rightarrow> 'a * 'b" (\<open>(\<open>indent=2 notation=\<open>mixfix message tuple\<close>\<close>\<lbrace>_,/ _\<rbrace>)\<close>) |
81182 | 54 |
syntax_consts |
55 |
"_MTuple" \<rightleftharpoons> MPair |
|
1839 | 56 |
translations |
61956 | 57 |
"\<lbrace>x, y, z\<rbrace>" \<rightleftharpoons> "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>" |
58 |
"\<lbrace>x, y\<rbrace>" \<rightleftharpoons> "CONST MPair x y" |
|
1839 | 59 |
|
60 |
||
80914
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
wenzelm
parents:
80786
diff
changeset
|
61 |
definition HPair :: "[msg,msg] \<Rightarrow> msg" (\<open>(4Hash[_] /_)\<close> [0, 1000]) where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
62 |
\<comment> \<open>Message Y paired with a MAC computed with the help of X\<close> |
61956 | 63 |
"Hash[X] Y == \<lbrace>Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>" |
2484 | 64 |
|
67613 | 65 |
definition keysFor :: "msg set \<Rightarrow> key set" where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
62390
diff
changeset
|
66 |
\<comment> \<open>Keys useful to decrypt elements of a message set\<close> |
11192 | 67 |
"keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
1839 | 68 |
|
16818 | 69 |
|
76299 | 70 |
subsection\<open>Inductive Definition of All Parts of a Message\<close> |
1839 | 71 |
|
23746 | 72 |
inductive_set |
67613 | 73 |
parts :: "msg set \<Rightarrow> msg set" |
23746 | 74 |
for H :: "msg set" |
75 |
where |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
76 |
Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
77 |
| Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
78 |
| Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
79 |
| Body: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H" |
11189 | 80 |
|
81 |
||
61830 | 82 |
text\<open>Monotonicity\<close> |
76289 | 83 |
lemma parts_mono_aux: "\<lbrakk>G \<subseteq> H; X \<in> parts G\<rbrakk> \<Longrightarrow> X \<in> parts H" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
84 |
by (erule parts.induct) (auto dest: parts.Fst parts.Snd parts.Body) |
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
85 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
86 |
lemma parts_mono: "G \<subseteq> H \<Longrightarrow> parts(G) \<subseteq> parts(H)" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
87 |
using parts_mono_aux by blast |
1839 | 88 |
|
89 |
||
61830 | 90 |
text\<open>Equations hold because constructors are injective.\<close> |
76338 | 91 |
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x \<in>A)" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
92 |
by auto |
13926 | 93 |
|
76338 | 94 |
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x \<in>A)" |
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
95 |
by auto |
13926 | 96 |
|
97 |
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" |
|
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
98 |
by auto |
13926 | 99 |
|
100 |
||
76299 | 101 |
subsection\<open>Inverse of keys\<close> |
13926 | 102 |
|
103 |
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" |
|
76288
b82ac7ef65ec
Removal of the "unfold" method in favour of "unfolding"
paulson <lp15@cam.ac.uk>
parents:
76287
diff
changeset
|
104 |
by (metis invKey) |
13926 | 105 |
|
106 |
||
76299 | 107 |
subsection\<open>The @{term keysFor} operator\<close> |
13926 | 108 |
|
109 |
lemma keysFor_empty [simp]: "keysFor {} = {}" |
|
76289 | 110 |
unfolding keysFor_def by blast |
13926 | 111 |
|
112 |
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
|
76289 | 113 |
unfolding keysFor_def by blast |
13926 | 114 |
|
76338 | 115 |
lemma keysFor_UN [simp]: "keysFor (\<Union>i \<in>A. H i) = (\<Union>i \<in>A. keysFor (H i))" |
76289 | 116 |
unfolding keysFor_def by blast |
13926 | 117 |
|
61830 | 118 |
text\<open>Monotonicity\<close> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
119 |
lemma keysFor_mono: "G \<subseteq> H \<Longrightarrow> keysFor(G) \<subseteq> keysFor(H)" |
76289 | 120 |
unfolding keysFor_def by blast |
13926 | 121 |
|
122 |
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
|
76289 | 123 |
unfolding keysFor_def by auto |
13926 | 124 |
|
125 |
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" |
|
76289 | 126 |
unfolding keysFor_def by auto |
13926 | 127 |
|
128 |
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" |
|
76289 | 129 |
unfolding keysFor_def by auto |
13926 | 130 |
|
131 |
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" |
|
76289 | 132 |
unfolding keysFor_def by auto |
13926 | 133 |
|
134 |
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" |
|
76289 | 135 |
unfolding keysFor_def by auto |
13926 | 136 |
|
61956 | 137 |
lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H" |
76289 | 138 |
unfolding keysFor_def by auto |
13926 | 139 |
|
140 |
lemma keysFor_insert_Crypt [simp]: |
|
141 |
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" |
|
76289 | 142 |
unfolding keysFor_def by auto |
13926 | 143 |
|
144 |
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}" |
|
76289 | 145 |
unfolding keysFor_def by auto |
13926 | 146 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
147 |
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H \<Longrightarrow> invKey K \<in> keysFor H" |
76289 | 148 |
unfolding keysFor_def by blast |
13926 | 149 |
|
150 |
||
61830 | 151 |
subsection\<open>Inductive relation "parts"\<close> |
13926 | 152 |
|
153 |
lemma MPair_parts: |
|
76289 | 154 |
"\<lbrakk>\<lbrace>X,Y\<rbrace> \<in> parts H; |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
155 |
\<lbrakk>X \<in> parts H; Y \<in> parts H\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
76289 | 156 |
by (blast dest: parts.Fst parts.Snd) |
13926 | 157 |
|
158 |
declare MPair_parts [elim!] parts.Body [dest!] |
|
61830 | 159 |
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the |
13926 | 160 |
compound message. They work well on THIS FILE. |
61830 | 161 |
\<open>MPair_parts\<close> is left as SAFE because it speeds up proofs. |
162 |
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close> |
|
13926 | 163 |
|
164 |
lemma parts_increasing: "H \<subseteq> parts(H)" |
|
76289 | 165 |
by blast |
13926 | 166 |
|
45605 | 167 |
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] |
13926 | 168 |
|
76289 | 169 |
lemma parts_empty_aux: "X \<in> parts{} \<Longrightarrow> False" |
170 |
by (induction rule: parts.induct) (blast+) |
|
171 |
||
13926 | 172 |
lemma parts_empty [simp]: "parts{} = {}" |
76289 | 173 |
using parts_empty_aux by blast |
13926 | 174 |
|
76338 | 175 |
lemma parts_emptyE [elim!]: "X \<in> parts{} \<Longrightarrow> P" |
76289 | 176 |
by simp |
13926 | 177 |
|
61830 | 178 |
text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close> |
76338 | 179 |
lemma parts_singleton: "X \<in> parts H \<Longrightarrow> \<exists>Y \<in>H. X \<in> parts {Y}" |
76289 | 180 |
by (erule parts.induct, fast+) |
13926 | 181 |
|
182 |
||
61830 | 183 |
subsubsection\<open>Unions\<close> |
13926 | 184 |
|
185 |
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" |
|
76340 | 186 |
proof - |
187 |
have "X \<in> parts (G \<union> H) \<Longrightarrow> X \<in> parts G \<union> parts H" for X |
|
188 |
by (induction rule: parts.induct) auto |
|
189 |
then show ?thesis |
|
190 |
by (simp add: order_antisym parts_mono subsetI) |
|
191 |
qed |
|
13926 | 192 |
|
193 |
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H" |
|
76289 | 194 |
by (metis insert_is_Un parts_Un) |
13926 | 195 |
|
61830 | 196 |
text\<open>TWO inserts to avoid looping. This rewrite is better than nothing. |
197 |
But its behaviour can be strange.\<close> |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
198 |
lemma parts_insert2: |
76289 | 199 |
"parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H" |
200 |
by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) |
|
13926 | 201 |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
202 |
lemma parts_image [simp]: |
76338 | 203 |
"parts (f ` A) = (\<Union>x \<in>A. parts {f x})" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
204 |
apply auto |
76289 | 205 |
apply (metis (mono_tags, opaque_lifting) image_iff parts_singleton) |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
206 |
apply (metis empty_subsetI image_eqI insert_absorb insert_subset parts_mono) |
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61956
diff
changeset
|
207 |
done |
13926 | 208 |
|
76340 | 209 |
text\<open>Added to simplify arguments to parts, analz and synth.\<close> |
13926 | 210 |
|
61830 | 211 |
text\<open>This allows \<open>blast\<close> to simplify occurrences of |
69597 | 212 |
\<^term>\<open>parts(G\<union>H)\<close> in the assumption.\<close> |
17729 | 213 |
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
214 |
declare in_parts_UnE [elim!] |
|
13926 | 215 |
|
216 |
||
217 |
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
|
76289 | 218 |
by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
13926 | 219 |
|
61830 | 220 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 221 |
|
76338 | 222 |
lemma parts_partsD [dest!]: "X \<in> parts (parts H) \<Longrightarrow> X \<in> parts H" |
76289 | 223 |
by (erule parts.induct, blast+) |
13926 | 224 |
|
225 |
lemma parts_idem [simp]: "parts (parts H) = parts H" |
|
76289 | 226 |
by blast |
13926 | 227 |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
228 |
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" |
76289 | 229 |
by (metis parts_idem parts_increasing parts_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
230 |
|
76338 | 231 |
lemma parts_trans: "\<lbrakk>X \<in> parts G; G \<subseteq> parts H\<rbrakk> \<Longrightarrow> X \<in> parts H" |
76289 | 232 |
by (metis parts_subset_iff subsetD) |
13926 | 233 |
|
61830 | 234 |
text\<open>Cut\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
235 |
lemma parts_cut: |
76338 | 236 |
"\<lbrakk>Y \<in> parts (insert X G); X \<in> parts H\<rbrakk> \<Longrightarrow> Y \<in> parts (G \<union> H)" |
76289 | 237 |
by (blast intro: parts_trans) |
18492 | 238 |
|
76338 | 239 |
lemma parts_cut_eq [simp]: "X \<in> parts H \<Longrightarrow> parts (insert X H) = parts H" |
76289 | 240 |
by (metis insert_absorb parts_idem parts_insert) |
13926 | 241 |
|
242 |
||
61830 | 243 |
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
13926 | 244 |
|
245 |
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] |
|
246 |
||
247 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
248 |
lemma parts_insert_Agent [simp]: |
76289 | 249 |
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" |
250 |
apply (rule parts_insert_eq_I) |
|
251 |
apply (erule parts.induct, auto) |
|
252 |
done |
|
13926 | 253 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
254 |
lemma parts_insert_Nonce [simp]: |
76289 | 255 |
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" |
256 |
apply (rule parts_insert_eq_I) |
|
257 |
apply (erule parts.induct, auto) |
|
258 |
done |
|
13926 | 259 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
260 |
lemma parts_insert_Number [simp]: |
76289 | 261 |
"parts (insert (Number N) H) = insert (Number N) (parts H)" |
262 |
apply (rule parts_insert_eq_I) |
|
263 |
apply (erule parts.induct, auto) |
|
264 |
done |
|
13926 | 265 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
266 |
lemma parts_insert_Key [simp]: |
76289 | 267 |
"parts (insert (Key K) H) = insert (Key K) (parts H)" |
268 |
apply (rule parts_insert_eq_I) |
|
269 |
apply (erule parts.induct, auto) |
|
270 |
done |
|
13926 | 271 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
272 |
lemma parts_insert_Hash [simp]: |
76289 | 273 |
"parts (insert (Hash X) H) = insert (Hash X) (parts H)" |
274 |
apply (rule parts_insert_eq_I) |
|
275 |
apply (erule parts.induct, auto) |
|
276 |
done |
|
13926 | 277 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
278 |
lemma parts_insert_Crypt [simp]: |
76289 | 279 |
"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" |
76340 | 280 |
proof - |
281 |
have "Y \<in> parts (insert (Crypt K X) H) \<Longrightarrow> Y \<in> insert (Crypt K X) (parts (insert X H))" for Y |
|
282 |
by (induction rule: parts.induct) auto |
|
283 |
then show ?thesis |
|
284 |
by (smt (verit) insertI1 insert_commute parts.simps parts_cut_eq parts_insert_eq_I) |
|
285 |
qed |
|
13926 | 286 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
287 |
lemma parts_insert_MPair [simp]: |
76340 | 288 |
"parts (insert \<lbrace>X,Y\<rbrace> H) = insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))" |
289 |
proof - |
|
290 |
have "Z \<in> parts (insert \<lbrace>X, Y\<rbrace> H) \<Longrightarrow> Z \<in> insert \<lbrace>X, Y\<rbrace> (parts (insert X (insert Y H)))" for Z |
|
291 |
by (induction rule: parts.induct) auto |
|
292 |
then show ?thesis |
|
293 |
by (smt (verit) insertI1 insert_commute parts.simps parts_cut_eq parts_insert_eq_I) |
|
294 |
qed |
|
13926 | 295 |
|
296 |
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" |
|
76289 | 297 |
by auto |
13926 | 298 |
|
61830 | 299 |
text\<open>In any message, there is an upper bound N on its greatest nonce.\<close> |
67613 | 300 |
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n \<longrightarrow> Nonce n \<notin> parts {msg}" |
57394 | 301 |
proof (induct msg) |
302 |
case (Nonce n) |
|
76289 | 303 |
show ?case |
304 |
by simp (metis Suc_n_not_le_n) |
|
57394 | 305 |
next |
306 |
case (MPair X Y) |
|
76289 | 307 |
then show ?case \<comment> \<open>metis works out the necessary sum itself!\<close> |
308 |
by (simp add: parts_insert2) (metis le_trans nat_le_linear) |
|
57394 | 309 |
qed auto |
13926 | 310 |
|
61830 | 311 |
subsection\<open>Inductive relation "analz"\<close> |
13926 | 312 |
|
61830 | 313 |
text\<open>Inductive definition of "analz" -- what can be broken down from a set of |
1839 | 314 |
messages, including keys. A form of downward closure. Pairs can |
61830 | 315 |
be taken apart; messages decrypted with known keys.\<close> |
1839 | 316 |
|
23746 | 317 |
inductive_set |
67613 | 318 |
analz :: "msg set \<Rightarrow> msg set" |
23746 | 319 |
for H :: "msg set" |
320 |
where |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
321 |
Inj [intro,simp]: "X \<in> H \<Longrightarrow> X \<in> analz H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
322 |
| Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> X \<in> analz H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
323 |
| Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> Y \<in> analz H" |
23746 | 324 |
| Decrypt [dest]: |
76289 | 325 |
"\<lbrakk>Crypt K X \<in> analz H; Key(invKey K) \<in> analz H\<rbrakk> \<Longrightarrow> X \<in> analz H" |
1839 | 326 |
|
327 |
||
61830 | 328 |
text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close> |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
329 |
lemma analz_mono_aux: "\<lbrakk>G \<subseteq> H; X \<in> analz G\<rbrakk> \<Longrightarrow> X \<in> analz H" |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
330 |
by (erule analz.induct) (auto dest: analz.Fst analz.Snd) |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
331 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
332 |
lemma analz_mono: "G\<subseteq>H \<Longrightarrow> analz(G) \<subseteq> analz(H)" |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
333 |
using analz_mono_aux by blast |
11189 | 334 |
|
61830 | 335 |
text\<open>Making it safe speeds up proofs\<close> |
13926 | 336 |
lemma MPair_analz [elim!]: |
76289 | 337 |
"\<lbrakk>\<lbrace>X,Y\<rbrace> \<in> analz H; |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
338 |
\<lbrakk>X \<in> analz H; Y \<in> analz H\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
76289 | 339 |
by (blast dest: analz.Fst analz.Snd) |
13926 | 340 |
|
341 |
lemma analz_increasing: "H \<subseteq> analz(H)" |
|
76289 | 342 |
by blast |
13926 | 343 |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
344 |
lemma analz_into_parts: "X \<in> analz H \<Longrightarrow> X \<in> parts H" |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
345 |
by (erule analz.induct) auto |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
346 |
|
13926 | 347 |
lemma analz_subset_parts: "analz H \<subseteq> parts H" |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
348 |
using analz_into_parts by blast |
13926 | 349 |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
350 |
lemma analz_parts [simp]: "analz (parts H) = parts H" |
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
351 |
using analz_subset_parts by blast |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
352 |
|
45605 | 353 |
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] |
13926 | 354 |
|
355 |
||
356 |
lemma parts_analz [simp]: "parts (analz H) = parts H" |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
357 |
by (metis analz_increasing analz_subset_parts parts_idem parts_mono subset_antisym) |
13926 | 358 |
|
45605 | 359 |
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] |
13926 | 360 |
|
61830 | 361 |
subsubsection\<open>General equational properties\<close> |
13926 | 362 |
|
363 |
lemma analz_empty [simp]: "analz{} = {}" |
|
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
364 |
using analz_parts by fastforce |
13926 | 365 |
|
61830 | 366 |
text\<open>Converse fails: we can analz more from the union than from the |
367 |
separate parts, as a key in one might decrypt a message in the other\<close> |
|
13926 | 368 |
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
76289 | 369 |
by (intro Un_least analz_mono Un_upper1 Un_upper2) |
13926 | 370 |
|
371 |
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
|
76289 | 372 |
by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
13926 | 373 |
|
61830 | 374 |
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> |
13926 | 375 |
|
376 |
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
|
377 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
378 |
lemma analz_insert_Agent [simp]: |
76289 | 379 |
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
380 |
apply (rule analz_insert_eq_I) |
|
381 |
apply (erule analz.induct, auto) |
|
382 |
done |
|
13926 | 383 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
384 |
lemma analz_insert_Nonce [simp]: |
76289 | 385 |
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" |
386 |
apply (rule analz_insert_eq_I) |
|
387 |
apply (erule analz.induct, auto) |
|
388 |
done |
|
13926 | 389 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
390 |
lemma analz_insert_Number [simp]: |
76289 | 391 |
"analz (insert (Number N) H) = insert (Number N) (analz H)" |
392 |
apply (rule analz_insert_eq_I) |
|
393 |
apply (erule analz.induct, auto) |
|
394 |
done |
|
13926 | 395 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
396 |
lemma analz_insert_Hash [simp]: |
76289 | 397 |
"analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
398 |
apply (rule analz_insert_eq_I) |
|
399 |
apply (erule analz.induct, auto) |
|
400 |
done |
|
13926 | 401 |
|
61830 | 402 |
text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close> |
13926 | 403 |
lemma analz_insert_Key [simp]: |
76289 | 404 |
"K \<notin> keysFor (analz H) \<Longrightarrow> |
13926 | 405 |
analz (insert (Key K) H) = insert (Key K) (analz H)" |
76290
64d29ebb7d3d
Mostly, removing the unfold method
paulson <lp15@cam.ac.uk>
parents:
76289
diff
changeset
|
406 |
unfolding keysFor_def |
76289 | 407 |
apply (rule analz_insert_eq_I) |
408 |
apply (erule analz.induct, auto) |
|
409 |
done |
|
13926 | 410 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
411 |
lemma analz_insert_MPair [simp]: |
76340 | 412 |
"analz (insert \<lbrace>X,Y\<rbrace> H) = insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))" |
413 |
proof - |
|
414 |
have "Z \<in> analz (insert \<lbrace>X, Y\<rbrace> H) \<Longrightarrow> Z \<in> insert \<lbrace>X, Y\<rbrace> (analz (insert X (insert Y H)))" for Z |
|
415 |
by (induction rule: analz.induct) auto |
|
416 |
moreover have "Z \<in> analz (insert X (insert Y H)) \<Longrightarrow> Z \<in> analz (insert \<lbrace>X, Y\<rbrace> H)" for Z |
|
417 |
by (induction rule: analz.induct) (use analz.Inj in blast)+ |
|
418 |
ultimately show ?thesis |
|
419 |
by auto |
|
420 |
qed |
|
13926 | 421 |
|
76340 | 422 |
text\<open>Can pull out encrypted message if the Key is not known\<close> |
13926 | 423 |
lemma analz_insert_Crypt: |
76289 | 424 |
"Key (invKey K) \<notin> analz H |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
425 |
\<Longrightarrow> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
76289 | 426 |
apply (rule analz_insert_eq_I) |
427 |
apply (erule analz.induct, auto) |
|
428 |
done |
|
13926 | 429 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
430 |
lemma analz_insert_Decrypt: |
76340 | 431 |
assumes "Key (invKey K) \<in> analz H" |
432 |
shows "analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert X H))" |
|
433 |
proof - |
|
434 |
have "Y \<in> analz (insert (Crypt K X) H) \<Longrightarrow> Y \<in> insert (Crypt K X) (analz (insert X H))" for Y |
|
435 |
by (induction rule: analz.induct) auto |
|
436 |
moreover |
|
437 |
have "Y \<in> analz (insert X H) \<Longrightarrow> Y \<in> analz (insert (Crypt K X) H)" for Y |
|
438 |
proof (induction rule: analz.induct) |
|
439 |
case (Inj X) |
|
440 |
then show ?case |
|
441 |
by (metis analz.Decrypt analz.Inj analz_insertI assms insert_iff) |
|
442 |
qed auto |
|
443 |
ultimately show ?thesis |
|
444 |
by auto |
|
445 |
qed |
|
13926 | 446 |
|
61830 | 447 |
text\<open>Case analysis: either the message is secure, or it is not! Effective, |
62390 | 448 |
but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently |
69597 | 449 |
\<open>split_tac\<close> does not cope with patterns such as \<^term>\<open>analz (insert |
450 |
(Crypt K X) H)\<close>\<close> |
|
13926 | 451 |
lemma analz_Crypt_if [simp]: |
76289 | 452 |
"analz (insert (Crypt K X) H) = |
13926 | 453 |
(if (Key (invKey K) \<in> analz H) |
454 |
then insert (Crypt K X) (analz (insert X H)) |
|
455 |
else insert (Crypt K X) (analz H))" |
|
76289 | 456 |
by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
13926 | 457 |
|
458 |
||
61830 | 459 |
text\<open>This rule supposes "for the sake of argument" that we have the key.\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
460 |
lemma analz_insert_Crypt_subset: |
76289 | 461 |
"analz (insert (Crypt K X) H) \<subseteq> |
13926 | 462 |
insert (Crypt K X) (analz (insert X H))" |
76289 | 463 |
apply (rule subsetI) |
464 |
apply (erule analz.induct, auto) |
|
465 |
done |
|
13926 | 466 |
|
467 |
||
468 |
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" |
|
76289 | 469 |
apply auto |
470 |
apply (erule analz.induct, auto) |
|
471 |
done |
|
13926 | 472 |
|
473 |
||
61830 | 474 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 475 |
|
76338 | 476 |
lemma analz_analzD [dest!]: "X \<in> analz (analz H) \<Longrightarrow> X \<in> analz H" |
76289 | 477 |
by (erule analz.induct, blast+) |
13926 | 478 |
|
479 |
lemma analz_idem [simp]: "analz (analz H) = analz H" |
|
76289 | 480 |
by blast |
13926 | 481 |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
482 |
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" |
76289 | 483 |
by (metis analz_idem analz_increasing analz_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
484 |
|
76338 | 485 |
lemma analz_trans: "\<lbrakk>X \<in> analz G; G \<subseteq> analz H\<rbrakk> \<Longrightarrow> X \<in> analz H" |
76289 | 486 |
by (drule analz_mono, blast) |
13926 | 487 |
|
61830 | 488 |
text\<open>Cut; Lemma 2 of Lowe\<close> |
76338 | 489 |
lemma analz_cut: "\<lbrakk>Y \<in> analz (insert X H); X \<in> analz H\<rbrakk> \<Longrightarrow> Y \<in> analz H" |
76289 | 490 |
by (erule analz_trans, blast) |
13926 | 491 |
|
492 |
(*Cut can be proved easily by induction on |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
493 |
"Y: analz (insert X H) \<Longrightarrow> X: analz H \<longrightarrow> Y: analz H" |
13926 | 494 |
*) |
495 |
||
61830 | 496 |
text\<open>This rewrite rule helps in the simplification of messages that involve |
13926 | 497 |
the forwarding of unknown components (X). Without it, removing occurrences |
61830 | 498 |
of X can be very complicated.\<close> |
76338 | 499 |
lemma analz_insert_eq: "X \<in> analz H \<Longrightarrow> analz (insert X H) = analz H" |
76289 | 500 |
by (metis analz_cut analz_insert_eq_I insert_absorb) |
13926 | 501 |
|
502 |
||
61830 | 503 |
text\<open>A congruence rule for "analz"\<close> |
13926 | 504 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
505 |
lemma analz_subset_cong: |
76289 | 506 |
"\<lbrakk>analz G \<subseteq> analz G'; analz H \<subseteq> analz H'\<rbrakk> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
507 |
\<Longrightarrow> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
76289 | 508 |
by (metis Un_mono analz_Un analz_subset_iff subset_trans) |
13926 | 509 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
510 |
lemma analz_cong: |
76289 | 511 |
"\<lbrakk>analz G = analz G'; analz H = analz H'\<rbrakk> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
512 |
\<Longrightarrow> analz (G \<union> H) = analz (G' \<union> H')" |
76289 | 513 |
by (intro equalityI analz_subset_cong, simp_all) |
13926 | 514 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
515 |
lemma analz_insert_cong: |
76289 | 516 |
"analz H = analz H' \<Longrightarrow> analz(insert X H) = analz(insert X H')" |
517 |
by (force simp only: insert_def intro!: analz_cong) |
|
13926 | 518 |
|
61830 | 519 |
text\<open>If there are no pairs or encryptions then analz does nothing\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
520 |
lemma analz_trivial: |
76289 | 521 |
"\<lbrakk>\<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H\<rbrakk> \<Longrightarrow> analz H = H" |
522 |
apply safe |
|
523 |
apply (erule analz.induct, blast+) |
|
524 |
done |
|
13926 | 525 |
|
526 |
||
61830 | 527 |
subsection\<open>Inductive relation "synth"\<close> |
13926 | 528 |
|
61830 | 529 |
text\<open>Inductive definition of "synth" -- what can be built up from a set of |
1839 | 530 |
messages. A form of upward closure. Pairs can be built, messages |
3668 | 531 |
encrypted with known keys. Agent names are public domain. |
61830 | 532 |
Numbers can be guessed, but Nonces cannot be.\<close> |
1839 | 533 |
|
23746 | 534 |
inductive_set |
535 |
synth :: "msg set => msg set" |
|
536 |
for H :: "msg set" |
|
537 |
where |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
538 |
Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> synth H" |
23746 | 539 |
| Agent [intro]: "Agent agt \<in> synth H" |
540 |
| Number [intro]: "Number n \<in> synth H" |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
541 |
| Hash [intro]: "X \<in> synth H \<Longrightarrow> Hash X \<in> synth H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
542 |
| MPair [intro]: "\<lbrakk>X \<in> synth H; Y \<in> synth H\<rbrakk> \<Longrightarrow> \<lbrace>X,Y\<rbrace> \<in> synth H" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
543 |
| Crypt [intro]: "\<lbrakk>X \<in> synth H; Key(K) \<in> H\<rbrakk> \<Longrightarrow> Crypt K X \<in> synth H" |
11189 | 544 |
|
61830 | 545 |
text\<open>Monotonicity\<close> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
546 |
lemma synth_mono: "G\<subseteq>H \<Longrightarrow> synth(G) \<subseteq> synth(H)" |
16818 | 547 |
by (auto, erule synth.induct, auto) |
11189 | 548 |
|
61830 | 549 |
text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized. |
69597 | 550 |
The same holds for \<^term>\<open>Number\<close>\<close> |
11189 | 551 |
|
39216 | 552 |
inductive_simps synth_simps [iff]: |
76289 | 553 |
"Nonce n \<in> synth H" |
554 |
"Key K \<in> synth H" |
|
555 |
"Hash X \<in> synth H" |
|
556 |
"\<lbrace>X,Y\<rbrace> \<in> synth H" |
|
557 |
"Crypt K X \<in> synth H" |
|
13926 | 558 |
|
559 |
lemma synth_increasing: "H \<subseteq> synth(H)" |
|
76289 | 560 |
by blast |
13926 | 561 |
|
61830 | 562 |
subsubsection\<open>Unions\<close> |
13926 | 563 |
|
61830 | 564 |
text\<open>Converse fails: we can synth more from the union than from the |
565 |
separate parts, building a compound message using elements of each.\<close> |
|
13926 | 566 |
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
76289 | 567 |
by (intro Un_least synth_mono Un_upper1 Un_upper2) |
13926 | 568 |
|
569 |
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
|
76289 | 570 |
by (blast intro: synth_mono [THEN [2] rev_subsetD]) |
13926 | 571 |
|
61830 | 572 |
subsubsection\<open>Idempotence and transitivity\<close> |
13926 | 573 |
|
76338 | 574 |
lemma synth_synthD [dest!]: "X \<in> synth (synth H) \<Longrightarrow> X \<in> synth H" |
76289 | 575 |
by (erule synth.induct, auto) |
13926 | 576 |
|
577 |
lemma synth_idem: "synth (synth H) = synth H" |
|
76289 | 578 |
by blast |
13926 | 579 |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
580 |
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" |
76289 | 581 |
by (metis subset_trans synth_idem synth_increasing synth_mono) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
582 |
|
76338 | 583 |
lemma synth_trans: "\<lbrakk>X \<in> synth G; G \<subseteq> synth H\<rbrakk> \<Longrightarrow> X \<in> synth H" |
76289 | 584 |
by (drule synth_mono, blast) |
13926 | 585 |
|
61830 | 586 |
text\<open>Cut; Lemma 2 of Lowe\<close> |
76338 | 587 |
lemma synth_cut: "\<lbrakk>Y \<in> synth (insert X H); X \<in> synth H\<rbrakk> \<Longrightarrow> Y \<in> synth H" |
76289 | 588 |
by (erule synth_trans, blast) |
13926 | 589 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
590 |
lemma Crypt_synth_eq [simp]: |
76289 | 591 |
"Key K \<notin> H \<Longrightarrow> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" |
592 |
by blast |
|
13926 | 593 |
|
594 |
||
595 |
lemma keysFor_synth [simp]: |
|
76289 | 596 |
"keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" |
597 |
unfolding keysFor_def by blast |
|
13926 | 598 |
|
599 |
||
61830 | 600 |
subsubsection\<open>Combinations of parts, analz and synth\<close> |
13926 | 601 |
|
602 |
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" |
|
76338 | 603 |
proof - |
604 |
have "X \<in> parts (synth H) \<Longrightarrow> X \<in> parts H \<union> synth H" for X |
|
605 |
by (induction X rule: parts.induct) (auto intro: parts.intros) |
|
606 |
then show ?thesis |
|
607 |
by (meson parts_increasing parts_mono subsetI antisym sup_least synth_increasing) |
|
608 |
qed |
|
13926 | 609 |
|
610 |
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" |
|
76338 | 611 |
using analz_cong by blast |
13926 | 612 |
|
613 |
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" |
|
76338 | 614 |
proof - |
615 |
have "X \<in> analz (synth G \<union> H) \<Longrightarrow> X \<in> analz (G \<union> H) \<union> synth G" for X |
|
616 |
by (induction X rule: analz.induct) (auto intro: analz.intros) |
|
617 |
then show ?thesis |
|
618 |
by (metis analz_subset_iff le_sup_iff subsetI subset_antisym synth_subset_iff) |
|
619 |
qed |
|
13926 | 620 |
|
621 |
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" |
|
76289 | 622 |
by (metis Un_empty_right analz_synth_Un) |
13926 | 623 |
|
624 |
||
61830 | 625 |
subsubsection\<open>For reasoning about the Fake rule in traces\<close> |
13926 | 626 |
|
76338 | 627 |
lemma parts_insert_subset_Un: "X \<in> G \<Longrightarrow> parts(insert X H) \<subseteq> parts G \<union> parts H" |
76289 | 628 |
by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) |
13926 | 629 |
|
61830 | 630 |
text\<open>More specifically for Fake. See also \<open>Fake_parts_sing\<close> below\<close> |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
631 |
lemma Fake_parts_insert: |
76289 | 632 |
"X \<in> synth (analz H) \<Longrightarrow> |
13926 | 633 |
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" |
76289 | 634 |
by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono |
635 |
parts_synth synth_mono synth_subset_iff) |
|
13926 | 636 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
637 |
lemma Fake_parts_insert_in_Un: |
76289 | 638 |
"\<lbrakk>Z \<in> parts (insert X H); X \<in> synth (analz H)\<rbrakk> |
67613 | 639 |
\<Longrightarrow> Z \<in> synth (analz H) \<union> parts H" |
76289 | 640 |
by (metis Fake_parts_insert subsetD) |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
641 |
|
69597 | 642 |
text\<open>\<^term>\<open>H\<close> is sometimes \<^term>\<open>Key ` KK \<union> spies evs\<close>, so can't put |
643 |
\<^term>\<open>G=H\<close>.\<close> |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
644 |
lemma Fake_analz_insert: |
76338 | 645 |
"X \<in> synth (analz G) \<Longrightarrow> |
13926 | 646 |
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" |
76289 | 647 |
by (metis UnCI Un_commute Un_upper1 analz_analz_Un analz_mono analz_synth_Un insert_subset) |
13926 | 648 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
649 |
lemma analz_conj_parts [simp]: |
76289 | 650 |
"(X \<in> analz H \<and> X \<in> parts H) = (X \<in> analz H)" |
651 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
|
13926 | 652 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
653 |
lemma analz_disj_parts [simp]: |
76289 | 654 |
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" |
655 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
|
13926 | 656 |
|
61830 | 657 |
text\<open>Without this equation, other rules for synth and analz would yield |
658 |
redundant cases\<close> |
|
13926 | 659 |
lemma MPair_synth_analz [iff]: |
76289 | 660 |
"\<lbrace>X,Y\<rbrace> \<in> synth (analz H) \<longleftrightarrow> X \<in> synth (analz H) \<and> Y \<in> synth (analz H)" |
661 |
by blast |
|
13926 | 662 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
663 |
lemma Crypt_synth_analz: |
76289 | 664 |
"\<lbrakk>Key K \<in> analz H; Key (invKey K) \<in> analz H\<rbrakk> |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
665 |
\<Longrightarrow> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" |
76289 | 666 |
by blast |
13926 | 667 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
668 |
lemma Hash_synth_analz [simp]: |
76289 | 669 |
"X \<notin> synth (analz H) |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
670 |
\<Longrightarrow> (Hash\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = (Hash\<lbrace>X,Y\<rbrace> \<in> analz H)" |
76289 | 671 |
by blast |
13926 | 672 |
|
673 |
||
61830 | 674 |
subsection\<open>HPair: a combination of Hash and MPair\<close> |
13926 | 675 |
|
61830 | 676 |
subsubsection\<open>Freeness\<close> |
13926 | 677 |
|
67613 | 678 |
lemma Agent_neq_HPair: "Agent A \<noteq> Hash[X] Y" |
57394 | 679 |
unfolding HPair_def by simp |
13926 | 680 |
|
67613 | 681 |
lemma Nonce_neq_HPair: "Nonce N \<noteq> Hash[X] Y" |
57394 | 682 |
unfolding HPair_def by simp |
13926 | 683 |
|
67613 | 684 |
lemma Number_neq_HPair: "Number N \<noteq> Hash[X] Y" |
57394 | 685 |
unfolding HPair_def by simp |
13926 | 686 |
|
67613 | 687 |
lemma Key_neq_HPair: "Key K \<noteq> Hash[X] Y" |
57394 | 688 |
unfolding HPair_def by simp |
13926 | 689 |
|
67613 | 690 |
lemma Hash_neq_HPair: "Hash Z \<noteq> Hash[X] Y" |
57394 | 691 |
unfolding HPair_def by simp |
13926 | 692 |
|
67613 | 693 |
lemma Crypt_neq_HPair: "Crypt K X' \<noteq> Hash[X] Y" |
57394 | 694 |
unfolding HPair_def by simp |
13926 | 695 |
|
696 |
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair |
|
76289 | 697 |
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair |
13926 | 698 |
|
699 |
declare HPair_neqs [iff] |
|
700 |
declare HPair_neqs [symmetric, iff] |
|
701 |
||
67613 | 702 |
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X \<and> Y'=Y)" |
76289 | 703 |
by (simp add: HPair_def) |
13926 | 704 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
705 |
lemma MPair_eq_HPair [iff]: |
76289 | 706 |
"(\<lbrace>X',Y'\<rbrace> = Hash[X] Y) = (X' = Hash\<lbrace>X,Y\<rbrace> \<and> Y'=Y)" |
707 |
by (simp add: HPair_def) |
|
13926 | 708 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
709 |
lemma HPair_eq_MPair [iff]: |
76289 | 710 |
"(Hash[X] Y = \<lbrace>X',Y'\<rbrace>) = (X' = Hash\<lbrace>X,Y\<rbrace> \<and> Y'=Y)" |
711 |
by (auto simp add: HPair_def) |
|
13926 | 712 |
|
713 |
||
61830 | 714 |
subsubsection\<open>Specialized laws, proved in terms of those for Hash and MPair\<close> |
13926 | 715 |
|
716 |
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" |
|
76289 | 717 |
by (simp add: HPair_def) |
13926 | 718 |
|
719 |
lemma parts_insert_HPair [simp]: |
|
76289 | 720 |
"parts (insert (Hash[X] Y) H) = |
61956 | 721 |
insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (parts (insert Y H)))" |
76289 | 722 |
by (simp add: HPair_def) |
13926 | 723 |
|
724 |
lemma analz_insert_HPair [simp]: |
|
76289 | 725 |
"analz (insert (Hash[X] Y) H) = |
61956 | 726 |
insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (analz (insert Y H)))" |
76289 | 727 |
by (simp add: HPair_def) |
13926 | 728 |
|
729 |
lemma HPair_synth_analz [simp]: |
|
76289 | 730 |
"X \<notin> synth (analz H) |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
731 |
\<Longrightarrow> (Hash[X] Y \<in> synth (analz H)) = |
67613 | 732 |
(Hash \<lbrace>X, Y\<rbrace> \<in> analz H \<and> Y \<in> synth (analz H))" |
76289 | 733 |
by (auto simp add: HPair_def) |
13926 | 734 |
|
735 |
||
61830 | 736 |
text\<open>We do NOT want Crypt... messages broken up in protocols!!\<close> |
13926 | 737 |
declare parts.Body [rule del] |
738 |
||
739 |
||
61830 | 740 |
text\<open>Rewrites to push in Key and Crypt messages, so that other messages can |
741 |
be pulled out using the \<open>analz_insert\<close> rules\<close> |
|
13926 | 742 |
|
45605 | 743 |
lemmas pushKeys = |
27225 | 744 |
insert_commute [of "Key K" "Agent C"] |
745 |
insert_commute [of "Key K" "Nonce N"] |
|
746 |
insert_commute [of "Key K" "Number N"] |
|
747 |
insert_commute [of "Key K" "Hash X"] |
|
748 |
insert_commute [of "Key K" "MPair X Y"] |
|
749 |
insert_commute [of "Key K" "Crypt X K'"] |
|
45605 | 750 |
for K C N X Y K' |
13926 | 751 |
|
45605 | 752 |
lemmas pushCrypts = |
27225 | 753 |
insert_commute [of "Crypt X K" "Agent C"] |
754 |
insert_commute [of "Crypt X K" "Agent C"] |
|
755 |
insert_commute [of "Crypt X K" "Nonce N"] |
|
756 |
insert_commute [of "Crypt X K" "Number N"] |
|
757 |
insert_commute [of "Crypt X K" "Hash X'"] |
|
758 |
insert_commute [of "Crypt X K" "MPair X' Y"] |
|
45605 | 759 |
for X K C N X' Y |
13926 | 760 |
|
61830 | 761 |
text\<open>Cannot be added with \<open>[simp]\<close> -- messages should not always be |
762 |
re-ordered.\<close> |
|
13926 | 763 |
lemmas pushes = pushKeys pushCrypts |
764 |
||
765 |
||
61830 | 766 |
subsection\<open>The set of key-free messages\<close> |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
767 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
768 |
(*Note that even the encryption of a key-free message remains key-free. |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
769 |
This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
770 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
771 |
inductive_set |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
772 |
keyfree :: "msg set" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
773 |
where |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
774 |
Agent: "Agent A \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
775 |
| Number: "Number N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
776 |
| Nonce: "Nonce N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
777 |
| Hash: "Hash X \<in> keyfree" |
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
778 |
| MPair: "\<lbrakk>X \<in> keyfree; Y \<in> keyfree\<rbrakk> \<Longrightarrow> \<lbrace>X,Y\<rbrace> \<in> keyfree" |
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
779 |
| Crypt: "\<lbrakk>X \<in> keyfree\<rbrakk> \<Longrightarrow> Crypt K X \<in> keyfree" |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
780 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
781 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
782 |
declare keyfree.intros [intro] |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
783 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
784 |
inductive_cases keyfree_KeyE: "Key K \<in> keyfree" |
61956 | 785 |
inductive_cases keyfree_MPairE: "\<lbrace>X,Y\<rbrace> \<in> keyfree" |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
786 |
inductive_cases keyfree_CryptE: "Crypt K X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
787 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
788 |
lemma parts_keyfree: "parts (keyfree) \<subseteq> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
789 |
by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
790 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
791 |
(*The key-free part of a set of messages can be removed from the scope of the analz operator.*) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
792 |
lemma analz_keyfree_into_Un: "\<lbrakk>X \<in> analz (G \<union> H); G \<subseteq> keyfree\<rbrakk> \<Longrightarrow> X \<in> parts G \<union> analz H" |
76291
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
793 |
proof (induction rule: analz.induct) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
794 |
case (Decrypt K X) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
795 |
then show ?case |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
796 |
by (metis Un_iff analz.Decrypt in_mono keyfree_KeyE parts.Body parts_keyfree parts_mono) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
797 |
qed (auto dest: parts.Body) |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
798 |
|
61830 | 799 |
subsection\<open>Tactics useful for many protocol proofs\<close> |
13926 | 800 |
ML |
76289 | 801 |
\<open> |
13926 | 802 |
(*Analysis of Fake cases. Also works for messages that forward unknown parts, |
803 |
but this application is no longer necessary if analz_insert_eq is used. |
|
804 |
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) |
|
805 |
||
32117
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
806 |
fun impOfSubs th = th RSN (2, @{thm rev_subsetD}) |
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
807 |
|
13926 | 808 |
(*Apply rules to break down assumptions of the form |
809 |
Y \<in> parts(insert X H) and Y \<in> analz(insert X H) |
|
810 |
*) |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
811 |
fun Fake_insert_tac ctxt = |
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
812 |
dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert}, |
24122 | 813 |
impOfSubs @{thm Fake_parts_insert}] THEN' |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
814 |
eresolve_tac ctxt [asm_rl, @{thm synth.Inj}]; |
13926 | 815 |
|
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
816 |
fun Fake_insert_simp_tac ctxt i = |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
817 |
REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i; |
13926 | 818 |
|
42474 | 819 |
fun atomic_spy_analz_tac ctxt = |
42793 | 820 |
SELECT_GOAL |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
821 |
(Fake_insert_simp_tac ctxt 1 THEN |
42793 | 822 |
IF_UNSOLVED |
823 |
(Blast.depth_tac |
|
824 |
(ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1)); |
|
13926 | 825 |
|
42474 | 826 |
fun spy_analz_tac ctxt i = |
42793 | 827 |
DETERM |
828 |
(SELECT_GOAL |
|
829 |
(EVERY |
|
830 |
[ (*push in occurrences of X...*) |
|
831 |
(REPEAT o CHANGED) |
|
59780 | 832 |
(Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] [] |
82630 | 833 |
(@{thm insert_commute} RS ssubst) 1), |
42793 | 834 |
(*...allowing further simplifications*) |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51702
diff
changeset
|
835 |
simp_tac ctxt 1, |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58889
diff
changeset
|
836 |
REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])), |
42793 | 837 |
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); |
61830 | 838 |
\<close> |
13926 | 839 |
|
61830 | 840 |
text\<open>By default only \<open>o_apply\<close> is built-in. But in the presence of |
69597 | 841 |
eta-expansion this means that some terms displayed as \<^term>\<open>f o g\<close> will be |
61830 | 842 |
rewritten, and others will not!\<close> |
13926 | 843 |
declare o_def [simp] |
844 |
||
11189 | 845 |
|
13922 | 846 |
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" |
76289 | 847 |
by auto |
13922 | 848 |
|
849 |
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" |
|
76289 | 850 |
by auto |
13922 | 851 |
|
76287
cdc14f94c754
Elimination of the archaic ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
852 |
lemma synth_analz_mono: "G\<subseteq>H \<Longrightarrow> synth (analz(G)) \<subseteq> synth (analz(H))" |
76289 | 853 |
by (iprover intro: synth_mono analz_mono) |
13922 | 854 |
|
855 |
lemma Fake_analz_eq [simp]: |
|
76289 | 856 |
"X \<in> synth(analz H) \<Longrightarrow> synth (analz (insert X H)) = synth (analz H)" |
857 |
by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute |
|
858 |
subset_insertI synth_analz_mono synth_increasing synth_subset_iff) |
|
13922 | 859 |
|
61830 | 860 |
text\<open>Two generalizations of \<open>analz_insert_eq\<close>\<close> |
13922 | 861 |
lemma gen_analz_insert_eq [rule_format]: |
76289 | 862 |
"X \<in> analz H \<Longrightarrow> \<forall>G. H \<subseteq> G \<longrightarrow> analz (insert X G) = analz G" |
863 |
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) |
|
13922 | 864 |
|
76291
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
865 |
lemma synth_analz_insert_eq: |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
866 |
"\<lbrakk>X \<in> synth (analz H); H \<subseteq> G\<rbrakk> |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
867 |
\<Longrightarrow> (Key K \<in> analz (insert X G)) \<longleftrightarrow> (Key K \<in> analz G)" |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
868 |
proof (induction arbitrary: G rule: synth.induct) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
869 |
case (Inj X) |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
870 |
then show ?case |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
871 |
using gen_analz_insert_eq by presburger |
616405057951
Trying to clean up some messy proofs
paulson <lp15@cam.ac.uk>
parents:
76290
diff
changeset
|
872 |
qed (simp_all add: subset_eq) |
13922 | 873 |
|
874 |
lemma Fake_parts_sing: |
|
76289 | 875 |
"X \<in> synth (analz H) \<Longrightarrow> parts{X} \<subseteq> synth (analz H) \<union> parts H" |
876 |
by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) |
|
13922 | 877 |
|
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
878 |
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] |
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
879 |
|
61830 | 880 |
method_setup spy_analz = \<open> |
881 |
Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\<close> |
|
76289 | 882 |
"for proving the Fake case when analz is involved" |
1839 | 883 |
|
61830 | 884 |
method_setup atomic_spy_analz = \<open> |
885 |
Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\<close> |
|
76289 | 886 |
"for debugging spy_analz" |
11264 | 887 |
|
61830 | 888 |
method_setup Fake_insert_simp = \<open> |
889 |
Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\<close> |
|
76289 | 890 |
"for debugging spy_analz" |
11264 | 891 |
|
1839 | 892 |
end |