src/HOLCF/Cprod3.ML
author wenzelm
Mon, 16 Nov 1998 10:42:40 +0100
changeset 5871 2c037ffa7287
parent 4721 c8a8482a8124
child 9245 428385c4bc50
permissions -rw-r--r--
Attribute.thms_of;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
     1
(*  Title:      HOLCF/cprod3.ML
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993 Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     6
Lemmas for Cprod3.thy 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
open Cprod3;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    11
(* for compatibility with old HOLCF-Version *)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    12
qed_goal "inst_cprod_pcpo" thy "UU = (UU,UU)"
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    13
 (fn prems => 
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    14
        [
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    15
        (simp_tac (HOL_ss addsimps [UU_def,UU_cprod_def]) 1)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    16
        ]);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
    17
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    18
(* ------------------------------------------------------------------------ *)
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
    19
(* continuity of (_,_) , fst, snd                                           *)
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    20
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    21
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    22
qed_goal "Cprod3_lemma1" Cprod3.thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
    23
"chain(Y::(nat=>'a::cpo)) ==>\
2840
7e03e61612b0 generalized theorems and class instances for Cprod.
slotosch
parents: 2640
diff changeset
    24
\ (lub(range(Y)),(x::'b::cpo)) =\
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
    25
\ (lub(range(%i. fst(Y i,x))),lub(range(%i. snd(Y i,x))))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    26
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    27
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    28
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    29
        (res_inst_tac [("f1","Pair")] (arg_cong RS cong) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    30
        (rtac lub_equal 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    31
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    32
        (rtac (monofun_fst RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    33
        (rtac ch2ch_fun 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    34
        (rtac (monofun_pair1 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    35
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    36
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    37
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    38
        (rtac sym 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    39
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    40
        (rtac (lub_const RS thelubI) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    41
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    42
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    43
qed_goal "contlub_pair1" Cprod3.thy "contlub(Pair)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    44
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    45
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    46
        (rtac contlubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    47
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    48
        (rtac (expand_fun_eq RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    49
        (strip_tac 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
    50
        (stac (lub_fun RS thelubI) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    51
        (etac (monofun_pair1 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    52
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    53
        (rtac (thelub_cprod RS sym) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    54
        (rtac ch2ch_fun 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    55
        (etac (monofun_pair1 RS ch2ch_monofun) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    56
        (etac Cprod3_lemma1 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    57
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    58
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    59
qed_goal "Cprod3_lemma2" Cprod3.thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
    60
"chain(Y::(nat=>'a::cpo)) ==>\
2840
7e03e61612b0 generalized theorems and class instances for Cprod.
slotosch
parents: 2640
diff changeset
    61
\ ((x::'b::cpo),lub(range Y)) =\
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
    62
\ (lub(range(%i. fst(x,Y i))),lub(range(%i. snd(x, Y i))))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    63
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    64
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    65
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    66
        (res_inst_tac [("f1","Pair")] (arg_cong RS cong) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    67
        (rtac sym 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    68
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    69
        (rtac (lub_const RS thelubI) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    70
        (rtac lub_equal 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    71
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    72
        (rtac (monofun_snd RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    73
        (rtac (monofun_pair2 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    74
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    75
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    76
        (Simp_tac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    77
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    78
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    79
qed_goal "contlub_pair2" Cprod3.thy "contlub(Pair(x))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    80
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    81
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    82
        (rtac contlubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    83
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    84
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    85
        (rtac (thelub_cprod RS sym) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    86
        (etac (monofun_pair2 RS ch2ch_monofun) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    87
        (etac Cprod3_lemma2 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    88
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    89
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
    90
qed_goal "cont_pair1" Cprod3.thy "cont(Pair)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    91
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    92
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    93
        (rtac monocontlub2cont 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    94
        (rtac monofun_pair1 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    95
        (rtac contlub_pair1 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    96
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    97
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
    98
qed_goal "cont_pair2" Cprod3.thy "cont(Pair(x))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    99
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   100
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   101
        (rtac monocontlub2cont 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   102
        (rtac monofun_pair2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   103
        (rtac contlub_pair2 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   104
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   105
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   106
qed_goal "contlub_fst" Cprod3.thy "contlub(fst)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   107
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   108
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   109
        (rtac contlubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   110
        (strip_tac 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   111
        (stac (lub_cprod RS thelubI) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   112
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   113
        (Simp_tac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   114
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   115
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   116
qed_goal "contlub_snd" Cprod3.thy "contlub(snd)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   117
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   118
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   119
        (rtac contlubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   120
        (strip_tac 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   121
        (stac (lub_cprod RS thelubI) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   122
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   123
        (Simp_tac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   124
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   125
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   126
qed_goal "cont_fst" Cprod3.thy "cont(fst)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   127
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   128
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   129
        (rtac monocontlub2cont 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   130
        (rtac monofun_fst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   131
        (rtac contlub_fst 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   132
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   133
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   134
qed_goal "cont_snd" Cprod3.thy "cont(snd)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   135
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   136
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   137
        (rtac monocontlub2cont 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   138
        (rtac monofun_snd 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   139
        (rtac contlub_snd 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   140
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   141
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   142
(* 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   143
 -------------------------------------------------------------------------- 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   144
 more lemmas for Cprod3.thy 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   145
 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   146
 -------------------------------------------------------------------------- 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   147
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   148
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   149
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   150
(* convert all lemmas to the continuous versions                            *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   151
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   152
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   153
qed_goalw "beta_cfun_cprod" Cprod3.thy [cpair_def]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   154
        "(LAM x y.(x,y))`a`b = (a,b)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   155
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   156
        [
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   157
        (stac beta_cfun 1),
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
   158
        (simp_tac (simpset() addsimps [cont_pair1,cont_pair2,cont2cont_CF1L]) 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   159
        (stac beta_cfun 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   160
        (rtac cont_pair2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   161
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   162
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   163
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   164
qed_goalw "inject_cpair" Cprod3.thy [cpair_def]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   165
        " <a,b>=<aa,ba>  ==> a=aa & b=ba"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   166
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   167
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   168
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   169
        (dtac (beta_cfun_cprod RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   170
        (dtac (beta_cfun_cprod RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   171
        (etac Pair_inject 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   172
        (fast_tac HOL_cs 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   173
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   174
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   175
qed_goalw "inst_cprod_pcpo2" Cprod3.thy [cpair_def] "UU = <UU,UU>"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   176
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   177
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   178
        (rtac sym 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   179
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   180
        (rtac beta_cfun_cprod 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   181
        (rtac sym 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   182
        (rtac inst_cprod_pcpo 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   183
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   184
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   185
qed_goal "defined_cpair_rev" Cprod3.thy
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   186
 "<a,b> = UU ==> a = UU & b = UU"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   187
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   188
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   189
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   190
        (dtac (inst_cprod_pcpo2 RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   191
        (etac inject_cpair 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   192
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   193
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   194
qed_goalw "Exh_Cprod2" Cprod3.thy [cpair_def]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   195
        "? a b. z=<a,b>"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   196
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   197
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   198
        (rtac PairE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   199
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   200
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   201
        (etac (beta_cfun_cprod RS ssubst) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   202
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   203
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   204
qed_goalw "cprodE" Cprod3.thy [cpair_def]
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   205
"[|!!x y. [|p=<x,y> |] ==> Q|] ==> Q"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   206
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   207
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   208
        (rtac PairE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   209
        (resolve_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   210
        (etac (beta_cfun_cprod RS ssubst) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   211
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   212
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   213
qed_goalw "cfst2" Cprod3.thy [cfst_def,cpair_def] 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   214
        "cfst`<x,y>=x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   215
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   216
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   217
        (cut_facts_tac prems 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   218
        (stac beta_cfun_cprod 1),
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   219
        (stac beta_cfun 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   220
        (rtac cont_fst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   221
        (Simp_tac  1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   222
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   223
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   224
qed_goalw "csnd2" Cprod3.thy [csnd_def,cpair_def] 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   225
        "csnd`<x,y>=y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   226
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   227
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   228
        (cut_facts_tac prems 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   229
        (stac beta_cfun_cprod 1),
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   230
        (stac beta_cfun 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   231
        (rtac cont_snd 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   232
        (Simp_tac  1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   233
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   234
2444
150644698367 added cfst_strict and csnd_strict
oheimb
parents: 2033
diff changeset
   235
qed_goal "cfst_strict" Cprod3.thy "cfst`UU = UU" (fn _ => [
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
   236
             (simp_tac (HOL_ss addsimps [inst_cprod_pcpo2,cfst2]) 1)]);
2444
150644698367 added cfst_strict and csnd_strict
oheimb
parents: 2033
diff changeset
   237
qed_goal "csnd_strict" Cprod3.thy "csnd`UU = UU" (fn _ => [
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2566
diff changeset
   238
             (simp_tac (HOL_ss addsimps [inst_cprod_pcpo2,csnd2]) 1)]);
2444
150644698367 added cfst_strict and csnd_strict
oheimb
parents: 2033
diff changeset
   239
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   240
qed_goalw "surjective_pairing_Cprod2" Cprod3.thy 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   241
        [cfst_def,csnd_def,cpair_def] "<cfst`p , csnd`p> = p"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   242
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   243
        [
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   244
        (stac beta_cfun_cprod 1),
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   245
        (stac beta_cfun 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   246
        (rtac cont_snd 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   247
        (stac beta_cfun 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   248
        (rtac cont_fst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   249
        (rtac (surjective_pairing RS sym) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   250
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   251
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   252
qed_goalw "less_cprod5c" Cprod3.thy [cfst_def,csnd_def,cpair_def]
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   253
 "<xa,ya> << <x,y> ==> xa<<x & ya << y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   254
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   255
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   256
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   257
        (rtac less_cprod4c 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   258
        (dtac (beta_cfun_cprod RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   259
        (dtac (beta_cfun_cprod RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   260
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   261
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   262
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   263
qed_goalw "lub_cprod2" Cprod3.thy [cfst_def,csnd_def,cpair_def]
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   264
"[|chain(S)|] ==> range(S) <<| \
3842
b55686a7b22c fixed dots;
wenzelm
parents: 2840
diff changeset
   265
\ <(lub(range(%i. cfst`(S i)))) , lub(range(%i. csnd`(S i)))>"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   266
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   267
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   268
        (cut_facts_tac prems 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   269
        (stac beta_cfun_cprod 1),
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   270
        (stac (beta_cfun RS ext) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   271
        (rtac cont_snd 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   272
        (stac (beta_cfun RS ext) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   273
        (rtac cont_fst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   274
        (rtac lub_cprod 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   275
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   276
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   277
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1461
diff changeset
   278
bind_thm ("thelub_cprod2", lub_cprod2 RS thelubI);
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   279
(*
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   280
chain ?S1 ==>
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   281
 lub (range ?S1) =
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   282
 <lub (range (%i. cfst`(?S1 i))), lub (range (%i. csnd`(?S1 i)))>" 
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   283
*)
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   284
qed_goalw "csplit2" Cprod3.thy [csplit_def]
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   285
        "csplit`f`<x,y> = f`x`y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   286
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   287
        [
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   288
        (stac beta_cfun 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   289
        (Simp_tac 1),
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
   290
        (simp_tac (simpset() addsimps [cfst2,csnd2]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   291
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   292
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   293
qed_goalw "csplit3" Cprod3.thy [csplit_def]
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   294
  "csplit`cpair`z=z"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   295
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   296
        [
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
   297
        (stac beta_cfun 1),
2566
cbf02fc74332 changed handling of cont_lemmas and adm_lemmas
oheimb
parents: 2444
diff changeset
   298
        (Simp_tac 1),
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
   299
        (simp_tac (simpset() addsimps [surjective_pairing_Cprod2]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   300
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   301
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   302
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   303
(* install simplifier for Cprod                                             *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   304
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   305
1267
bca91b4e1710 added local simpsets
clasohm
parents: 1168
diff changeset
   306
Addsimps [cfst2,csnd2,csplit2];
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   307
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents: 1267
diff changeset
   308
val Cprod_rews = [cfst2,csnd2,csplit2];