| author | wenzelm | 
| Thu, 01 Sep 2016 20:34:43 +0200 | |
| changeset 63761 | 2ca536d0163e | 
| parent 63489 | cd540c8031a4 | 
| child 63882 | 018998c00003 | 
| permissions | -rw-r--r-- | 
| 63489 | 1 | (* Title: HOL/GCD.thy | 
| 2 | Author: Christophe Tabacznyj | |
| 3 | Author: Lawrence C. Paulson | |
| 4 | Author: Amine Chaieb | |
| 5 | Author: Thomas M. Rasmussen | |
| 6 | Author: Jeremy Avigad | |
| 7 | Author: Tobias Nipkow | |
| 31706 | 8 | |
| 32479 | 9 | This file deals with the functions gcd and lcm. Definitions and | 
| 10 | lemmas are proved uniformly for the natural numbers and integers. | |
| 31706 | 11 | |
| 12 | This file combines and revises a number of prior developments. | |
| 13 | ||
| 14 | The original theories "GCD" and "Primes" were by Christophe Tabacznyj | |
| 58623 | 15 | and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
 | 
| 31706 | 16 | gcd, lcm, and prime for the natural numbers. | 
| 17 | ||
| 18 | The original theory "IntPrimes" was by Thomas M. Rasmussen, and | |
| 19 | extended gcd, lcm, primes to the integers. Amine Chaieb provided | |
| 20 | another extension of the notions to the integers, and added a number | |
| 21 | of results to "Primes" and "GCD". IntPrimes also defined and developed | |
| 22 | the congruence relations on the integers. The notion was extended to | |
| 34915 | 23 | the natural numbers by Chaieb. | 
| 31706 | 24 | |
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 25 | Jeremy Avigad combined all of these, made everything uniform for the | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 26 | natural numbers and the integers, and added a number of new theorems. | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 27 | |
| 31798 | 28 | Tobias Nipkow cleaned up a lot. | 
| 21256 | 29 | *) | 
| 30 | ||
| 60758 | 31 | section \<open>Greatest common divisor and least common multiple\<close> | 
| 21256 | 32 | |
| 33 | theory GCD | |
| 63489 | 34 | imports Main | 
| 31706 | 35 | begin | 
| 36 | ||
| 63489 | 37 | |
| 62345 | 38 | subsection \<open>Abstract GCD and LCM\<close> | 
| 31706 | 39 | |
| 31992 | 40 | class gcd = zero + one + dvd + | 
| 41550 | 41 | fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 42 | and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 21256 | 43 | begin | 
| 44 | ||
| 60686 | 45 | abbreviation coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 46 | where "coprime x y \<equiv> gcd x y = 1" | |
| 31706 | 47 | |
| 48 | end | |
| 49 | ||
| 60686 | 50 | class Gcd = gcd + | 
| 63025 | 51 | fixes Gcd :: "'a set \<Rightarrow> 'a" | 
| 52 | and Lcm :: "'a set \<Rightarrow> 'a" | |
| 62350 | 53 | begin | 
| 54 | ||
| 63025 | 55 | abbreviation GREATEST_COMMON_DIVISOR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63489 | 56 | where "GREATEST_COMMON_DIVISOR A f \<equiv> Gcd (f ` A)" | 
| 62350 | 57 | |
| 63025 | 58 | abbreviation LEAST_COMMON_MULTIPLE :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63489 | 59 | where "LEAST_COMMON_MULTIPLE A f \<equiv> Lcm (f ` A)" | 
| 62350 | 60 | |
| 61 | end | |
| 62 | ||
| 63 | syntax | |
| 63025 | 64 |   "_GCD1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3GCD _./ _)" [0, 10] 10)
 | 
| 65 |   "_GCD"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3GCD _\<in>_./ _)" [0, 0, 10] 10)
 | |
| 66 |   "_LCM1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3LCM _./ _)" [0, 10] 10)
 | |
| 67 |   "_LCM"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3LCM _\<in>_./ _)" [0, 0, 10] 10)
 | |
| 62350 | 68 | translations | 
| 63025 | 69 | "GCD x y. B" \<rightleftharpoons> "GCD x. GCD y. B" | 
| 70 | "GCD x. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR CONST UNIV (\<lambda>x. B)" | |
| 71 | "GCD x. B" \<rightleftharpoons> "GCD x \<in> CONST UNIV. B" | |
| 72 | "GCD x\<in>A. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR A (\<lambda>x. B)" | |
| 73 | "LCM x y. B" \<rightleftharpoons> "LCM x. LCM y. B" | |
| 74 | "LCM x. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE CONST UNIV (\<lambda>x. B)" | |
| 75 | "LCM x. B" \<rightleftharpoons> "LCM x \<in> CONST UNIV. B" | |
| 76 | "LCM x\<in>A. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE A (\<lambda>x. B)" | |
| 62350 | 77 | |
| 78 | print_translation \<open> | |
| 63025 | 79 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax GREATEST_COMMON_DIVISOR} @{syntax_const "_GCD"},
 | 
| 80 |     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax LEAST_COMMON_MULTIPLE} @{syntax_const "_LCM"}]
 | |
| 62350 | 81 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 60686 | 82 | |
| 83 | class semiring_gcd = normalization_semidom + gcd + | |
| 59008 | 84 | assumes gcd_dvd1 [iff]: "gcd a b dvd a" | 
| 59977 | 85 | and gcd_dvd2 [iff]: "gcd a b dvd b" | 
| 86 | and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" | |
| 60686 | 87 | and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" | 
| 88 | and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b" | |
| 63489 | 89 | begin | 
| 90 | ||
| 91 | lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" | |
| 60686 | 92 | by (blast intro!: gcd_greatest intro: dvd_trans) | 
| 93 | ||
| 63489 | 94 | lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c" | 
| 60689 | 95 | by (rule dvd_trans) (rule gcd_dvd1) | 
| 96 | ||
| 63489 | 97 | lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c" | 
| 60689 | 98 | by (rule dvd_trans) (rule gcd_dvd2) | 
| 99 | ||
| 63489 | 100 | lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b" | 
| 62345 | 101 | using gcd_dvd1 [of b c] by (blast intro: dvd_trans) | 
| 102 | ||
| 63489 | 103 | lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c" | 
| 62345 | 104 | using gcd_dvd2 [of b c] by (blast intro: dvd_trans) | 
| 105 | ||
| 63489 | 106 | lemma gcd_0_left [simp]: "gcd 0 a = normalize a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 107 | by (rule associated_eqI) simp_all | 
| 60686 | 108 | |
| 63489 | 109 | lemma gcd_0_right [simp]: "gcd a 0 = normalize a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 110 | by (rule associated_eqI) simp_all | 
| 63489 | 111 | |
| 112 | lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 113 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 114 | proof | 
| 63489 | 115 | assume ?P | 
| 116 | then have "0 dvd gcd a b" | |
| 117 | by simp | |
| 118 | then have "0 dvd a" and "0 dvd b" | |
| 119 | by (blast intro: dvd_trans)+ | |
| 120 | then show ?Q | |
| 121 | by simp | |
| 60686 | 122 | next | 
| 63489 | 123 | assume ?Q | 
| 124 | then show ?P | |
| 125 | by simp | |
| 60686 | 126 | qed | 
| 127 | ||
| 63489 | 128 | lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" | 
| 60686 | 129 | proof (cases "gcd a b = 0") | 
| 63489 | 130 | case True | 
| 131 | then show ?thesis by simp | |
| 60686 | 132 | next | 
| 133 | case False | |
| 134 | have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" | |
| 135 | by (rule unit_factor_mult_normalize) | |
| 136 | then have "unit_factor (gcd a b) * gcd a b = gcd a b" | |
| 137 | by simp | |
| 138 | then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" | |
| 139 | by simp | |
| 63489 | 140 | with False show ?thesis | 
| 141 | by simp | |
| 60686 | 142 | qed | 
| 143 | ||
| 63489 | 144 | lemma is_unit_gcd [simp]: "is_unit (gcd a b) \<longleftrightarrow> coprime a b" | 
| 60690 | 145 | by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor) | 
| 146 | ||
| 61605 | 147 | sublocale gcd: abel_semigroup gcd | 
| 60686 | 148 | proof | 
| 149 | fix a b c | |
| 150 | show "gcd a b = gcd b a" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 151 | by (rule associated_eqI) simp_all | 
| 60686 | 152 | from gcd_dvd1 have "gcd (gcd a b) c dvd a" | 
| 153 | by (rule dvd_trans) simp | |
| 154 | moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" | |
| 155 | by (rule dvd_trans) simp | |
| 156 | ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" | |
| 157 | by (auto intro!: gcd_greatest) | |
| 158 | from gcd_dvd2 have "gcd a (gcd b c) dvd b" | |
| 159 | by (rule dvd_trans) simp | |
| 160 | moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" | |
| 161 | by (rule dvd_trans) simp | |
| 162 | ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" | |
| 163 | by (auto intro!: gcd_greatest) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 164 | from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 165 | by (rule associated_eqI) simp_all | 
| 60686 | 166 | qed | 
| 167 | ||
| 63489 | 168 | lemma gcd_self [simp]: "gcd a a = normalize a" | 
| 60686 | 169 | proof - | 
| 170 | have "a dvd gcd a a" | |
| 171 | by (rule gcd_greatest) simp_all | |
| 172 | then show ?thesis | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 173 | by (auto intro: associated_eqI) | 
| 60686 | 174 | qed | 
| 61913 | 175 | |
| 63489 | 176 | lemma gcd_left_idem [simp]: "gcd a (gcd a b) = gcd a b" | 
| 61913 | 177 | by (auto intro: associated_eqI) | 
| 178 | ||
| 63489 | 179 | lemma gcd_right_idem [simp]: "gcd (gcd a b) b = gcd a b" | 
| 61913 | 180 | unfolding gcd.commute [of a] gcd.commute [of "gcd b a"] by simp | 
| 181 | ||
| 63489 | 182 | lemma coprime_1_left [simp]: "coprime 1 a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 183 | by (rule associated_eqI) simp_all | 
| 60686 | 184 | |
| 63489 | 185 | lemma coprime_1_right [simp]: "coprime a 1" | 
| 60686 | 186 | using coprime_1_left [of a] by (simp add: ac_simps) | 
| 187 | ||
| 63489 | 188 | lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize c * gcd a b" | 
| 60686 | 189 | proof (cases "c = 0") | 
| 63489 | 190 | case True | 
| 191 | then show ?thesis by simp | |
| 60686 | 192 | next | 
| 193 | case False | |
| 63489 | 194 | then have *: "c * gcd a b dvd gcd (c * a) (c * b)" | 
| 60686 | 195 | by (auto intro: gcd_greatest) | 
| 63489 | 196 | moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b" | 
| 60686 | 197 | by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) | 
| 198 | ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 199 | by (auto intro: associated_eqI) | 
| 63489 | 200 | then show ?thesis | 
| 201 | by (simp add: normalize_mult) | |
| 60686 | 202 | qed | 
| 203 | ||
| 63489 | 204 | lemma gcd_mult_right: "gcd (a * c) (b * c) = gcd b a * normalize c" | 
| 60686 | 205 | using gcd_mult_left [of c a b] by (simp add: ac_simps) | 
| 206 | ||
| 63489 | 207 | lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)" | 
| 60686 | 208 | by (simp add: gcd_mult_left mult.assoc [symmetric]) | 
| 209 | ||
| 63489 | 210 | lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c" | 
| 60686 | 211 | using mult_gcd_left [of c a b] by (simp add: ac_simps) | 
| 212 | ||
| 63489 | 213 | lemma dvd_lcm1 [iff]: "a dvd lcm a b" | 
| 60686 | 214 | proof - | 
| 215 | have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)" | |
| 216 | by (simp add: lcm_gcd normalize_mult div_mult_swap) | |
| 217 | then show ?thesis | |
| 218 | by (simp add: lcm_gcd) | |
| 219 | qed | |
| 63489 | 220 | |
| 221 | lemma dvd_lcm2 [iff]: "b dvd lcm a b" | |
| 60686 | 222 | proof - | 
| 223 | have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)" | |
| 224 | by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps) | |
| 225 | then show ?thesis | |
| 226 | by (simp add: lcm_gcd) | |
| 227 | qed | |
| 228 | ||
| 63489 | 229 | lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c" | 
| 230 | by (rule dvd_trans) (assumption, blast) | |
| 231 | ||
| 232 | lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c" | |
| 60689 | 233 | by (rule dvd_trans) (assumption, blast) | 
| 234 | ||
| 63489 | 235 | lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c" | 
| 62345 | 236 | using dvd_lcm1 [of a b] by (blast intro: dvd_trans) | 
| 237 | ||
| 63489 | 238 | lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c" | 
| 62345 | 239 | using dvd_lcm2 [of a b] by (blast intro: dvd_trans) | 
| 240 | ||
| 60686 | 241 | lemma lcm_least: | 
| 242 | assumes "a dvd c" and "b dvd c" | |
| 243 | shows "lcm a b dvd c" | |
| 244 | proof (cases "c = 0") | |
| 63489 | 245 | case True | 
| 246 | then show ?thesis by simp | |
| 60686 | 247 | next | 
| 63489 | 248 | case False | 
| 249 | then have *: "is_unit (unit_factor c)" | |
| 250 | by simp | |
| 60686 | 251 | show ?thesis | 
| 252 | proof (cases "gcd a b = 0") | |
| 63489 | 253 | case True | 
| 254 | with assms show ?thesis by simp | |
| 60686 | 255 | next | 
| 63489 | 256 | case False | 
| 257 | then have "a \<noteq> 0 \<or> b \<noteq> 0" | |
| 258 | by simp | |
| 60686 | 259 | with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b" | 
| 260 | by (simp_all add: mult_dvd_mono) | |
| 261 | then have "normalize (a * b) dvd gcd (a * c) (b * c)" | |
| 262 | by (auto intro: gcd_greatest simp add: ac_simps) | |
| 263 | then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c" | |
| 63489 | 264 | using * by (simp add: dvd_mult_unit_iff) | 
| 60686 | 265 | then have "normalize (a * b) dvd gcd a b * c" | 
| 266 | by (simp add: mult_gcd_right [of a b c]) | |
| 267 | then have "normalize (a * b) div gcd a b dvd c" | |
| 268 | using False by (simp add: div_dvd_iff_mult ac_simps) | |
| 63489 | 269 | then show ?thesis | 
| 270 | by (simp add: lcm_gcd) | |
| 60686 | 271 | qed | 
| 272 | qed | |
| 273 | ||
| 63489 | 274 | lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" | 
| 60686 | 275 | by (blast intro!: lcm_least intro: dvd_trans) | 
| 276 | ||
| 63489 | 277 | lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b" | 
| 60686 | 278 | by (simp add: lcm_gcd dvd_normalize_div) | 
| 279 | ||
| 63489 | 280 | lemma lcm_0_left [simp]: "lcm 0 a = 0" | 
| 281 | by (simp add: lcm_gcd) | |
| 282 | ||
| 283 | lemma lcm_0_right [simp]: "lcm a 0 = 0" | |
| 60686 | 284 | by (simp add: lcm_gcd) | 
| 63489 | 285 | |
| 286 | lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 287 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 288 | proof | 
| 63489 | 289 | assume ?P | 
| 290 | then have "0 dvd lcm a b" | |
| 291 | by simp | |
| 60686 | 292 | then have "0 dvd normalize (a * b) div gcd a b" | 
| 293 | by (simp add: lcm_gcd) | |
| 294 | then have "0 * gcd a b dvd normalize (a * b)" | |
| 295 | using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all | |
| 296 | then have "normalize (a * b) = 0" | |
| 297 | by simp | |
| 63489 | 298 | then show ?Q | 
| 299 | by simp | |
| 60686 | 300 | next | 
| 63489 | 301 | assume ?Q | 
| 302 | then show ?P | |
| 303 | by auto | |
| 60686 | 304 | qed | 
| 305 | ||
| 63489 | 306 | lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" | 
| 61913 | 307 | by (auto intro: associated_eqI) | 
| 308 | ||
| 63489 | 309 | lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" | 
| 60686 | 310 | by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd) | 
| 311 | ||
| 61605 | 312 | sublocale lcm: abel_semigroup lcm | 
| 60686 | 313 | proof | 
| 314 | fix a b c | |
| 315 | show "lcm a b = lcm b a" | |
| 316 | by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 317 | have "lcm (lcm a b) c dvd lcm a (lcm b c)" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 318 | and "lcm a (lcm b c) dvd lcm (lcm a b) c" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 319 | by (auto intro: lcm_least | 
| 60686 | 320 | dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] | 
| 321 | dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] | |
| 322 | dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] | |
| 323 | dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) | |
| 324 | then show "lcm (lcm a b) c = lcm a (lcm b c)" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 325 | by (rule associated_eqI) simp_all | 
| 60686 | 326 | qed | 
| 327 | ||
| 63489 | 328 | lemma lcm_self [simp]: "lcm a a = normalize a" | 
| 60686 | 329 | proof - | 
| 330 | have "lcm a a dvd a" | |
| 331 | by (rule lcm_least) simp_all | |
| 332 | then show ?thesis | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 333 | by (auto intro: associated_eqI) | 
| 60686 | 334 | qed | 
| 335 | ||
| 63489 | 336 | lemma lcm_left_idem [simp]: "lcm a (lcm a b) = lcm a b" | 
| 61913 | 337 | by (auto intro: associated_eqI) | 
| 338 | ||
| 63489 | 339 | lemma lcm_right_idem [simp]: "lcm (lcm a b) b = lcm a b" | 
| 61913 | 340 | unfolding lcm.commute [of a] lcm.commute [of "lcm b a"] by simp | 
| 341 | ||
| 63489 | 342 | lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b" | 
| 60686 | 343 | by (simp add: lcm_gcd normalize_mult) | 
| 344 | ||
| 63489 | 345 | lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b" | 
| 346 | using gcd_mult_lcm [of a b] by (simp add: ac_simps) | |
| 60686 | 347 | |
| 348 | lemma gcd_lcm: | |
| 349 | assumes "a \<noteq> 0" and "b \<noteq> 0" | |
| 350 | shows "gcd a b = normalize (a * b) div lcm a b" | |
| 351 | proof - | |
| 352 | from assms have "lcm a b \<noteq> 0" | |
| 353 | by (simp add: lcm_eq_0_iff) | |
| 63489 | 354 | have "gcd a b * lcm a b = normalize a * normalize b" | 
| 355 | by simp | |
| 60686 | 356 | then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b" | 
| 357 | by (simp_all add: normalize_mult) | |
| 358 | with \<open>lcm a b \<noteq> 0\<close> show ?thesis | |
| 359 | using nonzero_mult_divide_cancel_right [of "lcm a b" "gcd a b"] by simp | |
| 360 | qed | |
| 361 | ||
| 63489 | 362 | lemma lcm_1_left [simp]: "lcm 1 a = normalize a" | 
| 60686 | 363 | by (simp add: lcm_gcd) | 
| 364 | ||
| 63489 | 365 | lemma lcm_1_right [simp]: "lcm a 1 = normalize a" | 
| 60686 | 366 | by (simp add: lcm_gcd) | 
| 63489 | 367 | |
| 368 | lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize c * lcm a b" | |
| 60686 | 369 | by (cases "c = 0") | 
| 370 | (simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps, | |
| 371 | simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric]) | |
| 372 | ||
| 63489 | 373 | lemma lcm_mult_right: "lcm (a * c) (b * c) = lcm b a * normalize c" | 
| 60686 | 374 | using lcm_mult_left [of c a b] by (simp add: ac_simps) | 
| 375 | ||
| 63489 | 376 | lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)" | 
| 60686 | 377 | by (simp add: lcm_mult_left mult.assoc [symmetric]) | 
| 378 | ||
| 63489 | 379 | lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c" | 
| 60686 | 380 | using mult_lcm_left [of c a b] by (simp add: ac_simps) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 381 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 382 | lemma gcdI: | 
| 63489 | 383 | assumes "c dvd a" and "c dvd b" | 
| 384 | and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 385 | and "normalize c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 386 | shows "c = gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 387 | by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 388 | |
| 63489 | 389 | lemma gcd_unique: | 
| 390 | "d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 391 | by rule (auto intro: gcdI simp: gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 392 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 393 | lemma gcd_dvd_prod: "gcd a b dvd k * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 394 | using mult_dvd_mono [of 1] by auto | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 395 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 396 | lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 397 | by (rule gcdI [symmetric]) simp_all | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 398 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 399 | lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 400 | by (rule gcdI [symmetric]) simp_all | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 401 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 402 | lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 403 | proof | 
| 63489 | 404 | assume *: "gcd m n = normalize m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 405 | show "m dvd n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 406 | proof (cases "m = 0") | 
| 63489 | 407 | case True | 
| 408 | with * show ?thesis by simp | |
| 409 | next | |
| 410 | case [simp]: False | |
| 411 | from * have **: "m = gcd m n * unit_factor m" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 412 | by (simp add: unit_eq_div2) | 
| 63489 | 413 | show ?thesis | 
| 414 | by (subst **) (simp add: mult_unit_dvd_iff) | |
| 415 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 416 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 417 | assume "m dvd n" | 
| 63489 | 418 | then show "gcd m n = normalize m" | 
| 419 | by (rule gcd_proj1_if_dvd) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 420 | qed | 
| 63489 | 421 | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 422 | lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 423 | using gcd_proj1_iff [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 424 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 425 | lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 426 | by (rule gcdI) (auto simp: normalize_mult gcd_greatest mult_dvd_mono gcd_mult_left[symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 427 | |
| 63489 | 428 | lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 429 | proof- | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 430 | have "normalize k * gcd a b = gcd (k * a) (k * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 431 | by (simp add: gcd_mult_distrib') | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 432 | then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 433 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 434 | then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 435 | by (simp only: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 436 | then show ?thesis | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 437 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 438 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 439 | |
| 63489 | 440 | lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 441 | by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 442 | |
| 63489 | 443 | lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 444 | using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 445 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 446 | lemma lcm_div_unit1: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 447 | "is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" | 
| 63489 | 448 | by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) | 
| 449 | ||
| 450 | lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 451 | by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 452 | |
| 63489 | 453 | lemma normalize_lcm_left [simp]: "lcm (normalize a) b = lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 454 | proof (cases "a = 0") | 
| 63489 | 455 | case True | 
| 456 | then show ?thesis | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 457 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 458 | next | 
| 63489 | 459 | case False | 
| 460 | then have "is_unit (unit_factor a)" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 461 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 462 | moreover have "normalize a = a div unit_factor a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 463 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 464 | ultimately show ?thesis | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 465 | by (simp only: lcm_div_unit1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 466 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 467 | |
| 63489 | 468 | lemma normalize_lcm_right [simp]: "lcm a (normalize b) = lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 469 | using normalize_lcm_left [of b a] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 470 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 471 | lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 472 | apply (rule gcdI) | 
| 63489 | 473 | apply simp_all | 
| 474 | apply (rule dvd_trans) | |
| 475 | apply (rule gcd_dvd1) | |
| 476 | apply (simp add: unit_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 477 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 478 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 479 | lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" | 
| 63489 | 480 | apply (subst gcd.commute) | 
| 481 | apply (subst gcd_mult_unit1) | |
| 482 | apply assumption | |
| 483 | apply (rule gcd.commute) | |
| 484 | done | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 485 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 486 | lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 487 | by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 488 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 489 | lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 490 | by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 491 | |
| 63489 | 492 | lemma normalize_gcd_left [simp]: "gcd (normalize a) b = gcd a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 493 | proof (cases "a = 0") | 
| 63489 | 494 | case True | 
| 495 | then show ?thesis | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 496 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 497 | next | 
| 63489 | 498 | case False | 
| 499 | then have "is_unit (unit_factor a)" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 500 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 501 | moreover have "normalize a = a div unit_factor a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 502 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 503 | ultimately show ?thesis | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 504 | by (simp only: gcd_div_unit1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 505 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 506 | |
| 63489 | 507 | lemma normalize_gcd_right [simp]: "gcd a (normalize b) = gcd a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 508 | using normalize_gcd_left [of b a] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 509 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 510 | lemma comp_fun_idem_gcd: "comp_fun_idem gcd" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 511 | by standard (simp_all add: fun_eq_iff ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 512 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 513 | lemma comp_fun_idem_lcm: "comp_fun_idem lcm" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 514 | by standard (simp_all add: fun_eq_iff ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 515 | |
| 63489 | 516 | lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 517 | proof (rule gcdI) | 
| 63489 | 518 | assume *: "gcd a b dvd gcd c d" | 
| 519 | and **: "gcd c d dvd gcd a b" | |
| 520 | have "gcd c d dvd c" | |
| 521 | by simp | |
| 522 | with * show "gcd a b dvd c" | |
| 523 | by (rule dvd_trans) | |
| 524 | have "gcd c d dvd d" | |
| 525 | by simp | |
| 526 | with * show "gcd a b dvd d" | |
| 527 | by (rule dvd_trans) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 528 | show "normalize (gcd a b) = gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 529 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 530 | fix l assume "l dvd c" and "l dvd d" | 
| 63489 | 531 | then have "l dvd gcd c d" | 
| 532 | by (rule gcd_greatest) | |
| 533 | from this and ** show "l dvd gcd a b" | |
| 534 | by (rule dvd_trans) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 535 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 536 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 537 | lemma coprime_dvd_mult: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 538 | assumes "coprime a b" and "a dvd c * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 539 | shows "a dvd c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 540 | proof (cases "c = 0") | 
| 63489 | 541 | case True | 
| 542 | then show ?thesis by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 543 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 544 | case False | 
| 63489 | 545 | then have unit: "is_unit (unit_factor c)" | 
| 546 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 547 | from \<open>coprime a b\<close> mult_gcd_left [of c a b] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 548 | have "gcd (c * a) (c * b) * unit_factor c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 549 | by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 550 | moreover from \<open>a dvd c * b\<close> have "a dvd gcd (c * a) (c * b) * unit_factor c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 551 | by (simp add: dvd_mult_unit_iff unit) | 
| 63489 | 552 | ultimately show ?thesis | 
| 553 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 554 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 555 | |
| 63489 | 556 | lemma coprime_dvd_mult_iff: "coprime a c \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd b" | 
| 557 | by (auto intro: coprime_dvd_mult) | |
| 558 | ||
| 559 | lemma gcd_mult_cancel: "coprime c b \<Longrightarrow> gcd (c * a) b = gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 560 | apply (rule associated_eqI) | 
| 63489 | 561 | apply (rule gcd_greatest) | 
| 562 | apply (rule_tac b = c in coprime_dvd_mult) | |
| 563 | apply (simp add: gcd.assoc) | |
| 564 | apply (simp_all add: ac_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 565 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 566 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 567 | lemma coprime_crossproduct: | 
| 63489 | 568 | fixes a b c d :: 'a | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 569 | assumes "coprime a d" and "coprime b c" | 
| 63489 | 570 | shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow> | 
| 571 | normalize a = normalize b \<and> normalize c = normalize d" | |
| 572 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 573 | proof | 
| 63489 | 574 | assume ?rhs | 
| 575 | then show ?lhs by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 576 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 577 | assume ?lhs | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 578 | from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 579 | by (auto intro: dvdI dest: sym) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 580 | with \<open>coprime a d\<close> have "a dvd b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 581 | by (simp add: coprime_dvd_mult_iff normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 582 | from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 583 | by (auto intro: dvdI dest: sym) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 584 | with \<open>coprime b c\<close> have "b dvd a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 585 | by (simp add: coprime_dvd_mult_iff normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 586 | from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 587 | by (auto intro: dvdI dest: sym simp add: mult.commute) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 588 | with \<open>coprime b c\<close> have "c dvd d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 589 | by (simp add: coprime_dvd_mult_iff gcd.commute normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 590 | from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 591 | by (auto intro: dvdI dest: sym simp add: mult.commute) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 592 | with \<open>coprime a d\<close> have "d dvd c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 593 | by (simp add: coprime_dvd_mult_iff gcd.commute normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 594 | from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 595 | by (rule associatedI) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 596 | moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 597 | by (rule associatedI) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 598 | ultimately show ?rhs .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 599 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 600 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 601 | lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 602 | by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 603 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 604 | lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 605 | using gcd_add1 [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 606 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 607 | lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 608 | by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 609 | |
| 63489 | 610 | lemma coprimeI: "(\<And>l. l dvd a \<Longrightarrow> l dvd b \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd a b = 1" | 
| 611 | by (rule sym, rule gcdI) simp_all | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 612 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 613 | lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 614 | by (auto intro: coprimeI gcd_greatest dvd_gcdD1 dvd_gcdD2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 615 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 616 | lemma div_gcd_coprime: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 617 | assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 618 | shows "coprime (a div gcd a b) (b div gcd a b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 619 | proof - | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 620 | let ?g = "gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 621 | let ?a' = "a div ?g" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 622 | let ?b' = "b div ?g" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 623 | let ?g' = "gcd ?a' ?b'" | 
| 63489 | 624 | have dvdg: "?g dvd a" "?g dvd b" | 
| 625 | by simp_all | |
| 626 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" | |
| 627 | by simp_all | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 628 | from dvdg dvdg' obtain ka kb ka' kb' where | 
| 63489 | 629 | kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 630 | unfolding dvd_def by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 631 | from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 632 | by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 633 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | 
| 63489 | 634 | by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def) | 
| 635 | have "?g \<noteq> 0" | |
| 636 | using nz by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 637 | moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . | 
| 63489 | 638 | ultimately show ?thesis | 
| 639 | using dvd_times_left_cancel_iff [of "gcd a b" _ 1] by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 640 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 641 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 642 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 643 | lemma divides_mult: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 644 | assumes "a dvd c" and nr: "b dvd c" and "coprime a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 645 | shows "a * b dvd c" | 
| 63489 | 646 | proof - | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 647 | from \<open>b dvd c\<close> obtain b' where"c = b * b'" .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 648 | with \<open>a dvd c\<close> have "a dvd b' * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 649 | by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 650 | with \<open>coprime a b\<close> have "a dvd b'" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 651 | by (simp add: coprime_dvd_mult_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 652 | then obtain a' where "b' = a * a'" .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 653 | with \<open>c = b * b'\<close> have "c = (a * b) * a'" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 654 | by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 655 | then show ?thesis .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 656 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 657 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 658 | lemma coprime_lmult: | 
| 63489 | 659 | assumes dab: "gcd d (a * b) = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 660 | shows "gcd d a = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 661 | proof (rule coprimeI) | 
| 63489 | 662 | fix l | 
| 663 | assume "l dvd d" and "l dvd a" | |
| 664 | then have "l dvd a * b" | |
| 665 | by simp | |
| 666 | with \<open>l dvd d\<close> and dab show "l dvd 1" | |
| 667 | by (auto intro: gcd_greatest) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 668 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 669 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 670 | lemma coprime_rmult: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 671 | assumes dab: "gcd d (a * b) = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 672 | shows "gcd d b = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 673 | proof (rule coprimeI) | 
| 63489 | 674 | fix l | 
| 675 | assume "l dvd d" and "l dvd b" | |
| 676 | then have "l dvd a * b" | |
| 677 | by simp | |
| 678 | with \<open>l dvd d\<close> and dab show "l dvd 1" | |
| 679 | by (auto intro: gcd_greatest) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 680 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 681 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 682 | lemma coprime_mult: | 
| 63489 | 683 | assumes "coprime d a" | 
| 684 | and "coprime d b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 685 | shows "coprime d (a * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 686 | apply (subst gcd.commute) | 
| 63489 | 687 | using assms(1) apply (subst gcd_mult_cancel) | 
| 688 | apply (subst gcd.commute) | |
| 689 | apply assumption | |
| 690 | apply (subst gcd.commute) | |
| 691 | apply (rule assms(2)) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 692 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 693 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 694 | lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1" | 
| 63489 | 695 | using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b] | 
| 696 | by blast | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 697 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 698 | lemma gcd_coprime: | 
| 63489 | 699 | assumes c: "gcd a b \<noteq> 0" | 
| 700 | and a: "a = a' * gcd a b" | |
| 701 | and b: "b = b' * gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 702 | shows "gcd a' b' = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 703 | proof - | 
| 63489 | 704 | from c have "a \<noteq> 0 \<or> b \<noteq> 0" | 
| 705 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 706 | with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" . | 
| 63489 | 707 | also from assms have "a div gcd a b = a'" | 
| 708 | using dvd_div_eq_mult local.gcd_dvd1 by blast | |
| 709 | also from assms have "b div gcd a b = b'" | |
| 710 | using dvd_div_eq_mult local.gcd_dvd1 by blast | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 711 | finally show ?thesis . | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 712 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 713 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 714 | lemma coprime_power: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 715 | assumes "0 < n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 716 | shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1" | 
| 63489 | 717 | using assms | 
| 718 | proof (induct n) | |
| 719 | case 0 | |
| 720 | then show ?case by simp | |
| 721 | next | |
| 722 | case (Suc n) | |
| 723 | then show ?case | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 724 | by (cases n) (simp_all add: coprime_mul_eq) | 
| 63489 | 725 | qed | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 726 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 727 | lemma gcd_coprime_exists: | 
| 63489 | 728 | assumes "gcd a b \<noteq> 0" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 729 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 730 | apply (rule_tac x = "a div gcd a b" in exI) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 731 | apply (rule_tac x = "b div gcd a b" in exI) | 
| 63489 | 732 | using assms | 
| 733 | apply (auto intro: div_gcd_coprime) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 734 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 735 | |
| 63489 | 736 | lemma coprime_exp: "gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1" | 
| 737 | by (induct n) (simp_all add: coprime_mult) | |
| 738 | ||
| 739 | lemma coprime_exp_left: "coprime a b \<Longrightarrow> coprime (a ^ n) b" | |
| 740 | by (induct n) (simp_all add: gcd_mult_cancel) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 741 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 742 | lemma coprime_exp2: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 743 | assumes "coprime a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 744 | shows "coprime (a ^ n) (b ^ m)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 745 | proof (rule coprime_exp_left) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 746 | from assms show "coprime a (b ^ m)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 747 | by (induct m) (simp_all add: gcd_mult_cancel gcd.commute [of a]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 748 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 749 | |
| 63489 | 750 | lemma gcd_exp: "gcd (a ^ n) (b ^ n) = gcd a b ^ n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 751 | proof (cases "a = 0 \<and> b = 0") | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 752 | case True | 
| 63489 | 753 | then show ?thesis | 
| 754 | by (cases n) simp_all | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 755 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 756 | case False | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 757 | then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 758 | using coprime_exp2[OF div_gcd_coprime[of a b], of n n, symmetric] by simp | 
| 63489 | 759 | then have "gcd a b ^ n = gcd a b ^ n * \<dots>" | 
| 760 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 761 | also note gcd_mult_distrib | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 762 | also have "unit_factor (gcd a b ^ n) = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 763 | using False by (auto simp add: unit_factor_power unit_factor_gcd) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 764 | also have "(gcd a b)^n * (a div gcd a b)^n = a^n" | 
| 63489 | 765 | apply (subst ac_simps) | 
| 766 | apply (subst div_power) | |
| 767 | apply simp | |
| 768 | apply (rule dvd_div_mult_self) | |
| 769 | apply (rule dvd_power_same) | |
| 770 | apply simp | |
| 771 | done | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 772 | also have "(gcd a b)^n * (b div gcd a b)^n = b^n" | 
| 63489 | 773 | apply (subst ac_simps) | 
| 774 | apply (subst div_power) | |
| 775 | apply simp | |
| 776 | apply (rule dvd_div_mult_self) | |
| 777 | apply (rule dvd_power_same) | |
| 778 | apply simp | |
| 779 | done | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 780 | finally show ?thesis by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 781 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 782 | |
| 63489 | 783 | lemma coprime_common_divisor: "gcd a b = 1 \<Longrightarrow> a dvd a \<Longrightarrow> a dvd b \<Longrightarrow> is_unit a" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 784 | apply (subgoal_tac "a dvd gcd a b") | 
| 63489 | 785 | apply simp | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 786 | apply (erule (1) gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 787 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 788 | |
| 63489 | 789 | lemma division_decomp: | 
| 790 | assumes "a dvd b * c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 791 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 792 | proof (cases "gcd a b = 0") | 
| 63489 | 793 | case True | 
| 794 | then have "a = 0 \<and> b = 0" | |
| 795 | by simp | |
| 796 | then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c" | |
| 797 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 798 | then show ?thesis by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 799 | next | 
| 63489 | 800 | case False | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 801 | let ?d = "gcd a b" | 
| 63489 | 802 | from gcd_coprime_exists [OF False] | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 803 | obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 804 | by blast | 
| 63489 | 805 | from ab'(1) have "a' dvd a" | 
| 806 | unfolding dvd_def by blast | |
| 807 | with assms have "a' dvd b * c" | |
| 808 | using dvd_trans[of a' a "b*c"] by simp | |
| 809 | from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c" | |
| 810 | by simp | |
| 811 | then have "?d * a' dvd ?d * (b' * c)" | |
| 812 | by (simp add: mult_ac) | |
| 813 | with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" | |
| 814 | by simp | |
| 815 | with coprime_dvd_mult[OF ab'(3)] have "a' dvd c" | |
| 816 | by (subst (asm) ac_simps) blast | |
| 817 | with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" | |
| 818 | by (simp add: mult_ac) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 819 | then show ?thesis by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 820 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 821 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 822 | lemma pow_divs_pow: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 823 | assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 824 | shows "a dvd b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 825 | proof (cases "gcd a b = 0") | 
| 63489 | 826 | case True | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 827 | then show ?thesis by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 828 | next | 
| 63489 | 829 | case False | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 830 | let ?d = "gcd a b" | 
| 63489 | 831 | from n obtain m where m: "n = Suc m" | 
| 832 | by (cases n) simp_all | |
| 833 | from False have zn: "?d ^ n \<noteq> 0" | |
| 834 | by (rule power_not_zero) | |
| 835 | from gcd_coprime_exists [OF False] | |
| 836 | obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 837 | by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 838 | from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 839 | by (simp add: ab'(1,2)[symmetric]) | 
| 63489 | 840 | then have "?d^n * a'^n dvd ?d^n * b'^n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 841 | by (simp only: power_mult_distrib ac_simps) | 
| 63489 | 842 | with zn have "a'^n dvd b'^n" | 
| 843 | by simp | |
| 844 | then have "a' dvd b'^n" | |
| 845 | using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) | |
| 846 | then have "a' dvd b'^m * b'" | |
| 847 | by (simp add: m ac_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 848 | with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]] | 
| 63489 | 849 | have "a' dvd b'" by (subst (asm) ac_simps) blast | 
| 850 | then have "a' * ?d dvd b' * ?d" | |
| 851 | by (rule mult_dvd_mono) simp | |
| 852 | with ab'(1,2) show ?thesis | |
| 853 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 854 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 855 | |
| 63489 | 856 | lemma pow_divs_eq [simp]: "n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 857 | by (auto intro: pow_divs_pow dvd_power_same) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 858 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 859 | lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1" | 
| 63489 | 860 | by (subst add_commute) simp | 
| 861 | ||
| 862 | lemma setprod_coprime [rule_format]: "(\<forall>i\<in>A. gcd (f i) a = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) a = 1" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 863 | apply (cases "finite A") | 
| 63489 | 864 | apply (induct set: finite) | 
| 865 | apply (auto simp add: gcd_mult_cancel) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 866 | done | 
| 63489 | 867 | |
| 868 | lemma listprod_coprime: "(\<And>x. x \<in> set xs \<Longrightarrow> coprime x y) \<Longrightarrow> coprime (listprod xs) y" | |
| 869 | by (induct xs) (simp_all add: gcd_mult_cancel) | |
| 870 | ||
| 871 | lemma coprime_divisors: | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 872 | assumes "d dvd a" "e dvd b" "gcd a b = 1" | 
| 63489 | 873 | shows "gcd d e = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 874 | proof - | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 875 | from assms obtain k l where "a = d * k" "b = e * l" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 876 | unfolding dvd_def by blast | 
| 63489 | 877 | with assms have "gcd (d * k) (e * l) = 1" | 
| 878 | by simp | |
| 879 | then have "gcd (d * k) e = 1" | |
| 880 | by (rule coprime_lmult) | |
| 881 | also have "gcd (d * k) e = gcd e (d * k)" | |
| 882 | by (simp add: ac_simps) | |
| 883 | finally have "gcd e d = 1" | |
| 884 | by (rule coprime_lmult) | |
| 885 | then show ?thesis | |
| 886 | by (simp add: ac_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 887 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 888 | |
| 63489 | 889 | lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 890 | by (simp add: lcm_gcd) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 891 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 892 | declare unit_factor_lcm [simp] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 893 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 894 | lemma lcmI: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 895 | assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 896 | and "normalize c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 897 | shows "c = lcm a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 898 | by (rule associated_eqI) (auto simp: assms intro: lcm_least) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 899 | |
| 63489 | 900 | lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 901 | using gcd_dvd2 by (rule dvd_lcmI2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 902 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 903 | lemmas lcm_0 = lcm_0_right | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 904 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 905 | lemma lcm_unique: | 
| 63489 | 906 | "a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 907 | by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 908 | |
| 63489 | 909 | lemma lcm_coprime: "gcd a b = 1 \<Longrightarrow> lcm a b = normalize (a * b)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 910 | by (subst lcm_gcd) simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 911 | |
| 63489 | 912 | lemma lcm_proj1_if_dvd: "b dvd a \<Longrightarrow> lcm a b = normalize a" | 
| 913 | apply (cases "a = 0") | |
| 914 | apply simp | |
| 915 | apply (rule sym) | |
| 916 | apply (rule lcmI) | |
| 917 | apply simp_all | |
| 918 | done | |
| 919 | ||
| 920 | lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 921 | using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 922 | |
| 63489 | 923 | lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 924 | proof | 
| 63489 | 925 | assume *: "lcm m n = normalize m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 926 | show "n dvd m" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 927 | proof (cases "m = 0") | 
| 63489 | 928 | case True | 
| 929 | then show ?thesis by simp | |
| 930 | next | |
| 931 | case [simp]: False | |
| 932 | from * have **: "m = lcm m n * unit_factor m" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 933 | by (simp add: unit_eq_div2) | 
| 63489 | 934 | show ?thesis by (subst **) simp | 
| 935 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 936 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 937 | assume "n dvd m" | 
| 63489 | 938 | then show "lcm m n = normalize m" | 
| 939 | by (rule lcm_proj1_if_dvd) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 940 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 941 | |
| 63489 | 942 | lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 943 | using lcm_proj1_iff [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 944 | |
| 60686 | 945 | end | 
| 946 | ||
| 62345 | 947 | class ring_gcd = comm_ring_1 + semiring_gcd | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 948 | begin | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 949 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 950 | lemma coprime_minus_one: "coprime (n - 1) n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 951 | using coprime_plus_one[of "n - 1"] by (simp add: gcd.commute) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 952 | |
| 63489 | 953 | lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b" | 
| 954 | by (rule sym, rule gcdI) (simp_all add: gcd_greatest) | |
| 955 | ||
| 956 | lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b" | |
| 957 | by (rule sym, rule gcdI) (simp_all add: gcd_greatest) | |
| 958 | ||
| 959 | lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 960 | by (fact gcd_neg1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 961 | |
| 63489 | 962 | lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 963 | by (fact gcd_neg2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 964 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 965 | lemma gcd_diff1: "gcd (m - n) n = gcd m n" | 
| 63489 | 966 | by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 967 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 968 | lemma gcd_diff2: "gcd (n - m) n = gcd m n" | 
| 63489 | 969 | by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 970 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 971 | lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" | 
| 63489 | 972 | by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 973 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 974 | lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" | 
| 63489 | 975 | by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 976 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 977 | lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 978 | by (fact lcm_neg1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 979 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 980 | lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 981 | by (fact lcm_neg2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 982 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 983 | end | 
| 62345 | 984 | |
| 60686 | 985 | class semiring_Gcd = semiring_gcd + Gcd + | 
| 986 | assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" | |
| 987 | and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" | |
| 988 | and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" | |
| 62345 | 989 | assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A" | 
| 990 | and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a" | |
| 991 | and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A" | |
| 60686 | 992 | begin | 
| 993 | ||
| 63489 | 994 | lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}"
 | 
| 62345 | 995 | by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) | 
| 996 | ||
| 63489 | 997 | lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}"
 | 
| 62345 | 998 | by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) | 
| 999 | ||
| 63489 | 1000 | lemma Gcd_empty [simp]: "Gcd {} = 0"
 | 
| 60686 | 1001 | by (rule dvd_0_left, rule Gcd_greatest) simp | 
| 1002 | ||
| 63489 | 1003 | lemma Lcm_empty [simp]: "Lcm {} = 1"
 | 
| 62345 | 1004 | by (auto intro: associated_eqI Lcm_least) | 
| 1005 | ||
| 63489 | 1006 | lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)" | 
| 62345 | 1007 | proof - | 
| 1008 | have "Gcd (insert a A) dvd gcd a (Gcd A)" | |
| 1009 | by (auto intro: Gcd_dvd Gcd_greatest) | |
| 1010 | moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" | |
| 1011 | proof (rule Gcd_greatest) | |
| 1012 | fix b | |
| 1013 | assume "b \<in> insert a A" | |
| 1014 | then show "gcd a (Gcd A) dvd b" | |
| 1015 | proof | |
| 63489 | 1016 | assume "b = a" | 
| 1017 | then show ?thesis | |
| 1018 | by simp | |
| 62345 | 1019 | next | 
| 1020 | assume "b \<in> A" | |
| 63489 | 1021 | then have "Gcd A dvd b" | 
| 1022 | by (rule Gcd_dvd) | |
| 1023 | moreover have "gcd a (Gcd A) dvd Gcd A" | |
| 1024 | by simp | |
| 1025 | ultimately show ?thesis | |
| 1026 | by (blast intro: dvd_trans) | |
| 62345 | 1027 | qed | 
| 1028 | qed | |
| 1029 | ultimately show ?thesis | |
| 1030 | by (auto intro: associated_eqI) | |
| 1031 | qed | |
| 1032 | ||
| 63489 | 1033 | lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)" | 
| 62345 | 1034 | proof (rule sym) | 
| 1035 | have "lcm a (Lcm A) dvd Lcm (insert a A)" | |
| 1036 | by (auto intro: dvd_Lcm Lcm_least) | |
| 1037 | moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" | |
| 1038 | proof (rule Lcm_least) | |
| 1039 | fix b | |
| 1040 | assume "b \<in> insert a A" | |
| 1041 | then show "b dvd lcm a (Lcm A)" | |
| 1042 | proof | |
| 63489 | 1043 | assume "b = a" | 
| 1044 | then show ?thesis by simp | |
| 62345 | 1045 | next | 
| 1046 | assume "b \<in> A" | |
| 63489 | 1047 | then have "b dvd Lcm A" | 
| 1048 | by (rule dvd_Lcm) | |
| 1049 | moreover have "Lcm A dvd lcm a (Lcm A)" | |
| 1050 | by simp | |
| 1051 | ultimately show ?thesis | |
| 1052 | by (blast intro: dvd_trans) | |
| 62345 | 1053 | qed | 
| 1054 | qed | |
| 1055 | ultimately show "lcm a (Lcm A) = Lcm (insert a A)" | |
| 1056 | by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) | |
| 1057 | qed | |
| 1058 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1059 | lemma LcmI: | 
| 63489 | 1060 | assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" | 
| 1061 | and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" | |
| 1062 | and "normalize b = b" | |
| 1063 | shows "b = Lcm A" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1064 | by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1065 | |
| 63489 | 1066 | lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1067 | by (blast intro: Lcm_least dvd_Lcm) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1068 | |
| 63489 | 1069 | lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1070 | apply (rule lcmI) | 
| 63489 | 1071 | apply (blast intro: Lcm_subset) | 
| 1072 | apply (blast intro: Lcm_subset) | |
| 1073 | apply (intro Lcm_least ballI, elim UnE) | |
| 1074 | apply (rule dvd_trans, erule dvd_Lcm, assumption) | |
| 1075 | apply (rule dvd_trans, erule dvd_Lcm, assumption) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1076 | apply simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1077 | done | 
| 63489 | 1078 | |
| 1079 | lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
 | |
| 1080 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 1081 | proof | 
| 1082 | assume ?P | |
| 1083 | show ?Q | |
| 1084 | proof | |
| 1085 | fix a | |
| 1086 | assume "a \<in> A" | |
| 63489 | 1087 | then have "Gcd A dvd a" | 
| 1088 | by (rule Gcd_dvd) | |
| 1089 | with \<open>?P\<close> have "a = 0" | |
| 1090 | by simp | |
| 1091 |     then show "a \<in> {0}"
 | |
| 1092 | by simp | |
| 60686 | 1093 | qed | 
| 1094 | next | |
| 1095 | assume ?Q | |
| 1096 | have "0 dvd Gcd A" | |
| 1097 | proof (rule Gcd_greatest) | |
| 1098 | fix a | |
| 1099 | assume "a \<in> A" | |
| 63489 | 1100 | with \<open>?Q\<close> have "a = 0" | 
| 1101 | by auto | |
| 1102 | then show "0 dvd a" | |
| 1103 | by simp | |
| 60686 | 1104 | qed | 
| 63489 | 1105 | then show ?P | 
| 1106 | by simp | |
| 60686 | 1107 | qed | 
| 1108 | ||
| 63489 | 1109 | lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" | 
| 1110 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 1111 | proof | 
| 1112 | assume ?P | |
| 1113 | show ?Q | |
| 1114 | proof | |
| 1115 | fix a | |
| 1116 | assume "a \<in> A" | |
| 1117 | then have "a dvd Lcm A" | |
| 1118 | by (rule dvd_Lcm) | |
| 1119 | with \<open>?P\<close> show "is_unit a" | |
| 1120 | by simp | |
| 1121 | qed | |
| 1122 | next | |
| 1123 | assume ?Q | |
| 1124 | then have "is_unit (Lcm A)" | |
| 1125 | by (blast intro: Lcm_least) | |
| 1126 | then have "normalize (Lcm A) = 1" | |
| 1127 | by (rule is_unit_normalize) | |
| 1128 | then show ?P | |
| 1129 | by simp | |
| 1130 | qed | |
| 1131 | ||
| 63489 | 1132 | lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" | 
| 62345 | 1133 | proof (cases "Lcm A = 0") | 
| 63489 | 1134 | case True | 
| 1135 | then show ?thesis | |
| 1136 | by simp | |
| 62345 | 1137 | next | 
| 1138 | case False | |
| 1139 | with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" | |
| 1140 | by blast | |
| 1141 | with False show ?thesis | |
| 1142 | by simp | |
| 1143 | qed | |
| 1144 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1145 | lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" | 
| 63489 | 1146 | by (simp add: Gcd_Lcm unit_factor_Lcm) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1147 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1148 | lemma GcdI: | 
| 63489 | 1149 | assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" | 
| 1150 | and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1151 | and "normalize b = b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1152 | shows "b = Gcd A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1153 | by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1154 | |
| 62345 | 1155 | lemma Gcd_eq_1_I: | 
| 1156 | assumes "is_unit a" and "a \<in> A" | |
| 1157 | shows "Gcd A = 1" | |
| 1158 | proof - | |
| 1159 | from assms have "is_unit (Gcd A)" | |
| 1160 | by (blast intro: Gcd_dvd dvd_unit_imp_unit) | |
| 1161 | then have "normalize (Gcd A) = 1" | |
| 1162 | by (rule is_unit_normalize) | |
| 1163 | then show ?thesis | |
| 1164 | by simp | |
| 1165 | qed | |
| 1166 | ||
| 60686 | 1167 | lemma Lcm_eq_0_I: | 
| 1168 | assumes "0 \<in> A" | |
| 1169 | shows "Lcm A = 0" | |
| 1170 | proof - | |
| 1171 | from assms have "0 dvd Lcm A" | |
| 1172 | by (rule dvd_Lcm) | |
| 1173 | then show ?thesis | |
| 1174 | by simp | |
| 1175 | qed | |
| 1176 | ||
| 63489 | 1177 | lemma Gcd_UNIV [simp]: "Gcd UNIV = 1" | 
| 62345 | 1178 | using dvd_refl by (rule Gcd_eq_1_I) simp | 
| 1179 | ||
| 63489 | 1180 | lemma Lcm_UNIV [simp]: "Lcm UNIV = 0" | 
| 61929 | 1181 | by (rule Lcm_eq_0_I) simp | 
| 60686 | 1182 | |
| 61929 | 1183 | lemma Lcm_0_iff: | 
| 1184 | assumes "finite A" | |
| 1185 | shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" | |
| 1186 | proof (cases "A = {}")
 | |
| 63489 | 1187 | case True | 
| 1188 | then show ?thesis by simp | |
| 61929 | 1189 | next | 
| 63489 | 1190 | case False | 
| 1191 | with assms show ?thesis | |
| 1192 | by (induct A rule: finite_ne_induct) (auto simp add: lcm_eq_0_iff) | |
| 60686 | 1193 | qed | 
| 61929 | 1194 | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1195 | lemma Gcd_finite: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1196 | assumes "finite A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1197 | shows "Gcd A = Finite_Set.fold gcd 0 A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1198 | by (induct rule: finite.induct[OF \<open>finite A\<close>]) | 
| 63489 | 1199 | (simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_gcd]) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1200 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1201 | lemma Gcd_set [code_unfold]: "Gcd (set as) = foldl gcd 0 as" | 
| 63489 | 1202 | by (simp add: Gcd_finite comp_fun_idem.fold_set_fold[OF comp_fun_idem_gcd] | 
| 1203 | foldl_conv_fold gcd.commute) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1204 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1205 | lemma Lcm_finite: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1206 | assumes "finite A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1207 | shows "Lcm A = Finite_Set.fold lcm 1 A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1208 | by (induct rule: finite.induct[OF \<open>finite A\<close>]) | 
| 63489 | 1209 | (simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_lcm]) | 
| 1210 | ||
| 1211 | lemma Lcm_set [code_unfold]: "Lcm (set as) = foldl lcm 1 as" | |
| 1212 | by (simp add: Lcm_finite comp_fun_idem.fold_set_fold[OF comp_fun_idem_lcm] | |
| 1213 | foldl_conv_fold lcm.commute) | |
| 1214 | ||
| 1215 | lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A" | |
| 62345 | 1216 | proof - | 
| 1217 | have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a | |
| 1218 | proof - | |
| 63489 | 1219 | from that obtain B where "A = insert a B" | 
| 1220 | by blast | |
| 62350 | 1221 | moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" | 
| 62345 | 1222 | by (rule gcd_dvd1) | 
| 1223 | ultimately show "Gcd (normalize ` A) dvd a" | |
| 1224 | by simp | |
| 1225 | qed | |
| 1226 | then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" | |
| 1227 | by (auto intro!: Gcd_greatest intro: Gcd_dvd) | |
| 1228 | then show ?thesis | |
| 1229 | by (auto intro: associated_eqI) | |
| 1230 | qed | |
| 1231 | ||
| 62346 | 1232 | lemma Gcd_eqI: | 
| 1233 | assumes "normalize a = a" | |
| 1234 | assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b" | |
| 1235 | and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a" | |
| 1236 | shows "Gcd A = a" | |
| 1237 | using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd) | |
| 1238 | ||
| 63489 | 1239 | lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y" | 
| 1240 | using Gcd_dvd dvd_trans by blast | |
| 1241 | ||
| 1242 | lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)" | |
| 63359 | 1243 | by (blast dest: dvd_GcdD intro: Gcd_greatest) | 
| 1244 | ||
| 1245 | lemma Gcd_mult: "Gcd (op * c ` A) = normalize c * Gcd A" | |
| 1246 | proof (cases "c = 0") | |
| 63489 | 1247 | case True | 
| 1248 | then show ?thesis by auto | |
| 1249 | next | |
| 63359 | 1250 | case [simp]: False | 
| 1251 | have "Gcd (op * c ` A) div c dvd Gcd A" | |
| 1252 | by (intro Gcd_greatest, subst div_dvd_iff_mult) | |
| 1253 | (auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c]) | |
| 63489 | 1254 | then have "Gcd (op * c ` A) dvd c * Gcd A" | 
| 63359 | 1255 | by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac) | 
| 1256 | also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c" | |
| 1257 | by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) | |
| 1258 | also have "Gcd (op * c ` A) dvd \<dots> \<longleftrightarrow> Gcd (op * c ` A) dvd normalize c * Gcd A" | |
| 1259 | by (simp add: dvd_mult_unit_iff) | |
| 1260 | finally have "Gcd (op * c ` A) dvd normalize c * Gcd A" . | |
| 1261 | moreover have "normalize c * Gcd A dvd Gcd (op * c ` A)" | |
| 1262 | by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd) | |
| 1263 | ultimately have "normalize (Gcd (op * c ` A)) = normalize (normalize c * Gcd A)" | |
| 1264 | by (rule associatedI) | |
| 63489 | 1265 | then show ?thesis | 
| 1266 | by (simp add: normalize_mult) | |
| 1267 | qed | |
| 63359 | 1268 | |
| 62346 | 1269 | lemma Lcm_eqI: | 
| 1270 | assumes "normalize a = a" | |
| 63489 | 1271 | and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" | 
| 62346 | 1272 | and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c" | 
| 1273 | shows "Lcm A = a" | |
| 1274 | using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm) | |
| 1275 | ||
| 63489 | 1276 | lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x" | 
| 1277 | using dvd_Lcm dvd_trans by blast | |
| 1278 | ||
| 1279 | lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)" | |
| 63359 | 1280 | by (blast dest: Lcm_dvdD intro: Lcm_least) | 
| 1281 | ||
| 63489 | 1282 | lemma Lcm_mult: | 
| 63359 | 1283 |   assumes "A \<noteq> {}"
 | 
| 63489 | 1284 | shows "Lcm (op * c ` A) = normalize c * Lcm A" | 
| 63359 | 1285 | proof (cases "c = 0") | 
| 1286 | case True | |
| 63489 | 1287 |   with assms have "op * c ` A = {0}"
 | 
| 1288 | by auto | |
| 1289 | with True show ?thesis by auto | |
| 63359 | 1290 | next | 
| 1291 | case [simp]: False | |
| 63489 | 1292 | from assms obtain x where x: "x \<in> A" | 
| 1293 | by blast | |
| 1294 | have "c dvd c * x" | |
| 1295 | by simp | |
| 1296 | also from x have "c * x dvd Lcm (op * c ` A)" | |
| 1297 | by (intro dvd_Lcm) auto | |
| 63359 | 1298 | finally have dvd: "c dvd Lcm (op * c ` A)" . | 
| 1299 | ||
| 1300 | have "Lcm A dvd Lcm (op * c ` A) div c" | |
| 1301 | by (intro Lcm_least dvd_mult_imp_div) | |
| 63489 | 1302 | (auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c]) | 
| 1303 | then have "c * Lcm A dvd Lcm (op * c ` A)" | |
| 63359 | 1304 | by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd) | 
| 1305 | also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c" | |
| 1306 | by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) | |
| 1307 | also have "\<dots> dvd Lcm (op * c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (op * c ` A)" | |
| 1308 | by (simp add: mult_unit_dvd_iff) | |
| 1309 | finally have "normalize c * Lcm A dvd Lcm (op * c ` A)" . | |
| 1310 | moreover have "Lcm (op * c ` A) dvd normalize c * Lcm A" | |
| 1311 | by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm) | |
| 1312 | ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (op * c ` A))" | |
| 1313 | by (rule associatedI) | |
| 63489 | 1314 | then show ?thesis | 
| 1315 | by (simp add: normalize_mult) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1316 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1317 | |
| 63489 | 1318 | lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})"
 | 
| 1319 | proof - | |
| 1320 |   have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A"
 | |
| 1321 | by blast | |
| 1322 |   then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
 | |
| 1323 | by (simp add: Lcm_Un [symmetric]) | |
| 1324 |   also have "Lcm {a\<in>A. is_unit a} = 1"
 | |
| 1325 | by simp | |
| 1326 | finally show ?thesis | |
| 1327 | by simp | |
| 1328 | qed | |
| 1329 | ||
| 1330 | lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1331 | by (metis Lcm_least dvd_0_left dvd_Lcm) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1332 | |
| 63489 | 1333 | lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1334 | by (auto simp: Lcm_0_iff') | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1335 | |
| 63489 | 1336 | lemma Lcm_singleton [simp]: "Lcm {a} = normalize a"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1337 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1338 | |
| 63489 | 1339 | lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1340 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1341 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1342 | lemma Lcm_coprime: | 
| 63489 | 1343 | assumes "finite A" | 
| 1344 |     and "A \<noteq> {}"
 | |
| 1345 | and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1346 | shows "Lcm A = normalize (\<Prod>A)" | 
| 63489 | 1347 | using assms | 
| 1348 | proof (induct rule: finite_ne_induct) | |
| 1349 | case singleton | |
| 1350 | then show ?case by simp | |
| 1351 | next | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1352 | case (insert a A) | 
| 63489 | 1353 | have "Lcm (insert a A) = lcm a (Lcm A)" | 
| 1354 | by simp | |
| 1355 | also from insert have "Lcm A = normalize (\<Prod>A)" | |
| 1356 | by blast | |
| 1357 | also have "lcm a \<dots> = lcm a (\<Prod>A)" | |
| 1358 | by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) | |
| 1359 | also from insert have "gcd a (\<Prod>A) = 1" | |
| 1360 | by (subst gcd.commute, intro setprod_coprime) auto | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1361 | with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1362 | by (simp add: lcm_coprime) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1363 | finally show ?case . | 
| 63489 | 1364 | qed | 
| 1365 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1366 | lemma Lcm_coprime': | 
| 63489 | 1367 | "card A \<noteq> 0 \<Longrightarrow> | 
| 1368 | (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1) \<Longrightarrow> | |
| 1369 | Lcm A = normalize (\<Prod>A)" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1370 | by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1371 | |
| 63489 | 1372 | lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1373 | by (auto intro!: Gcd_eq_1_I) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1374 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1375 | lemma Gcd_singleton [simp]: "Gcd {a} = normalize a"
 | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1376 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1377 | |
| 63489 | 1378 | lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1379 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1380 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1381 | |
| 63489 | 1382 | definition pairwise_coprime | 
| 1383 | where "pairwise_coprime A = (\<forall>x y. x \<in> A \<and> y \<in> A \<and> x \<noteq> y \<longrightarrow> coprime x y)" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1384 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1385 | lemma pairwise_coprimeI [intro?]: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1386 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> coprime x y) \<Longrightarrow> pairwise_coprime A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1387 | by (simp add: pairwise_coprime_def) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1388 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1389 | lemma pairwise_coprimeD: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1390 | "pairwise_coprime A \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> coprime x y" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1391 | by (simp add: pairwise_coprime_def) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1392 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1393 | lemma pairwise_coprime_subset: "pairwise_coprime A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> pairwise_coprime B" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1394 | by (force simp: pairwise_coprime_def) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1395 | |
| 62350 | 1396 | end | 
| 62345 | 1397 | |
| 63489 | 1398 | |
| 62345 | 1399 | subsection \<open>GCD and LCM on @{typ nat} and @{typ int}\<close>
 | 
| 59008 | 1400 | |
| 31706 | 1401 | instantiation nat :: gcd | 
| 1402 | begin | |
| 21256 | 1403 | |
| 62345 | 1404 | fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 63489 | 1405 | where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))" | 
| 31706 | 1406 | |
| 62345 | 1407 | definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 63489 | 1408 | where "lcm_nat x y = x * y div (gcd x y)" | 
| 1409 | ||
| 1410 | instance .. | |
| 31706 | 1411 | |
| 1412 | end | |
| 1413 | ||
| 1414 | instantiation int :: gcd | |
| 1415 | begin | |
| 21256 | 1416 | |
| 62345 | 1417 | definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 1418 | where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1419 | |
| 62345 | 1420 | definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 1421 | where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1422 | |
| 61944 | 1423 | instance .. | 
| 31706 | 1424 | |
| 1425 | end | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1426 | |
| 62345 | 1427 | text \<open>Transfer setup\<close> | 
| 31706 | 1428 | |
| 1429 | lemma transfer_nat_int_gcd: | |
| 63489 | 1430 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)" | 
| 1431 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)" | |
| 1432 | for x y :: int | |
| 1433 | unfolding gcd_int_def lcm_int_def by auto | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1434 | |
| 31706 | 1435 | lemma transfer_nat_int_gcd_closures: | 
| 63489 | 1436 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> gcd x y \<ge> 0" | 
| 1437 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> lcm x y \<ge> 0" | |
| 1438 | for x y :: int | |
| 31706 | 1439 | by (auto simp add: gcd_int_def lcm_int_def) | 
| 1440 | ||
| 63489 | 1441 | declare transfer_morphism_nat_int | 
| 1442 | [transfer add return: transfer_nat_int_gcd transfer_nat_int_gcd_closures] | |
| 31706 | 1443 | |
| 1444 | lemma transfer_int_nat_gcd: | |
| 1445 | "gcd (int x) (int y) = int (gcd x y)" | |
| 1446 | "lcm (int x) (int y) = int (lcm x y)" | |
| 63489 | 1447 | by (auto simp: gcd_int_def lcm_int_def) | 
| 31706 | 1448 | |
| 1449 | lemma transfer_int_nat_gcd_closures: | |
| 1450 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0" | |
| 1451 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0" | |
| 63489 | 1452 | by (auto simp: gcd_int_def lcm_int_def) | 
| 1453 | ||
| 1454 | declare transfer_morphism_int_nat | |
| 1455 | [transfer add return: transfer_int_nat_gcd transfer_int_nat_gcd_closures] | |
| 31706 | 1456 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1457 | lemma gcd_nat_induct: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1458 | fixes m n :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1459 | assumes "\<And>m. P m 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1460 | and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1461 | shows "P m n" | 
| 31706 | 1462 | apply (rule gcd_nat.induct) | 
| 1463 | apply (case_tac "y = 0") | |
| 63489 | 1464 | using assms | 
| 1465 | apply simp_all | |
| 1466 | done | |
| 1467 | ||
| 1468 | ||
| 1469 | text \<open>Specific to \<open>int\<close>.\<close> | |
| 1470 | ||
| 1471 | lemma gcd_eq_int_iff: "gcd k l = int n \<longleftrightarrow> gcd (nat \<bar>k\<bar>) (nat \<bar>l\<bar>) = n" | |
| 62346 | 1472 | by (simp add: gcd_int_def) | 
| 1473 | ||
| 63489 | 1474 | lemma lcm_eq_int_iff: "lcm k l = int n \<longleftrightarrow> lcm (nat \<bar>k\<bar>) (nat \<bar>l\<bar>) = n" | 
| 62346 | 1475 | by (simp add: lcm_int_def) | 
| 1476 | ||
| 63489 | 1477 | lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y" | 
| 1478 | for x y :: int | |
| 31706 | 1479 | by (simp add: gcd_int_def) | 
| 1480 | ||
| 63489 | 1481 | lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y" | 
| 1482 | for x y :: int | |
| 1483 | by (simp add: gcd_int_def) | |
| 1484 | ||
| 1485 | lemma abs_gcd_int [simp]: "\<bar>gcd x y\<bar> = gcd x y" | |
| 1486 | for x y :: int | |
| 31706 | 1487 | by (simp add: gcd_int_def) | 
| 1488 | ||
| 63489 | 1489 | lemma gcd_abs_int: "gcd x y = gcd \<bar>x\<bar> \<bar>y\<bar>" | 
| 1490 | for x y :: int | |
| 1491 | by (simp add: gcd_int_def) | |
| 1492 | ||
| 1493 | lemma gcd_abs1_int [simp]: "gcd \<bar>x\<bar> y = gcd x y" | |
| 1494 | for x y :: int | |
| 1495 | by (metis abs_idempotent gcd_abs_int) | |
| 1496 | ||
| 1497 | lemma gcd_abs2_int [simp]: "gcd x \<bar>y\<bar> = gcd x y" | |
| 1498 | for x y :: int | |
| 1499 | by (metis abs_idempotent gcd_abs_int) | |
| 31706 | 1500 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1501 | lemma gcd_cases_int: | 
| 63489 | 1502 | fixes x y :: int | 
| 1503 | assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)" | |
| 1504 | and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))" | |
| 1505 | and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)" | |
| 1506 | and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))" | |
| 31706 | 1507 | shows "P (gcd x y)" | 
| 63489 | 1508 | using assms by auto arith | 
| 21256 | 1509 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1510 | lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" | 
| 63489 | 1511 | for x y :: int | 
| 31706 | 1512 | by (simp add: gcd_int_def) | 
| 1513 | ||
| 63489 | 1514 | lemma lcm_neg1_int: "lcm (- x) y = lcm x y" | 
| 1515 | for x y :: int | |
| 31706 | 1516 | by (simp add: lcm_int_def) | 
| 1517 | ||
| 63489 | 1518 | lemma lcm_neg2_int: "lcm x (- y) = lcm x y" | 
| 1519 | for x y :: int | |
| 31706 | 1520 | by (simp add: lcm_int_def) | 
| 1521 | ||
| 63489 | 1522 | lemma lcm_abs_int: "lcm x y = lcm \<bar>x\<bar> \<bar>y\<bar>" | 
| 1523 | for x y :: int | |
| 31706 | 1524 | by (simp add: lcm_int_def) | 
| 21256 | 1525 | |
| 63489 | 1526 | lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j" | 
| 1527 | for i j :: int | |
| 61944 | 1528 | by (simp add:lcm_int_def) | 
| 31814 | 1529 | |
| 63489 | 1530 | lemma lcm_abs1_int [simp]: "lcm \<bar>x\<bar> y = lcm x y" | 
| 1531 | for x y :: int | |
| 61944 | 1532 | by (metis abs_idempotent lcm_int_def) | 
| 31814 | 1533 | |
| 63489 | 1534 | lemma lcm_abs2_int [simp]: "lcm x \<bar>y\<bar> = lcm x y" | 
| 1535 | for x y :: int | |
| 61944 | 1536 | by (metis abs_idempotent lcm_int_def) | 
| 31814 | 1537 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1538 | lemma lcm_cases_int: | 
| 63489 | 1539 | fixes x y :: int | 
| 1540 | assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)" | |
| 1541 | and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))" | |
| 1542 | and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)" | |
| 1543 | and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))" | |
| 31706 | 1544 | shows "P (lcm x y)" | 
| 41550 | 1545 | using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith | 
| 31706 | 1546 | |
| 63489 | 1547 | lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0" | 
| 1548 | for x y :: int | |
| 31706 | 1549 | by (simp add: lcm_int_def) | 
| 1550 | ||
| 63489 | 1551 | lemma gcd_0_nat: "gcd x 0 = x" | 
| 1552 | for x :: nat | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1553 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1554 | |
| 63489 | 1555 | lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" | 
| 1556 | for x :: int | |
| 1557 | by (auto simp: gcd_int_def) | |
| 1558 | ||
| 1559 | lemma gcd_0_left_nat: "gcd 0 x = x" | |
| 1560 | for x :: nat | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1561 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1562 | |
| 63489 | 1563 | lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>" | 
| 1564 | for x :: int | |
| 1565 | by (auto simp:gcd_int_def) | |
| 1566 | ||
| 1567 | lemma gcd_red_nat: "gcd x y = gcd y (x mod y)" | |
| 1568 | for x y :: nat | |
| 1569 | by (cases "y = 0") auto | |
| 1570 | ||
| 1571 | ||
| 1572 | text \<open>Weaker, but useful for the simplifier.\<close> | |
| 1573 | ||
| 1574 | lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | |
| 1575 | for x y :: nat | |
| 21263 | 1576 | by simp | 
| 21256 | 1577 | |
| 63489 | 1578 | lemma gcd_1_nat [simp]: "gcd m 1 = 1" | 
| 1579 | for m :: nat | |
| 60690 | 1580 | by simp | 
| 31706 | 1581 | |
| 63489 | 1582 | lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0" | 
| 1583 | for m :: nat | |
| 1584 | by simp | |
| 1585 | ||
| 1586 | lemma gcd_1_int [simp]: "gcd m 1 = 1" | |
| 1587 | for m :: int | |
| 31706 | 1588 | by (simp add: gcd_int_def) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 1589 | |
| 63489 | 1590 | lemma gcd_idem_nat: "gcd x x = x" | 
| 1591 | for x :: nat | |
| 1592 | by simp | |
| 1593 | ||
| 1594 | lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>" | |
| 1595 | for x :: int | |
| 1596 | by (auto simp add: gcd_int_def) | |
| 31706 | 1597 | |
| 1598 | declare gcd_nat.simps [simp del] | |
| 21256 | 1599 | |
| 60758 | 1600 | text \<open> | 
| 63489 | 1601 |   \<^medskip> @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>.
 | 
| 1602 | The conjunctions don't seem provable separately. | |
| 60758 | 1603 | \<close> | 
| 21256 | 1604 | |
| 59008 | 1605 | instance nat :: semiring_gcd | 
| 1606 | proof | |
| 1607 | fix m n :: nat | |
| 1608 | show "gcd m n dvd m" and "gcd m n dvd n" | |
| 1609 | proof (induct m n rule: gcd_nat_induct) | |
| 1610 | fix m n :: nat | |
| 63489 | 1611 | assume "gcd n (m mod n) dvd m mod n" | 
| 1612 | and "gcd n (m mod n) dvd n" | |
| 59008 | 1613 | then have "gcd n (m mod n) dvd m" | 
| 1614 | by (rule dvd_mod_imp_dvd) | |
| 1615 | moreover assume "0 < n" | |
| 1616 | ultimately show "gcd m n dvd m" | |
| 1617 | by (simp add: gcd_non_0_nat) | |
| 1618 | qed (simp_all add: gcd_0_nat gcd_non_0_nat) | |
| 1619 | next | |
| 1620 | fix m n k :: nat | |
| 1621 | assume "k dvd m" and "k dvd n" | |
| 1622 | then show "k dvd gcd m n" | |
| 1623 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) | |
| 60686 | 1624 | qed (simp_all add: lcm_nat_def) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 1625 | |
| 59008 | 1626 | instance int :: ring_gcd | 
| 60686 | 1627 | by standard | 
| 63489 | 1628 | (simp_all add: dvd_int_unfold_dvd_nat gcd_int_def lcm_int_def | 
| 1629 | zdiv_int nat_abs_mult_distrib [symmetric] lcm_gcd gcd_greatest) | |
| 1630 | ||
| 1631 | lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a" | |
| 1632 | for a b :: nat | |
| 1633 | by (rule dvd_imp_le) auto | |
| 1634 | ||
| 1635 | lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b" | |
| 1636 | for a b :: nat | |
| 1637 | by (rule dvd_imp_le) auto | |
| 1638 | ||
| 1639 | lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a" | |
| 1640 | for a b :: int | |
| 1641 | by (rule zdvd_imp_le) auto | |
| 1642 | ||
| 1643 | lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b" | |
| 1644 | for a b :: int | |
| 1645 | by (rule zdvd_imp_le) auto | |
| 1646 | ||
| 1647 | lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" | |
| 1648 | for m n :: nat | |
| 1649 | using gcd_eq_0_iff [of m n] by arith | |
| 1650 | ||
| 1651 | lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" | |
| 1652 | for m n :: int | |
| 1653 | using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith | |
| 1654 | ||
| 1655 | lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 1656 | for d a :: nat | |
| 31706 | 1657 | apply auto | 
| 33657 | 1658 | apply (rule dvd_antisym) | 
| 63489 | 1659 | apply (erule (1) gcd_greatest) | 
| 31706 | 1660 | apply auto | 
| 63489 | 1661 | done | 
| 1662 | ||
| 1663 | lemma gcd_unique_int: | |
| 1664 | "d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 1665 | for d a :: int | |
| 1666 | apply (cases "d = 0") | |
| 1667 | apply simp | |
| 1668 | apply (rule iffI) | |
| 1669 | apply (rule zdvd_antisym_nonneg) | |
| 1670 | apply (auto intro: gcd_greatest) | |
| 1671 | done | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 1672 | |
| 61913 | 1673 | interpretation gcd_nat: | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1674 | semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1675 | by standard (auto simp add: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans) | 
| 31798 | 1676 | |
| 63489 | 1677 | lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>" | 
| 1678 | for x y :: int | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1679 | by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int) | 
| 31798 | 1680 | |
| 63489 | 1681 | lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>" | 
| 1682 | for x y :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1683 | by (metis gcd_proj1_if_dvd_int gcd.commute) | 
| 31798 | 1684 | |
| 63489 | 1685 | |
| 1686 | text \<open>\<^medskip> Multiplication laws.\<close> | |
| 1687 | ||
| 1688 | lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)" | |
| 1689 | for k m n :: nat | |
| 1690 |   \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1691 | apply (induct m n rule: gcd_nat_induct) | 
| 63489 | 1692 | apply simp | 
| 1693 | apply (cases "k = 0") | |
| 1694 | apply (simp_all add: gcd_non_0_nat) | |
| 1695 | done | |
| 1696 | ||
| 1697 | lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)" | |
| 1698 | for k m n :: int | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1699 | apply (subst (1 2) gcd_abs_int) | 
| 31813 | 1700 | apply (subst (1 2) abs_mult) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1701 | apply (rule gcd_mult_distrib_nat [transferred]) | 
| 63489 | 1702 | apply auto | 
| 1703 | done | |
| 21256 | 1704 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1705 | lemma coprime_crossproduct_nat: | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1706 | fixes a b c d :: nat | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1707 | assumes "coprime a d" and "coprime b c" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1708 | shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1709 | using assms coprime_crossproduct [of a d b c] by simp | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1710 | |
| 35368 | 1711 | lemma coprime_crossproduct_int: | 
| 1712 | fixes a b c d :: int | |
| 1713 | assumes "coprime a d" and "coprime b c" | |
| 1714 | shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1715 | using assms coprime_crossproduct [of a d b c] by simp | 
| 35368 | 1716 | |
| 63489 | 1717 | |
| 1718 | text \<open>\medskip Addition laws.\<close> | |
| 1719 | ||
| 1720 | (* TODO: add the other variations? *) | |
| 1721 | ||
| 1722 | lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n" | |
| 1723 | for m n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1724 | by (subst gcd_add1 [symmetric]) auto | 
| 31706 | 1725 | |
| 63489 | 1726 | lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n" | 
| 1727 | for m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1728 | apply (subst gcd.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1729 | apply (subst gcd_diff1_nat [symmetric]) | 
| 63489 | 1730 | apply auto | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1731 | apply (subst gcd.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1732 | apply (subst gcd_diff1_nat) | 
| 63489 | 1733 | apply assumption | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1734 | apply (rule gcd.commute) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1735 | done | 
| 31706 | 1736 | |
| 63489 | 1737 | lemma gcd_non_0_int: "y > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | 
| 1738 | for x y :: int | |
| 31706 | 1739 | apply (frule_tac b = y and a = x in pos_mod_sign) | 
| 1740 | apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) | |
| 63489 | 1741 | apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] zmod_zminus1_eq_if) | 
| 31706 | 1742 | apply (frule_tac a = x in pos_mod_bound) | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1743 | apply (subst (1 2) gcd.commute) | 
| 63489 | 1744 | apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat nat_le_eq_zle) | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1745 | done | 
| 21256 | 1746 | |
| 63489 | 1747 | lemma gcd_red_int: "gcd x y = gcd y (x mod y)" | 
| 1748 | for x y :: int | |
| 1749 | apply (cases "y = 0") | |
| 1750 | apply force | |
| 1751 | apply (cases "y > 0") | |
| 1752 | apply (subst gcd_non_0_int, auto) | |
| 1753 | apply (insert gcd_non_0_int [of "- y" "- x"]) | |
| 35216 | 1754 | apply auto | 
| 63489 | 1755 | done | 
| 1756 | ||
| 1757 | (* TODO: differences, and all variations of addition rules | |
| 31706 | 1758 | as simplification rules for nat and int *) | 
| 1759 | ||
| 63489 | 1760 | (* TODO: add the three variations of these, and for ints? *) | 
| 1761 | ||
| 1762 | lemma finite_divisors_nat [simp]: (* FIXME move *) | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1763 | fixes m :: nat | 
| 63489 | 1764 | assumes "m > 0" | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1765 |   shows "finite {d. d dvd m}"
 | 
| 31734 | 1766 | proof- | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1767 |   from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1768 | by (auto dest: dvd_imp_le) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1769 | then show ?thesis | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1770 | using finite_Collect_le_nat by (rule finite_subset) | 
| 31734 | 1771 | qed | 
| 1772 | ||
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1773 | lemma finite_divisors_int [simp]: | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1774 | fixes i :: int | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1775 | assumes "i \<noteq> 0" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1776 |   shows "finite {d. d dvd i}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1777 | proof - | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1778 |   have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1779 | by (auto simp: abs_if) | 
| 63489 | 1780 |   then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}"
 | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 1781 | by simp | 
| 63489 | 1782 | from finite_subset [OF _ this] show ?thesis | 
| 1783 | using assms by (simp add: dvd_imp_le_int subset_iff) | |
| 31734 | 1784 | qed | 
| 1785 | ||
| 63489 | 1786 | lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n"
 | 
| 1787 | apply (rule antisym) | |
| 1788 | apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) | |
| 1789 | apply simp | |
| 1790 | done | |
| 1791 | ||
| 1792 | lemma Max_divisors_self_int [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::int. d dvd n} = \<bar>n\<bar>"
 | |
| 1793 | apply (rule antisym) | |
| 1794 | apply (rule Max_le_iff [THEN iffD2]) | |
| 1795 | apply (auto intro: abs_le_D1 dvd_imp_le_int) | |
| 1796 | done | |
| 1797 | ||
| 1798 | lemma gcd_is_Max_divisors_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | |
| 1799 | for m n :: nat | |
| 1800 | apply (rule Max_eqI[THEN sym]) | |
| 1801 | apply (metis finite_Collect_conjI finite_divisors_nat) | |
| 1802 | apply simp | |
| 1803 | apply (metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff gcd_pos_nat) | |
| 1804 | apply simp | |
| 1805 | done | |
| 1806 | ||
| 1807 | lemma gcd_is_Max_divisors_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | |
| 1808 | for m n :: int | |
| 1809 | apply (rule Max_eqI[THEN sym]) | |
| 1810 | apply (metis finite_Collect_conjI finite_divisors_int) | |
| 1811 | apply simp | |
| 1812 | apply (metis gcd_greatest_iff gcd_pos_int zdvd_imp_le) | |
| 1813 | apply simp | |
| 1814 | done | |
| 1815 | ||
| 1816 | lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | |
| 1817 | for k l :: int | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1818 | by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat) | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1819 | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 1820 | |
| 60758 | 1821 | subsection \<open>Coprimality\<close> | 
| 31706 | 1822 | |
| 63489 | 1823 | lemma coprime_nat: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 1824 | for a b :: nat | |
| 62345 | 1825 | using coprime [of a b] by simp | 
| 31706 | 1826 | |
| 63489 | 1827 | lemma coprime_Suc_0_nat: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)" | 
| 1828 | for a b :: nat | |
| 60690 | 1829 | using coprime_nat by simp | 
| 31706 | 1830 | |
| 63489 | 1831 | lemma coprime_int: "coprime a b \<longleftrightarrow> (\<forall>d. d \<ge> 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 1832 | for a b :: int | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1833 | using gcd_unique_int [of 1 a b] | 
| 31706 | 1834 | apply clarsimp | 
| 1835 | apply (erule subst) | |
| 1836 | apply (rule iffI) | |
| 63489 | 1837 | apply force | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61605diff
changeset | 1838 | using abs_dvd_iff abs_ge_zero apply blast | 
| 59807 | 1839 | done | 
| 31706 | 1840 | |
| 63489 | 1841 | lemma pow_divides_eq_nat [simp]: "n > 0 \<Longrightarrow> a^n dvd b^n \<longleftrightarrow> a dvd b" | 
| 1842 | for a b n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1843 | using pow_divs_eq[of n] by simp | 
| 31706 | 1844 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1845 | lemma coprime_Suc_nat [simp]: "coprime (Suc n) n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1846 | using coprime_plus_one[of n] by simp | 
| 31706 | 1847 | |
| 63489 | 1848 | lemma coprime_minus_one_nat: "n \<noteq> 0 \<Longrightarrow> coprime (n - 1) n" | 
| 1849 | for n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1850 | using coprime_Suc_nat [of "n - 1"] gcd.commute [of "n - 1" n] by auto | 
| 31706 | 1851 | |
| 63489 | 1852 | lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1" | 
| 1853 | for a b :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1854 | by (metis gcd_greatest_iff nat_dvd_1_iff_1) | 
| 31706 | 1855 | |
| 63489 | 1856 | lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1" | 
| 1857 | for a b :: int | |
| 60686 | 1858 | using gcd_greatest_iff [of x a b] by auto | 
| 31706 | 1859 | |
| 63489 | 1860 | lemma invertible_coprime_nat: "x * y mod m = 1 \<Longrightarrow> coprime x m" | 
| 1861 | for m x y :: nat | |
| 1862 | by (metis coprime_lmult gcd_1_nat gcd.commute gcd_red_nat) | |
| 1863 | ||
| 1864 | lemma invertible_coprime_int: "x * y mod m = 1 \<Longrightarrow> coprime x m" | |
| 1865 | for m x y :: int | |
| 1866 | by (metis coprime_lmult gcd_1_int gcd.commute gcd_red_int) | |
| 31706 | 1867 | |
| 1868 | ||
| 60758 | 1869 | subsection \<open>Bezout's theorem\<close> | 
| 31706 | 1870 | |
| 63489 | 1871 | text \<open> | 
| 1872 | Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem -- | |
| 1873 | see the theorems that follow the definition. | |
| 1874 | \<close> | |
| 1875 | ||
| 1876 | fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" | |
| 1877 | where "bezw x y = | |
| 1878 | (if y = 0 then (1, 0) | |
| 1879 | else | |
| 31706 | 1880 | (snd (bezw y (x mod y)), | 
| 1881 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" | |
| 1882 | ||
| 63489 | 1883 | lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" | 
| 1884 | by simp | |
| 1885 | ||
| 1886 | lemma bezw_non_0: | |
| 1887 | "y > 0 \<Longrightarrow> bezw x y = | |
| 1888 | (snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" | |
| 31706 | 1889 | by simp | 
| 1890 | ||
| 1891 | declare bezw.simps [simp del] | |
| 1892 | ||
| 63489 | 1893 | lemma bezw_aux: "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1894 | proof (induct x y rule: gcd_nat_induct) | 
| 31706 | 1895 | fix m :: nat | 
| 1896 | show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" | |
| 1897 | by auto | |
| 63489 | 1898 | next | 
| 1899 | fix m n :: nat | |
| 1900 | assume ngt0: "n > 0" | |
| 1901 | and ih: "fst (bezw n (m mod n)) * int n + snd (bezw n (m mod n)) * int (m mod n) = | |
| 1902 | int (gcd n (m mod n))" | |
| 1903 | then show "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" | |
| 1904 | apply (simp add: bezw_non_0 gcd_non_0_nat) | |
| 1905 | apply (erule subst) | |
| 1906 | apply (simp add: field_simps) | |
| 1907 | apply (subst mod_div_equality [of m n, symmetric]) | |
| 1908 | (* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *) | |
| 1909 | apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult) | |
| 1910 | done | |
| 31706 | 1911 | qed | 
| 1912 | ||
| 63489 | 1913 | lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y" | 
| 1914 | for x y :: int | |
| 31706 | 1915 | proof - | 
| 63489 | 1916 | have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int | 
| 31706 | 1917 | apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) | 
| 1918 | apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) | |
| 1919 | apply (unfold gcd_int_def) | |
| 1920 | apply simp | |
| 1921 | apply (subst bezw_aux [symmetric]) | |
| 1922 | apply auto | |
| 1923 | done | |
| 63489 | 1924 | consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0" | 
| 1925 | by atomize_elim auto | |
| 1926 | then show ?thesis | |
| 1927 | proof cases | |
| 1928 | case 1 | |
| 1929 | then show ?thesis by (rule aux) | |
| 1930 | next | |
| 1931 | case 2 | |
| 1932 | then show ?thesis | |
| 1933 | apply - | |
| 1934 | apply (insert aux [of x "-y"]) | |
| 1935 | apply auto | |
| 1936 | apply (rule_tac x = u in exI) | |
| 1937 | apply (rule_tac x = "-v" in exI) | |
| 1938 | apply (subst gcd_neg2_int [symmetric]) | |
| 1939 | apply auto | |
| 1940 | done | |
| 1941 | next | |
| 1942 | case 3 | |
| 1943 | then show ?thesis | |
| 1944 | apply - | |
| 1945 | apply (insert aux [of "-x" y]) | |
| 1946 | apply auto | |
| 1947 | apply (rule_tac x = "-u" in exI) | |
| 1948 | apply (rule_tac x = v in exI) | |
| 1949 | apply (subst gcd_neg1_int [symmetric]) | |
| 1950 | apply auto | |
| 1951 | done | |
| 1952 | next | |
| 1953 | case 4 | |
| 1954 | then show ?thesis | |
| 1955 | apply - | |
| 1956 | apply (insert aux [of "-x" "-y"]) | |
| 1957 | apply auto | |
| 1958 | apply (rule_tac x = "-u" in exI) | |
| 1959 | apply (rule_tac x = "-v" in exI) | |
| 1960 | apply (subst gcd_neg1_int [symmetric]) | |
| 1961 | apply (subst gcd_neg2_int [symmetric]) | |
| 1962 | apply auto | |
| 1963 | done | |
| 1964 | qed | |
| 31706 | 1965 | qed | 
| 1966 | ||
| 63489 | 1967 | |
| 1968 | text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close> | |
| 31706 | 1969 | |
| 1970 | lemma ind_euclid: | |
| 63489 | 1971 | fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool" | 
| 1972 | assumes c: " \<forall>a b. P a b \<longleftrightarrow> P b a" | |
| 1973 | and z: "\<forall>a. P a 0" | |
| 1974 | and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1975 | shows "P a b" | 
| 63489 | 1976 | proof (induct "a + b" arbitrary: a b rule: less_induct) | 
| 34915 | 1977 | case less | 
| 63489 | 1978 | consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b" | 
| 1979 | by arith | |
| 1980 | show ?case | |
| 1981 | proof (cases a b rule: linorder_cases) | |
| 1982 | case equal | |
| 1983 | with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp | |
| 1984 | next | |
| 1985 | case lt: less | |
| 1986 | then consider "a = 0" | "a + b - a < a + b" by arith | |
| 1987 | then show ?thesis | |
| 1988 | proof cases | |
| 1989 | case 1 | |
| 1990 | with z c show ?thesis by blast | |
| 1991 | next | |
| 1992 | case 2 | |
| 1993 | also have *: "a + b - a = a + (b - a)" using lt by arith | |
| 34915 | 1994 | finally have "a + (b - a) < a + b" . | 
| 63489 | 1995 | then have "P a (a + (b - a))" by (rule add [rule_format, OF less]) | 
| 1996 | then show ?thesis by (simp add: *[symmetric]) | |
| 1997 | qed | |
| 1998 | next | |
| 1999 | case gt: greater | |
| 2000 | then consider "b = 0" | "b + a - b < a + b" by arith | |
| 2001 | then show ?thesis | |
| 2002 | proof cases | |
| 2003 | case 1 | |
| 2004 | with z c show ?thesis by blast | |
| 2005 | next | |
| 2006 | case 2 | |
| 2007 | also have *: "b + a - b = b + (a - b)" using gt by arith | |
| 34915 | 2008 | finally have "b + (a - b) < a + b" . | 
| 63489 | 2009 | then have "P b (b + (a - b))" by (rule add [rule_format, OF less]) | 
| 2010 | then have "P b a" by (simp add: *[symmetric]) | |
| 2011 | with c show ?thesis by blast | |
| 2012 | qed | |
| 2013 | qed | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2014 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2015 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2016 | lemma bezout_lemma_nat: | 
| 31706 | 2017 | assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 2018 | (a * x = b * y + d \<or> b * x = a * y + d)" | |
| 2019 | shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> | |
| 2020 | (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" | |
| 2021 | using ex | |
| 2022 | apply clarsimp | |
| 63489 | 2023 | apply (rule_tac x="d" in exI) | 
| 2024 | apply simp | |
| 2025 | apply (case_tac "a * x = b * y + d") | |
| 2026 | apply simp_all | |
| 2027 | apply (rule_tac x="x + y" in exI) | |
| 2028 | apply (rule_tac x="y" in exI) | |
| 2029 | apply algebra | |
| 31706 | 2030 | apply (rule_tac x="x" in exI) | 
| 2031 | apply (rule_tac x="x + y" in exI) | |
| 2032 | apply algebra | |
| 63489 | 2033 | done | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2034 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2035 | lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 2036 | (a * x = b * y + d \<or> b * x = a * y + d)" | 
| 63489 | 2037 | apply (induct a b rule: ind_euclid) | 
| 2038 | apply blast | |
| 2039 | apply clarify | |
| 2040 | apply (rule_tac x="a" in exI) | |
| 2041 | apply simp | |
| 31706 | 2042 | apply clarsimp | 
| 2043 | apply (rule_tac x="d" in exI) | |
| 63489 | 2044 | apply (case_tac "a * x = b * y + d") | 
| 2045 | apply simp_all | |
| 2046 | apply (rule_tac x="x+y" in exI) | |
| 2047 | apply (rule_tac x="y" in exI) | |
| 2048 | apply algebra | |
| 31706 | 2049 | apply (rule_tac x="x" in exI) | 
| 2050 | apply (rule_tac x="x+y" in exI) | |
| 2051 | apply algebra | |
| 63489 | 2052 | done | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2053 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2054 | lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 2055 | (a * x - b * y = d \<or> b * x - a * y = d)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2056 | using bezout_add_nat[of a b] | 
| 31706 | 2057 | apply clarsimp | 
| 63489 | 2058 | apply (rule_tac x="d" in exI) | 
| 2059 | apply simp | |
| 31706 | 2060 | apply (rule_tac x="x" in exI) | 
| 2061 | apply (rule_tac x="y" in exI) | |
| 2062 | apply auto | |
| 63489 | 2063 | done | 
| 2064 | ||
| 2065 | lemma bezout_add_strong_nat: | |
| 2066 | fixes a b :: nat | |
| 2067 | assumes a: "a \<noteq> 0" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2068 | shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" | 
| 63489 | 2069 | proof - | 
| 2070 | consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d" | |
| 2071 | | d x y where "d dvd a" "d dvd b" "b * x = a * y + d" | |
| 2072 | using bezout_add_nat [of a b] by blast | |
| 2073 | then show ?thesis | |
| 2074 | proof cases | |
| 2075 | case 1 | |
| 2076 | then show ?thesis by blast | |
| 2077 | next | |
| 2078 | case H: 2 | |
| 2079 | show ?thesis | |
| 2080 | proof (cases "b = 0") | |
| 2081 | case True | |
| 2082 | with H show ?thesis by simp | |
| 2083 | next | |
| 2084 | case False | |
| 2085 | then have bp: "b > 0" by simp | |
| 2086 | with dvd_imp_le [OF H(2)] consider "d = b" | "d < b" | |
| 2087 | by atomize_elim auto | |
| 2088 | then show ?thesis | |
| 2089 | proof cases | |
| 2090 | case 1 | |
| 2091 | with a H show ?thesis | |
| 2092 | apply simp | |
| 2093 | apply (rule exI[where x = b]) | |
| 2094 | apply simp | |
| 2095 | apply (rule exI[where x = b]) | |
| 2096 | apply (rule exI[where x = "a - 1"]) | |
| 2097 | apply (simp add: diff_mult_distrib2) | |
| 2098 | done | |
| 2099 | next | |
| 2100 | case 2 | |
| 2101 | show ?thesis | |
| 2102 | proof (cases "x = 0") | |
| 2103 | case True | |
| 2104 | with a H show ?thesis by simp | |
| 2105 | next | |
| 2106 | case x0: False | |
| 2107 | then have xp: "x > 0" by simp | |
| 2108 | from \<open>d < b\<close> have "d \<le> b - 1" by simp | |
| 2109 | then have "d * b \<le> b * (b - 1)" by simp | |
| 2110 | with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"] | |
| 2111 | have dble: "d * b \<le> x * b * (b - 1)" using bp by simp | |
| 2112 | from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)" | |
| 31706 | 2113 | by simp | 
| 63489 | 2114 | then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 2115 | by (simp only: mult.assoc distrib_left) | 
| 63489 | 2116 | then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)" | 
| 31706 | 2117 | by algebra | 
| 63489 | 2118 | then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b" | 
| 2119 | using bp by simp | |
| 2120 | then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 2121 | by (simp only: diff_add_assoc[OF dble, of d, symmetric]) | 
| 63489 | 2122 | then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d" | 
| 59008 | 2123 | by (simp only: diff_mult_distrib2 ac_simps) | 
| 63489 | 2124 | with H(1,2) show ?thesis | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 2125 | apply - | 
| 63489 | 2126 | apply (rule exI [where x = d]) | 
| 2127 | apply simp | |
| 2128 | apply (rule exI [where x = "(b - 1) * y"]) | |
| 2129 | apply (rule exI [where x = "x * (b - 1) - d"]) | |
| 2130 | apply simp | |
| 2131 | done | |
| 2132 | qed | |
| 2133 | qed | |
| 2134 | qed | |
| 2135 | qed | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2136 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2137 | |
| 63489 | 2138 | lemma bezout_nat: | 
| 2139 | fixes a :: nat | |
| 2140 | assumes a: "a \<noteq> 0" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2141 | shows "\<exists>x y. a * x = b * y + gcd a b" | 
| 63489 | 2142 | proof - | 
| 2143 | obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d" | |
| 2144 | using bezout_add_strong_nat [OF a, of b] by blast | |
| 2145 | from d have "d dvd gcd a b" | |
| 2146 | by simp | |
| 2147 | then obtain k where k: "gcd a b = d * k" | |
| 2148 | unfolding dvd_def by blast | |
| 2149 | from eq have "a * x * k = (b * y + d) * k" | |
| 2150 | by auto | |
| 2151 | then have "a * (x * k) = b * (y * k) + gcd a b" | |
| 2152 | by (algebra add: k) | |
| 2153 | then show ?thesis | |
| 2154 | by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2155 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2156 | |
| 31706 | 2157 | |
| 63489 | 2158 | subsection \<open>LCM properties on @{typ nat} and @{typ int}\<close>
 | 
| 2159 | ||
| 2160 | lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" | |
| 2161 | for a b :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2162 | by (simp add: lcm_int_def lcm_nat_def zdiv_int gcd_int_def) | 
| 31706 | 2163 | |
| 63489 | 2164 | lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n" | 
| 2165 | for m n :: nat | |
| 31706 | 2166 | unfolding lcm_nat_def | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2167 | by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod]) | 
| 31706 | 2168 | |
| 63489 | 2169 | lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n" | 
| 2170 | for m n :: int | |
| 31706 | 2171 | unfolding lcm_int_def gcd_int_def | 
| 62348 | 2172 | apply (subst of_nat_mult [symmetric]) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2173 | apply (subst prod_gcd_lcm_nat [symmetric]) | 
| 31706 | 2174 | apply (subst nat_abs_mult_distrib [symmetric]) | 
| 63489 | 2175 | apply (simp add: abs_mult) | 
| 2176 | done | |
| 2177 | ||
| 2178 | lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0" | |
| 2179 | for m n :: nat | |
| 2180 | by (metis gr0I mult_is_0 prod_gcd_lcm_nat) | |
| 2181 | ||
| 2182 | lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0" | |
| 2183 | for m n :: int | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2184 | apply (subst lcm_abs_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2185 | apply (rule lcm_pos_nat [transferred]) | 
| 63489 | 2186 | apply auto | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2187 | done | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 2188 | |
| 63489 | 2189 | lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *) | 
| 2190 | for m n :: nat | |
| 2191 | by (cases m) auto | |
| 2192 | ||
| 2193 | lemma lcm_unique_nat: | |
| 2194 | "a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | |
| 2195 | for a b d :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2196 | by (auto intro: dvd_antisym lcm_least) | 
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 2197 | |
| 63489 | 2198 | lemma lcm_unique_int: | 
| 2199 | "d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | |
| 2200 | for a b d :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2201 | using lcm_least zdvd_antisym_nonneg by auto | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 2202 | |
| 63489 | 2203 | lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y" | 
| 2204 | for x y :: nat | |
| 31706 | 2205 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2206 | apply (subst lcm_unique_nat [symmetric]) | 
| 31706 | 2207 | apply auto | 
| 63489 | 2208 | done | 
| 2209 | ||
| 2210 | lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>" | |
| 2211 | for x y :: int | |
| 31706 | 2212 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2213 | apply (subst lcm_unique_int [symmetric]) | 
| 31706 | 2214 | apply auto | 
| 63489 | 2215 | done | 
| 2216 | ||
| 2217 | lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y" | |
| 2218 | for x y :: nat | |
| 2219 | by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat) | |
| 2220 | ||
| 2221 | lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>" | |
| 2222 | for x y :: int | |
| 2223 | by (subst lcm.commute) (erule lcm_proj2_if_dvd_int) | |
| 2224 | ||
| 2225 | lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m" | |
| 2226 | for m n :: nat | |
| 2227 | by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) | |
| 2228 | ||
| 2229 | lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n" | |
| 2230 | for m n :: nat | |
| 2231 | by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) | |
| 2232 | ||
| 2233 | lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m" | |
| 2234 | for m n :: int | |
| 2235 | by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) | |
| 2236 | ||
| 2237 | lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n" | |
| 2238 | for m n :: int | |
| 2239 | by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) | |
| 2240 | ||
| 2241 | lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" | |
| 2242 | for m n :: nat | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2243 | using lcm_eq_1_iff [of m n] by simp | 
| 63489 | 2244 | |
| 2245 | lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)" | |
| 2246 | for m n :: int | |
| 61913 | 2247 | by auto | 
| 31995 | 2248 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 2249 | |
| 62345 | 2250 | subsection \<open>The complete divisibility lattice on @{typ nat} and @{typ int}\<close>
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2251 | |
| 63489 | 2252 | text \<open> | 
| 2253 | Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>). | |
| 2254 | \<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice. | |
| 60758 | 2255 | \<close> | 
| 45264 | 2256 | |
| 62345 | 2257 | instantiation nat :: semiring_Gcd | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2258 | begin | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2259 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2260 | interpretation semilattice_neutr_set lcm "1::nat" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2261 | by standard simp_all | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 2262 | |
| 63489 | 2263 | definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set" | 
| 2264 | ||
| 2265 | lemma Lcm_nat_empty: "Lcm {} = (1::nat)"
 | |
| 60690 | 2266 | by (simp add: Lcm_nat_def del: One_nat_def) | 
| 51489 | 2267 | |
| 63489 | 2268 | lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat | 
| 61929 | 2269 | by (cases "finite M") (auto simp add: Lcm_nat_def simp del: One_nat_def) | 
| 2270 | ||
| 63489 | 2271 | lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set" | 
| 61929 | 2272 | by (simp add: Lcm_nat_def) | 
| 2273 | ||
| 2274 | lemma dvd_Lcm_nat [simp]: | |
| 2275 | fixes M :: "nat set" | |
| 2276 | assumes "m \<in> M" | |
| 2277 | shows "m dvd Lcm M" | |
| 2278 | proof - | |
| 63489 | 2279 | from assms have "insert m M = M" | 
| 2280 | by auto | |
| 61929 | 2281 | moreover have "m dvd Lcm (insert m M)" | 
| 2282 | by (simp add: Lcm_nat_insert) | |
| 63489 | 2283 | ultimately show ?thesis | 
| 2284 | by simp | |
| 61929 | 2285 | qed | 
| 2286 | ||
| 2287 | lemma Lcm_dvd_nat [simp]: | |
| 2288 | fixes M :: "nat set" | |
| 2289 | assumes "\<forall>m\<in>M. m dvd n" | |
| 2290 | shows "Lcm M dvd n" | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2291 | proof (cases "n > 0") | 
| 63489 | 2292 | case False | 
| 2293 | then show ?thesis by simp | |
| 61929 | 2294 | next | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2295 | case True | 
| 63489 | 2296 |   then have "finite {d. d dvd n}"
 | 
| 2297 | by (rule finite_divisors_nat) | |
| 2298 |   moreover have "M \<subseteq> {d. d dvd n}"
 | |
| 2299 | using assms by fast | |
| 2300 | ultimately have "finite M" | |
| 2301 | by (rule rev_finite_subset) | |
| 2302 | then show ?thesis | |
| 2303 | using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) | |
| 61929 | 2304 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2305 | |
| 63489 | 2306 | definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set"
 | 
| 2307 | ||
| 2308 | instance | |
| 2309 | proof | |
| 2310 | fix N :: "nat set" | |
| 2311 | fix n :: nat | |
| 2312 | show "Gcd N dvd n" if "n \<in> N" | |
| 2313 | using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def) | |
| 2314 | show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" | |
| 2315 | using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def) | |
| 2316 | show "n dvd Lcm N" if "n \<in> N" | |
| 2317 | using that by (induct N rule: infinite_finite_induct) auto | |
| 2318 | show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n" | |
| 2319 | using that by (induct N rule: infinite_finite_induct) auto | |
| 2320 | show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N" | |
| 2321 | by simp_all | |
| 2322 | qed | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2323 | |
| 62345 | 2324 | end | 
| 61913 | 2325 | |
| 63489 | 2326 | lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1" | 
| 2327 | for N :: "nat set" | |
| 62346 | 2328 | by (rule Gcd_eq_1_I) auto | 
| 2329 | ||
| 63489 | 2330 | |
| 2331 | text \<open>Alternative characterizations of Gcd:\<close> | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2332 | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2333 | lemma Gcd_eq_Max: | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2334 | fixes M :: "nat set" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2335 |   assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2336 |   shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2337 | proof (rule antisym) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2338 | from assms obtain m where "m \<in> M" and "m > 0" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2339 | by auto | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2340 |   from \<open>m > 0\<close> have "finite {d. d dvd m}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2341 | by (blast intro: finite_divisors_nat) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2342 |   with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2343 | by blast | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2344 |   from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2345 | by (auto intro: Max_ge Gcd_dvd) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2346 |   from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2347 | apply (rule Max.boundedI) | 
| 63489 | 2348 | apply auto | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2349 | apply (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2350 | done | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2351 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2352 | |
| 63489 | 2353 | lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})"
 | 
| 2354 | for M :: "nat set" | |
| 2355 | apply (induct pred: finite) | |
| 2356 | apply simp | |
| 2357 | apply (case_tac "x = 0") | |
| 2358 | apply simp | |
| 2359 |   apply (subgoal_tac "insert x F - {0} = insert x (F - {0})")
 | |
| 2360 | apply simp | |
| 2361 | apply blast | |
| 2362 | done | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2363 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2364 | lemma Lcm_in_lcm_closed_set_nat: | 
| 63489 | 2365 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M \<in> M"
 | 
| 2366 | for M :: "nat set" | |
| 2367 | apply (induct rule: finite_linorder_min_induct) | |
| 2368 | apply simp | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2369 | apply simp | 
| 63489 | 2370 | apply (subgoal_tac "\<forall>m n. m \<in> A \<longrightarrow> n \<in> A \<longrightarrow> lcm m n \<in> A") | 
| 2371 | apply simp | |
| 2372 |    apply(case_tac "A = {}")
 | |
| 2373 | apply simp | |
| 2374 | apply simp | |
| 2375 | apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) | |
| 2376 | done | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2377 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2378 | lemma Lcm_eq_Max_nat: | 
| 63489 | 2379 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M = Max M"
 | 
| 2380 | for M :: "nat set" | |
| 2381 | apply (rule antisym) | |
| 2382 | apply (rule Max_ge) | |
| 2383 | apply assumption | |
| 2384 | apply (erule (2) Lcm_in_lcm_closed_set_nat) | |
| 2385 | apply (auto simp add: not_le Lcm_0_iff dvd_imp_le leD le_neq_trans) | |
| 2386 | done | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2387 | |
| 34222 | 2388 | lemma mult_inj_if_coprime_nat: | 
| 63489 | 2389 | "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> \<forall>a\<in>A. \<forall>b\<in>B. coprime (f a) (g b) \<Longrightarrow> | 
| 2390 | inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)" | |
| 2391 | for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat" | |
| 61913 | 2392 | by (auto simp add: inj_on_def coprime_crossproduct_nat simp del: One_nat_def) | 
| 34222 | 2393 | |
| 63489 | 2394 | |
| 2395 | text \<open>Nitpick:\<close> | |
| 34222 | 2396 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 2397 | lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y" | 
| 63489 | 2398 | by (induct x y rule: nat_gcd.induct) | 
| 2399 | (simp add: gcd_nat.simps Nitpick.nat_gcd.simps) | |
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 2400 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 2401 | lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y" | 
| 63489 | 2402 | by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd) | 
| 2403 | ||
| 2404 | ||
| 2405 | subsubsection \<open>Setwise GCD and LCM for integers\<close> | |
| 45264 | 2406 | |
| 62345 | 2407 | instantiation int :: semiring_Gcd | 
| 45264 | 2408 | begin | 
| 2409 | ||
| 63489 | 2410 | definition "Lcm M = int (LCM m\<in>M. (nat \<circ> abs) m)" | 
| 2411 | ||
| 2412 | definition "Gcd M = int (GCD m\<in>M. (nat \<circ> abs) m)" | |
| 2413 | ||
| 2414 | instance | |
| 2415 | by standard | |
| 2416 | (auto intro!: Gcd_dvd Gcd_greatest simp add: Gcd_int_def | |
| 2417 | Lcm_int_def int_dvd_iff dvd_int_iff dvd_int_unfold_dvd_nat [symmetric]) | |
| 62345 | 2418 | |
| 2419 | end | |
| 2420 | ||
| 63489 | 2421 | lemma abs_Gcd [simp]: "\<bar>Gcd K\<bar> = Gcd K" | 
| 2422 | for K :: "int set" | |
| 62346 | 2423 | using normalize_Gcd [of K] by simp | 
| 2424 | ||
| 63489 | 2425 | lemma abs_Lcm [simp]: "\<bar>Lcm K\<bar> = Lcm K" | 
| 2426 | for K :: "int set" | |
| 62346 | 2427 | using normalize_Lcm [of K] by simp | 
| 2428 | ||
| 63489 | 2429 | lemma Gcm_eq_int_iff: "Gcd K = int n \<longleftrightarrow> Gcd ((nat \<circ> abs) ` K) = n" | 
| 62346 | 2430 | by (simp add: Gcd_int_def comp_def image_image) | 
| 2431 | ||
| 63489 | 2432 | lemma Lcm_eq_int_iff: "Lcm K = int n \<longleftrightarrow> Lcm ((nat \<circ> abs) ` K) = n" | 
| 62346 | 2433 | by (simp add: Lcm_int_def comp_def image_image) | 
| 2434 | ||
| 62345 | 2435 | |
| 2436 | subsection \<open>GCD and LCM on @{typ integer}\<close>
 | |
| 2437 | ||
| 2438 | instantiation integer :: gcd | |
| 2439 | begin | |
| 2440 | ||
| 2441 | context | |
| 2442 | includes integer.lifting | |
| 2443 | begin | |
| 2444 | ||
| 63489 | 2445 | lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd . | 
| 2446 | ||
| 2447 | lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm . | |
| 62345 | 2448 | |
| 2449 | end | |
| 63489 | 2450 | |
| 45264 | 2451 | instance .. | 
| 60686 | 2452 | |
| 21256 | 2453 | end | 
| 45264 | 2454 | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2455 | lifting_update integer.lifting | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2456 | lifting_forget integer.lifting | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2457 | |
| 62345 | 2458 | context | 
| 2459 | includes integer.lifting | |
| 2460 | begin | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2461 | |
| 63489 | 2462 | lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | 
| 62345 | 2463 | by transfer (fact gcd_code_int) | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2464 | |
| 63489 | 2465 | lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" | 
| 2466 | for a b :: integer | |
| 62345 | 2467 | by transfer (fact lcm_altdef_int) | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2468 | |
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2469 | end | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2470 | |
| 63489 | 2471 | code_printing | 
| 2472 | constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup> | |
| 2473 | (OCaml) "Big'_int.gcd'_big'_int" | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2474 | and (Haskell) "Prelude.gcd" | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2475 | and (Scala) "_.gcd'((_)')" | 
| 61975 | 2476 | \<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close> | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2477 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2478 | text \<open>Some code equations\<close> | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2479 | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2480 | lemmas Lcm_set_nat [code, code_unfold] = Lcm_set[where ?'a = nat] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2481 | lemmas Gcd_set_nat [code] = Gcd_set[where ?'a = nat] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2482 | lemmas Lcm_set_int [code, code_unfold] = Lcm_set[where ?'a = int] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2483 | lemmas Gcd_set_int [code] = Gcd_set[where ?'a = int] | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2484 | |
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2485 | |
| 63489 | 2486 | text \<open>Fact aliases.\<close> | 
| 2487 | ||
| 2488 | lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" | |
| 2489 | for m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2490 | by (fact lcm_eq_0_iff) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2491 | |
| 63489 | 2492 | lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" | 
| 2493 | for m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2494 | by (fact lcm_eq_0_iff) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2495 | |
| 63489 | 2496 | lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n" | 
| 2497 | for k m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2498 | by (fact dvd_lcmI1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2499 | |
| 63489 | 2500 | lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n" | 
| 2501 | for k m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2502 | by (fact dvd_lcmI2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2503 | |
| 63489 | 2504 | lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n" | 
| 2505 | for i m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2506 | by (fact dvd_lcmI1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2507 | |
| 63489 | 2508 | lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n" | 
| 2509 | for i m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2510 | by (fact dvd_lcmI2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2511 | |
| 63489 | 2512 | lemma coprime_exp2_nat [intro]: "coprime a b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 2513 | for a b :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2514 | by (fact coprime_exp2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2515 | |
| 63489 | 2516 | lemma coprime_exp2_int [intro]: "coprime a b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 2517 | for a b :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2518 | by (fact coprime_exp2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2519 | |
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2520 | lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2521 | lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2522 | lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2523 | lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int] | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2524 | |
| 63489 | 2525 | lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M" | 
| 2526 | for M :: "int set" | |
| 2527 | by (fact dvd_Lcm) | |
| 2528 | ||
| 2529 | lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x" | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2530 | by (fact gcd_neg1_int) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2531 | |
| 63489 | 2532 | lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)" | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2533 | by (fact gcd_neg2_int) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2534 | |
| 63489 | 2535 | lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x" | 
| 2536 | for x y :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2537 | by (fact gcd_nat.absorb1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2538 | |
| 63489 | 2539 | lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y" | 
| 2540 | for x y :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2541 | by (fact gcd_nat.absorb2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2542 | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2543 | lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2544 | lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2545 | lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int] | 
| 62345 | 2546 | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2547 | end |