src/HOLCF/Cprod3.ML
author wenzelm
Mon, 16 Nov 1998 10:42:40 +0100
changeset 5871 2c037ffa7287
parent 4721 c8a8482a8124
child 9245 428385c4bc50
permissions -rw-r--r--
Attribute.thms_of;

(*  Title:      HOLCF/cprod3.ML
    ID:         $Id$
    Author:     Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen

Lemmas for Cprod3.thy 
*)

open Cprod3;

(* for compatibility with old HOLCF-Version *)
qed_goal "inst_cprod_pcpo" thy "UU = (UU,UU)"
 (fn prems => 
        [
        (simp_tac (HOL_ss addsimps [UU_def,UU_cprod_def]) 1)
        ]);

(* ------------------------------------------------------------------------ *)
(* continuity of (_,_) , fst, snd                                           *)
(* ------------------------------------------------------------------------ *)

qed_goal "Cprod3_lemma1" Cprod3.thy 
"chain(Y::(nat=>'a::cpo)) ==>\
\ (lub(range(Y)),(x::'b::cpo)) =\
\ (lub(range(%i. fst(Y i,x))),lub(range(%i. snd(Y i,x))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("f1","Pair")] (arg_cong RS cong) 1),
        (rtac lub_equal 1),
        (atac 1),
        (rtac (monofun_fst RS ch2ch_monofun) 1),
        (rtac ch2ch_fun 1),
        (rtac (monofun_pair1 RS ch2ch_monofun) 1),
        (atac 1),
        (rtac allI 1),
        (Simp_tac 1),
        (rtac sym 1),
        (Simp_tac 1),
        (rtac (lub_const RS thelubI) 1)
        ]);

qed_goal "contlub_pair1" Cprod3.thy "contlub(Pair)"
 (fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (rtac (expand_fun_eq RS iffD2) 1),
        (strip_tac 1),
        (stac (lub_fun RS thelubI) 1),
        (etac (monofun_pair1 RS ch2ch_monofun) 1),
        (rtac trans 1),
        (rtac (thelub_cprod RS sym) 2),
        (rtac ch2ch_fun 2),
        (etac (monofun_pair1 RS ch2ch_monofun) 2),
        (etac Cprod3_lemma1 1)
        ]);

qed_goal "Cprod3_lemma2" Cprod3.thy 
"chain(Y::(nat=>'a::cpo)) ==>\
\ ((x::'b::cpo),lub(range Y)) =\
\ (lub(range(%i. fst(x,Y i))),lub(range(%i. snd(x, Y i))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("f1","Pair")] (arg_cong RS cong) 1),
        (rtac sym 1),
        (Simp_tac 1),
        (rtac (lub_const RS thelubI) 1),
        (rtac lub_equal 1),
        (atac 1),
        (rtac (monofun_snd RS ch2ch_monofun) 1),
        (rtac (monofun_pair2 RS ch2ch_monofun) 1),
        (atac 1),
        (rtac allI 1),
        (Simp_tac 1)
        ]);

qed_goal "contlub_pair2" Cprod3.thy "contlub(Pair(x))"
 (fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (rtac trans 1),
        (rtac (thelub_cprod RS sym) 2),
        (etac (monofun_pair2 RS ch2ch_monofun) 2),
        (etac Cprod3_lemma2 1)
        ]);

qed_goal "cont_pair1" Cprod3.thy "cont(Pair)"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_pair1 1),
        (rtac contlub_pair1 1)
        ]);

qed_goal "cont_pair2" Cprod3.thy "cont(Pair(x))"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_pair2 1),
        (rtac contlub_pair2 1)
        ]);

qed_goal "contlub_fst" Cprod3.thy "contlub(fst)"
 (fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (stac (lub_cprod RS thelubI) 1),
        (atac 1),
        (Simp_tac 1)
        ]);

qed_goal "contlub_snd" Cprod3.thy "contlub(snd)"
 (fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (stac (lub_cprod RS thelubI) 1),
        (atac 1),
        (Simp_tac 1)
        ]);

qed_goal "cont_fst" Cprod3.thy "cont(fst)"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_fst 1),
        (rtac contlub_fst 1)
        ]);

qed_goal "cont_snd" Cprod3.thy "cont(snd)"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_snd 1),
        (rtac contlub_snd 1)
        ]);

(* 
 -------------------------------------------------------------------------- 
 more lemmas for Cprod3.thy 
 
 -------------------------------------------------------------------------- 
*)

(* ------------------------------------------------------------------------ *)
(* convert all lemmas to the continuous versions                            *)
(* ------------------------------------------------------------------------ *)

qed_goalw "beta_cfun_cprod" Cprod3.thy [cpair_def]
        "(LAM x y.(x,y))`a`b = (a,b)"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (simp_tac (simpset() addsimps [cont_pair1,cont_pair2,cont2cont_CF1L]) 1),
        (stac beta_cfun 1),
        (rtac cont_pair2 1),
        (rtac refl 1)
        ]);

qed_goalw "inject_cpair" Cprod3.thy [cpair_def]
        " <a,b>=<aa,ba>  ==> a=aa & b=ba"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (dtac (beta_cfun_cprod RS subst) 1),
        (dtac (beta_cfun_cprod RS subst) 1),
        (etac Pair_inject 1),
        (fast_tac HOL_cs 1)
        ]);

qed_goalw "inst_cprod_pcpo2" Cprod3.thy [cpair_def] "UU = <UU,UU>"
 (fn prems =>
        [
        (rtac sym 1),
        (rtac trans 1),
        (rtac beta_cfun_cprod 1),
        (rtac sym 1),
        (rtac inst_cprod_pcpo 1)
        ]);

qed_goal "defined_cpair_rev" Cprod3.thy
 "<a,b> = UU ==> a = UU & b = UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (dtac (inst_cprod_pcpo2 RS subst) 1),
        (etac inject_cpair 1)
        ]);

qed_goalw "Exh_Cprod2" Cprod3.thy [cpair_def]
        "? a b. z=<a,b>"
 (fn prems =>
        [
        (rtac PairE 1),
        (rtac exI 1),
        (rtac exI 1),
        (etac (beta_cfun_cprod RS ssubst) 1)
        ]);

qed_goalw "cprodE" Cprod3.thy [cpair_def]
"[|!!x y. [|p=<x,y> |] ==> Q|] ==> Q"
 (fn prems =>
        [
        (rtac PairE 1),
        (resolve_tac prems 1),
        (etac (beta_cfun_cprod RS ssubst) 1)
        ]);

qed_goalw "cfst2" Cprod3.thy [cfst_def,cpair_def] 
        "cfst`<x,y>=x"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_cprod 1),
        (stac beta_cfun 1),
        (rtac cont_fst 1),
        (Simp_tac  1)
        ]);

qed_goalw "csnd2" Cprod3.thy [csnd_def,cpair_def] 
        "csnd`<x,y>=y"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_cprod 1),
        (stac beta_cfun 1),
        (rtac cont_snd 1),
        (Simp_tac  1)
        ]);

qed_goal "cfst_strict" Cprod3.thy "cfst`UU = UU" (fn _ => [
             (simp_tac (HOL_ss addsimps [inst_cprod_pcpo2,cfst2]) 1)]);
qed_goal "csnd_strict" Cprod3.thy "csnd`UU = UU" (fn _ => [
             (simp_tac (HOL_ss addsimps [inst_cprod_pcpo2,csnd2]) 1)]);

qed_goalw "surjective_pairing_Cprod2" Cprod3.thy 
        [cfst_def,csnd_def,cpair_def] "<cfst`p , csnd`p> = p"
 (fn prems =>
        [
        (stac beta_cfun_cprod 1),
        (stac beta_cfun 1),
        (rtac cont_snd 1),
        (stac beta_cfun 1),
        (rtac cont_fst 1),
        (rtac (surjective_pairing RS sym) 1)
        ]);

qed_goalw "less_cprod5c" Cprod3.thy [cfst_def,csnd_def,cpair_def]
 "<xa,ya> << <x,y> ==> xa<<x & ya << y"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (rtac less_cprod4c 1),
        (dtac (beta_cfun_cprod RS subst) 1),
        (dtac (beta_cfun_cprod RS subst) 1),
        (atac 1)
        ]);

qed_goalw "lub_cprod2" Cprod3.thy [cfst_def,csnd_def,cpair_def]
"[|chain(S)|] ==> range(S) <<| \
\ <(lub(range(%i. cfst`(S i)))) , lub(range(%i. csnd`(S i)))>"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_cprod 1),
        (stac (beta_cfun RS ext) 1),
        (rtac cont_snd 1),
        (stac (beta_cfun RS ext) 1),
        (rtac cont_fst 1),
        (rtac lub_cprod 1),
        (atac 1)
        ]);

bind_thm ("thelub_cprod2", lub_cprod2 RS thelubI);
(*
chain ?S1 ==>
 lub (range ?S1) =
 <lub (range (%i. cfst`(?S1 i))), lub (range (%i. csnd`(?S1 i)))>" 
*)
qed_goalw "csplit2" Cprod3.thy [csplit_def]
        "csplit`f`<x,y> = f`x`y"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (Simp_tac 1),
        (simp_tac (simpset() addsimps [cfst2,csnd2]) 1)
        ]);

qed_goalw "csplit3" Cprod3.thy [csplit_def]
  "csplit`cpair`z=z"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (Simp_tac 1),
        (simp_tac (simpset() addsimps [surjective_pairing_Cprod2]) 1)
        ]);

(* ------------------------------------------------------------------------ *)
(* install simplifier for Cprod                                             *)
(* ------------------------------------------------------------------------ *)

Addsimps [cfst2,csnd2,csplit2];

val Cprod_rews = [cfst2,csnd2,csplit2];