| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30273 | ecd6f0ca62ea | 
| child 30729 | 461ee3e49ad3 | 
| permissions | -rw-r--r-- | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 1 | (* Title: HOL/RealVector.thy | 
| 27552 
15cf4ed9c2a1
re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
 haftmann parents: 
27515diff
changeset | 2 | Author: Brian Huffman | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 3 | *) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 4 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 5 | header {* Vector Spaces and Algebras over the Reals *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 6 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 7 | theory RealVector | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 8 | imports RealPow | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 9 | begin | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 10 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 11 | subsection {* Locale for additive functions *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 12 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 13 | locale additive = | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 14 | fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add" | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 15 | assumes add: "f (x + y) = f x + f y" | 
| 27443 | 16 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 17 | |
| 27443 | 18 | lemma zero: "f 0 = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 19 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 20 | have "f 0 = f (0 + 0)" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 21 | also have "\<dots> = f 0 + f 0" by (rule add) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 22 | finally show "f 0 = 0" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 23 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 24 | |
| 27443 | 25 | lemma minus: "f (- x) = - f x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 26 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 27 | have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 28 | also have "\<dots> = - f x + f x" by (simp add: zero) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 29 | finally show "f (- x) = - f x" by (rule add_right_imp_eq) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 30 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 31 | |
| 27443 | 32 | lemma diff: "f (x - y) = f x - f y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 33 | by (simp add: diff_def add minus) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 34 | |
| 27443 | 35 | lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))" | 
| 22942 | 36 | apply (cases "finite A") | 
| 37 | apply (induct set: finite) | |
| 38 | apply (simp add: zero) | |
| 39 | apply (simp add: add) | |
| 40 | apply (simp add: zero) | |
| 41 | done | |
| 42 | ||
| 27443 | 43 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 44 | |
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 45 | subsection {* Vector spaces *}
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 46 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 47 | locale vector_space = | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 48 | fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 49 | assumes scale_right_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 50 | "scale a (x + y) = scale a x + scale a y" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 51 | and scale_left_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 52 | "scale (a + b) x = scale a x + scale b x" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 53 | and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 54 | and scale_one [simp]: "scale 1 x = x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 55 | begin | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 56 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 57 | lemma scale_left_commute: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 58 | "scale a (scale b x) = scale b (scale a x)" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 59 | by (simp add: mult_commute) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 60 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 61 | lemma scale_zero_left [simp]: "scale 0 x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 62 | and scale_minus_left [simp]: "scale (- a) x = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 63 | and scale_left_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 64 | "scale (a - b) x = scale a x - scale b x" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 65 | proof - | 
| 29229 | 66 | interpret s: additive "\<lambda>a. scale a x" | 
| 28823 | 67 | proof qed (rule scale_left_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 68 | show "scale 0 x = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 69 | show "scale (- a) x = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 70 | show "scale (a - b) x = scale a x - scale b x" by (rule s.diff) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 71 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 72 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 73 | lemma scale_zero_right [simp]: "scale a 0 = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 74 | and scale_minus_right [simp]: "scale a (- x) = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 75 | and scale_right_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 76 | "scale a (x - y) = scale a x - scale a y" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 77 | proof - | 
| 29229 | 78 | interpret s: additive "\<lambda>x. scale a x" | 
| 28823 | 79 | proof qed (rule scale_right_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 80 | show "scale a 0 = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 81 | show "scale a (- x) = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 82 | show "scale a (x - y) = scale a x - scale a y" by (rule s.diff) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 83 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 84 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 85 | lemma scale_eq_0_iff [simp]: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 86 | "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 87 | proof cases | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 88 | assume "a = 0" thus ?thesis by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 89 | next | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 90 | assume anz [simp]: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 91 |   { assume "scale a x = 0"
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 92 | hence "scale (inverse a) (scale a x) = 0" by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 93 | hence "x = 0" by simp } | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 94 | thus ?thesis by force | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 95 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 96 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 97 | lemma scale_left_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 98 | "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 99 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 100 | assume nonzero: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 101 | assume "scale a x = scale a y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 102 | hence "scale a (x - y) = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 103 | by (simp add: scale_right_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 104 | hence "x - y = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 105 | thus "x = y" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 106 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 107 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 108 | lemma scale_right_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 109 | "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 110 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 111 | assume nonzero: "x \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 112 | assume "scale a x = scale b x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 113 | hence "scale (a - b) x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 114 | by (simp add: scale_left_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 115 | hence "a - b = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 116 | thus "a = b" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 117 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 118 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 119 | lemma scale_cancel_left: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 120 | "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 121 | by (auto intro: scale_left_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 122 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 123 | lemma scale_cancel_right: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 124 | "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 125 | by (auto intro: scale_right_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 126 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 127 | end | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 128 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 129 | subsection {* Real vector spaces *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 130 | |
| 29608 | 131 | class scaleR = | 
| 25062 | 132 | fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) | 
| 24748 | 133 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 134 | |
| 20763 | 135 | abbreviation | 
| 25062 | 136 | divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70) | 
| 24748 | 137 | where | 
| 25062 | 138 | "x /\<^sub>R r == scaleR (inverse r) x" | 
| 24748 | 139 | |
| 140 | end | |
| 141 | ||
| 24588 | 142 | class real_vector = scaleR + ab_group_add + | 
| 25062 | 143 | assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y" | 
| 144 | and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x" | |
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 145 | and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 146 | and scaleR_one: "scaleR 1 x = x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 147 | |
| 29233 | 148 | interpretation real_vector!: | 
| 29229 | 149 | vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector" | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 150 | apply unfold_locales | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 151 | apply (rule scaleR_right_distrib) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 152 | apply (rule scaleR_left_distrib) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 153 | apply (rule scaleR_scaleR) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 154 | apply (rule scaleR_one) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 155 | done | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 156 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 157 | text {* Recover original theorem names *}
 | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 158 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 159 | lemmas scaleR_left_commute = real_vector.scale_left_commute | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 160 | lemmas scaleR_zero_left = real_vector.scale_zero_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 161 | lemmas scaleR_minus_left = real_vector.scale_minus_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 162 | lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 163 | lemmas scaleR_zero_right = real_vector.scale_zero_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 164 | lemmas scaleR_minus_right = real_vector.scale_minus_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 165 | lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 166 | lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 167 | lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 168 | lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 169 | lemmas scaleR_cancel_left = real_vector.scale_cancel_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 170 | lemmas scaleR_cancel_right = real_vector.scale_cancel_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 171 | |
| 24588 | 172 | class real_algebra = real_vector + ring + | 
| 25062 | 173 | assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" | 
| 174 | and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 175 | |
| 24588 | 176 | class real_algebra_1 = real_algebra + ring_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 177 | |
| 24588 | 178 | class real_div_algebra = real_algebra_1 + division_ring | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 179 | |
| 24588 | 180 | class real_field = real_div_algebra + field | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 181 | |
| 30069 | 182 | instantiation real :: real_field | 
| 183 | begin | |
| 184 | ||
| 185 | definition | |
| 186 | real_scaleR_def [simp]: "scaleR a x = a * x" | |
| 187 | ||
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 188 | instance proof | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 189 | qed (simp_all add: algebra_simps) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 190 | |
| 30069 | 191 | end | 
| 192 | ||
| 29233 | 193 | interpretation scaleR_left!: additive "(\<lambda>a. scaleR a x::'a::real_vector)" | 
| 28823 | 194 | proof qed (rule scaleR_left_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 195 | |
| 29233 | 196 | interpretation scaleR_right!: additive "(\<lambda>x. scaleR a x::'a::real_vector)" | 
| 28823 | 197 | proof qed (rule scaleR_right_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 198 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 199 | lemma nonzero_inverse_scaleR_distrib: | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 200 | fixes x :: "'a::real_div_algebra" shows | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 201 | "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20763 | 202 | by (rule inverse_unique, simp) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 203 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 204 | lemma inverse_scaleR_distrib: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 205 |   fixes x :: "'a::{real_div_algebra,division_by_zero}"
 | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 206 | shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 207 | apply (case_tac "a = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 208 | apply (case_tac "x = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 209 | apply (erule (1) nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 210 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 211 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 212 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 213 | subsection {* Embedding of the Reals into any @{text real_algebra_1}:
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 214 | @{term of_real} *}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 215 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 216 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 217 | of_real :: "real \<Rightarrow> 'a::real_algebra_1" where | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 218 | "of_real r = scaleR r 1" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 219 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 220 | lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" | 
| 20763 | 221 | by (simp add: of_real_def) | 
| 222 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 223 | lemma of_real_0 [simp]: "of_real 0 = 0" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 224 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 225 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 226 | lemma of_real_1 [simp]: "of_real 1 = 1" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 227 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 228 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 229 | lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 230 | by (simp add: of_real_def scaleR_left_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 231 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 232 | lemma of_real_minus [simp]: "of_real (- x) = - of_real x" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 233 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 234 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 235 | lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 236 | by (simp add: of_real_def scaleR_left_diff_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 237 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 238 | lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" | 
| 20763 | 239 | by (simp add: of_real_def mult_commute) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 240 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 241 | lemma nonzero_of_real_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 242 | "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 243 | inverse (of_real x :: 'a::real_div_algebra)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 244 | by (simp add: of_real_def nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 245 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 246 | lemma of_real_inverse [simp]: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 247 | "of_real (inverse x) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 248 |    inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
 | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 249 | by (simp add: of_real_def inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 250 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 251 | lemma nonzero_of_real_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 252 | "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 253 | (of_real x / of_real y :: 'a::real_field)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 254 | by (simp add: divide_inverse nonzero_of_real_inverse) | 
| 20722 | 255 | |
| 256 | lemma of_real_divide [simp]: | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 257 | "of_real (x / y) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 258 |    (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
 | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 259 | by (simp add: divide_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 260 | |
| 20722 | 261 | lemma of_real_power [simp]: | 
| 262 |   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
 | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 263 | by (induct n) simp_all | 
| 20722 | 264 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 265 | lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 266 | by (simp add: of_real_def scaleR_cancel_right) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 267 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 268 | lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 269 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 270 | lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 271 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 272 | fix r | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 273 | show "of_real r = id r" | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 274 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 275 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 276 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 277 | text{*Collapse nested embeddings*}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 278 | lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" | 
| 20772 | 279 | by (induct n) auto | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 280 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 281 | lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 282 | by (cases z rule: int_diff_cases, simp) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 283 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 284 | lemma of_real_number_of_eq: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 285 |   "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 286 | by (simp add: number_of_eq) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 287 | |
| 22912 | 288 | text{*Every real algebra has characteristic zero*}
 | 
| 289 | instance real_algebra_1 < ring_char_0 | |
| 290 | proof | |
| 23282 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 huffman parents: 
23127diff
changeset | 291 | fix m n :: nat | 
| 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 huffman parents: 
23127diff
changeset | 292 | have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)" | 
| 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 huffman parents: 
23127diff
changeset | 293 | by (simp only: of_real_eq_iff of_nat_eq_iff) | 
| 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 huffman parents: 
23127diff
changeset | 294 | thus "(of_nat m = (of_nat n::'a)) = (m = n)" | 
| 
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
 huffman parents: 
23127diff
changeset | 295 | by (simp only: of_real_of_nat_eq) | 
| 22912 | 296 | qed | 
| 297 | ||
| 27553 | 298 | instance real_field < field_char_0 .. | 
| 299 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 300 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 301 | subsection {* The Set of Real Numbers *}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 302 | |
| 20772 | 303 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 304 | Reals :: "'a::real_algebra_1 set" where | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 305 | [code del]: "Reals = range of_real" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 306 | |
| 21210 | 307 | notation (xsymbols) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 308 |   Reals  ("\<real>")
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 309 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 310 | lemma Reals_of_real [simp]: "of_real r \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 311 | by (simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 312 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 313 | lemma Reals_of_int [simp]: "of_int z \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 314 | by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) | 
| 20718 | 315 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 316 | lemma Reals_of_nat [simp]: "of_nat n \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 317 | by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 318 | |
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 319 | lemma Reals_number_of [simp]: | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 320 |   "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
 | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 321 | by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) | 
| 20718 | 322 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 323 | lemma Reals_0 [simp]: "0 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 324 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 325 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 326 | apply (rule of_real_0 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 327 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 328 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 329 | lemma Reals_1 [simp]: "1 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 330 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 331 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 332 | apply (rule of_real_1 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 333 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 334 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 335 | lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 336 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 337 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 338 | apply (rule of_real_add [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 339 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 340 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 341 | lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 342 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 343 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 344 | apply (rule of_real_minus [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 345 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 346 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 347 | lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 348 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 349 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 350 | apply (rule of_real_diff [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 351 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 352 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 353 | lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 354 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 355 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 356 | apply (rule of_real_mult [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 357 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 358 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 359 | lemma nonzero_Reals_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 360 | fixes a :: "'a::real_div_algebra" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 361 | shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 362 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 363 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 364 | apply (erule nonzero_of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 365 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 366 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 367 | lemma Reals_inverse [simp]: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 368 |   fixes a :: "'a::{real_div_algebra,division_by_zero}"
 | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 369 | shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 370 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 371 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 372 | apply (rule of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 373 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 374 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 375 | lemma nonzero_Reals_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 376 | fixes a b :: "'a::real_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 377 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 378 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 379 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 380 | apply (erule nonzero_of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 381 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 382 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 383 | lemma Reals_divide [simp]: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 384 |   fixes a b :: "'a::{real_field,division_by_zero}"
 | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 385 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 386 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 387 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 388 | apply (rule of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 389 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 390 | |
| 20722 | 391 | lemma Reals_power [simp]: | 
| 392 |   fixes a :: "'a::{real_algebra_1,recpower}"
 | |
| 393 | shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals" | |
| 394 | apply (auto simp add: Reals_def) | |
| 395 | apply (rule range_eqI) | |
| 396 | apply (rule of_real_power [symmetric]) | |
| 397 | done | |
| 398 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 399 | lemma Reals_cases [cases set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 400 | assumes "q \<in> \<real>" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 401 | obtains (of_real) r where "q = of_real r" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 402 | unfolding Reals_def | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 403 | proof - | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 404 | from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def . | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 405 | then obtain r where "q = of_real r" .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 406 | then show thesis .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 407 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 408 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 409 | lemma Reals_induct [case_names of_real, induct set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 410 | "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 411 | by (rule Reals_cases) auto | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 412 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 413 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 414 | subsection {* Real normed vector spaces *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 415 | |
| 29608 | 416 | class norm = | 
| 22636 | 417 | fixes norm :: "'a \<Rightarrow> real" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 418 | |
| 24520 | 419 | class sgn_div_norm = scaleR + norm + sgn + | 
| 25062 | 420 | assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" | 
| 24506 | 421 | |
| 24588 | 422 | class real_normed_vector = real_vector + sgn_div_norm + | 
| 423 | assumes norm_ge_zero [simp]: "0 \<le> norm x" | |
| 25062 | 424 | and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0" | 
| 425 | and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y" | |
| 24588 | 426 | and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 427 | |
| 24588 | 428 | class real_normed_algebra = real_algebra + real_normed_vector + | 
| 25062 | 429 | assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 430 | |
| 24588 | 431 | class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + | 
| 25062 | 432 | assumes norm_one [simp]: "norm 1 = 1" | 
| 22852 | 433 | |
| 24588 | 434 | class real_normed_div_algebra = real_div_algebra + real_normed_vector + | 
| 25062 | 435 | assumes norm_mult: "norm (x * y) = norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 436 | |
| 24588 | 437 | class real_normed_field = real_field + real_normed_div_algebra | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 438 | |
| 22852 | 439 | instance real_normed_div_algebra < real_normed_algebra_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 440 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 441 | fix x y :: 'a | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 442 | show "norm (x * y) \<le> norm x * norm y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 443 | by (simp add: norm_mult) | 
| 22852 | 444 | next | 
| 445 | have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" | |
| 446 | by (rule norm_mult) | |
| 447 | thus "norm (1::'a) = 1" by simp | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 448 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 449 | |
| 30069 | 450 | instantiation real :: real_normed_field | 
| 451 | begin | |
| 452 | ||
| 453 | definition | |
| 454 | real_norm_def [simp]: "norm r = \<bar>r\<bar>" | |
| 455 | ||
| 456 | instance | |
| 22852 | 457 | apply (intro_classes, unfold real_norm_def real_scaleR_def) | 
| 24506 | 458 | apply (simp add: real_sgn_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 459 | apply (rule abs_ge_zero) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 460 | apply (rule abs_eq_0) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 461 | apply (rule abs_triangle_ineq) | 
| 22852 | 462 | apply (rule abs_mult) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 463 | apply (rule abs_mult) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 464 | done | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 465 | |
| 30069 | 466 | end | 
| 467 | ||
| 22852 | 468 | lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 469 | by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 470 | |
| 22852 | 471 | lemma zero_less_norm_iff [simp]: | 
| 472 | fixes x :: "'a::real_normed_vector" | |
| 473 | shows "(0 < norm x) = (x \<noteq> 0)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 474 | by (simp add: order_less_le) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 475 | |
| 22852 | 476 | lemma norm_not_less_zero [simp]: | 
| 477 | fixes x :: "'a::real_normed_vector" | |
| 478 | shows "\<not> norm x < 0" | |
| 20828 | 479 | by (simp add: linorder_not_less) | 
| 480 | ||
| 22852 | 481 | lemma norm_le_zero_iff [simp]: | 
| 482 | fixes x :: "'a::real_normed_vector" | |
| 483 | shows "(norm x \<le> 0) = (x = 0)" | |
| 20828 | 484 | by (simp add: order_le_less) | 
| 485 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 486 | lemma norm_minus_cancel [simp]: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 487 | fixes x :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 488 | shows "norm (- x) = norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 489 | proof - | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 490 | have "norm (- x) = norm (scaleR (- 1) x)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 491 | by (simp only: scaleR_minus_left scaleR_one) | 
| 20533 | 492 | also have "\<dots> = \<bar>- 1\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 493 | by (rule norm_scaleR) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 494 | finally show ?thesis by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 495 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 496 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 497 | lemma norm_minus_commute: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 498 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 499 | shows "norm (a - b) = norm (b - a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 500 | proof - | 
| 22898 | 501 | have "norm (- (b - a)) = norm (b - a)" | 
| 502 | by (rule norm_minus_cancel) | |
| 503 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 504 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 505 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 506 | lemma norm_triangle_ineq2: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 507 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 508 | shows "norm a - norm b \<le> norm (a - b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 509 | proof - | 
| 20533 | 510 | have "norm (a - b + b) \<le> norm (a - b) + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 511 | by (rule norm_triangle_ineq) | 
| 22898 | 512 | thus ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 513 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 514 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 515 | lemma norm_triangle_ineq3: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 516 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 517 | shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 518 | apply (subst abs_le_iff) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 519 | apply auto | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 520 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 521 | apply (subst norm_minus_commute) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 522 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 523 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 524 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 525 | lemma norm_triangle_ineq4: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 526 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 527 | shows "norm (a - b) \<le> norm a + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 528 | proof - | 
| 22898 | 529 | have "norm (a + - b) \<le> norm a + norm (- b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 530 | by (rule norm_triangle_ineq) | 
| 22898 | 531 | thus ?thesis | 
| 532 | by (simp only: diff_minus norm_minus_cancel) | |
| 533 | qed | |
| 534 | ||
| 535 | lemma norm_diff_ineq: | |
| 536 | fixes a b :: "'a::real_normed_vector" | |
| 537 | shows "norm a - norm b \<le> norm (a + b)" | |
| 538 | proof - | |
| 539 | have "norm a - norm (- b) \<le> norm (a - - b)" | |
| 540 | by (rule norm_triangle_ineq2) | |
| 541 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 542 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 543 | |
| 20551 | 544 | lemma norm_diff_triangle_ineq: | 
| 545 | fixes a b c d :: "'a::real_normed_vector" | |
| 546 | shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" | |
| 547 | proof - | |
| 548 | have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" | |
| 549 | by (simp add: diff_minus add_ac) | |
| 550 | also have "\<dots> \<le> norm (a - c) + norm (b - d)" | |
| 551 | by (rule norm_triangle_ineq) | |
| 552 | finally show ?thesis . | |
| 553 | qed | |
| 554 | ||
| 22857 | 555 | lemma abs_norm_cancel [simp]: | 
| 556 | fixes a :: "'a::real_normed_vector" | |
| 557 | shows "\<bar>norm a\<bar> = norm a" | |
| 558 | by (rule abs_of_nonneg [OF norm_ge_zero]) | |
| 559 | ||
| 22880 | 560 | lemma norm_add_less: | 
| 561 | fixes x y :: "'a::real_normed_vector" | |
| 562 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s" | |
| 563 | by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) | |
| 564 | ||
| 565 | lemma norm_mult_less: | |
| 566 | fixes x y :: "'a::real_normed_algebra" | |
| 567 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s" | |
| 568 | apply (rule order_le_less_trans [OF norm_mult_ineq]) | |
| 569 | apply (simp add: mult_strict_mono') | |
| 570 | done | |
| 571 | ||
| 22857 | 572 | lemma norm_of_real [simp]: | 
| 573 | "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" | |
| 22852 | 574 | unfolding of_real_def by (simp add: norm_scaleR) | 
| 20560 | 575 | |
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 576 | lemma norm_number_of [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 577 |   "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
 | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 578 | = \<bar>number_of w\<bar>" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 579 | by (subst of_real_number_of_eq [symmetric], rule norm_of_real) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 580 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 581 | lemma norm_of_int [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 582 | "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 583 | by (subst of_real_of_int_eq [symmetric], rule norm_of_real) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 584 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 585 | lemma norm_of_nat [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 586 | "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 587 | apply (subst of_real_of_nat_eq [symmetric]) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 588 | apply (subst norm_of_real, simp) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 589 | done | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 590 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 591 | lemma nonzero_norm_inverse: | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 592 | fixes a :: "'a::real_normed_div_algebra" | 
| 20533 | 593 | shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 594 | apply (rule inverse_unique [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 595 | apply (simp add: norm_mult [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 596 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 597 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 598 | lemma norm_inverse: | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 599 |   fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
 | 
| 20533 | 600 | shows "norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 601 | apply (case_tac "a = 0", simp) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 602 | apply (erule nonzero_norm_inverse) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 603 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 604 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 605 | lemma nonzero_norm_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 606 | fixes a b :: "'a::real_normed_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 607 | shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 608 | by (simp add: divide_inverse norm_mult nonzero_norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 609 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 610 | lemma norm_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 611 |   fixes a b :: "'a::{real_normed_field,division_by_zero}"
 | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 612 | shows "norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 613 | by (simp add: divide_inverse norm_mult norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 614 | |
| 22852 | 615 | lemma norm_power_ineq: | 
| 616 |   fixes x :: "'a::{real_normed_algebra_1,recpower}"
 | |
| 617 | shows "norm (x ^ n) \<le> norm x ^ n" | |
| 618 | proof (induct n) | |
| 619 | case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp | |
| 620 | next | |
| 621 | case (Suc n) | |
| 622 | have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" | |
| 623 | by (rule norm_mult_ineq) | |
| 624 | also from Suc have "\<dots> \<le> norm x * norm x ^ n" | |
| 625 | using norm_ge_zero by (rule mult_left_mono) | |
| 626 | finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 627 | by simp | 
| 22852 | 628 | qed | 
| 629 | ||
| 20684 | 630 | lemma norm_power: | 
| 631 |   fixes x :: "'a::{real_normed_div_algebra,recpower}"
 | |
| 632 | shows "norm (x ^ n) = norm x ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 633 | by (induct n) (simp_all add: norm_mult) | 
| 20684 | 634 | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 635 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 636 | subsection {* Sign function *}
 | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 637 | |
| 24506 | 638 | lemma norm_sgn: | 
| 639 | "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" | |
| 640 | by (simp add: sgn_div_norm norm_scaleR) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 641 | |
| 24506 | 642 | lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" | 
| 643 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 644 | |
| 24506 | 645 | lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" | 
| 646 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 647 | |
| 24506 | 648 | lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" | 
| 649 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 650 | |
| 24506 | 651 | lemma sgn_scaleR: | 
| 652 | "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" | |
| 653 | by (simp add: sgn_div_norm norm_scaleR mult_ac) | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 654 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 655 | lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" | 
| 24506 | 656 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 657 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 658 | lemma sgn_of_real: | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 659 | "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 660 | unfolding of_real_def by (simp only: sgn_scaleR sgn_one) | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 661 | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 662 | lemma sgn_mult: | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 663 | fixes x y :: "'a::real_normed_div_algebra" | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 664 | shows "sgn (x * y) = sgn x * sgn y" | 
| 24506 | 665 | by (simp add: sgn_div_norm norm_mult mult_commute) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 666 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 667 | lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>" | 
| 24506 | 668 | by (simp add: sgn_div_norm divide_inverse) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 669 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 670 | lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 671 | unfolding real_sgn_eq by simp | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 672 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 673 | lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 674 | unfolding real_sgn_eq by simp | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 675 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 676 | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 677 | subsection {* Bounded Linear and Bilinear Operators *}
 | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 678 | |
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 679 | locale bounded_linear = additive + | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 680 | constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 681 | assumes scaleR: "f (scaleR r x) = scaleR r (f x)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 682 | assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 27443 | 683 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 684 | |
| 27443 | 685 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 686 | "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 687 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 688 | obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 689 | using bounded by fast | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 690 | show ?thesis | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 691 | proof (intro exI impI conjI allI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 692 | show "0 < max 1 K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 693 | by (rule order_less_le_trans [OF zero_less_one le_maxI1]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 694 | next | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 695 | fix x | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 696 | have "norm (f x) \<le> norm x * K" using K . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 697 | also have "\<dots> \<le> norm x * max 1 K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 698 | by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 699 | finally show "norm (f x) \<le> norm x * max 1 K" . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 700 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 701 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 702 | |
| 27443 | 703 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 704 | "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 705 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 706 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 707 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 708 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 709 | |
| 27443 | 710 | end | 
| 711 | ||
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 712 | locale bounded_bilinear = | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 713 | fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 714 | \<Rightarrow> 'c::real_normed_vector" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 715 | (infixl "**" 70) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 716 | assumes add_left: "prod (a + a') b = prod a b + prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 717 | assumes add_right: "prod a (b + b') = prod a b + prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 718 | assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 719 | assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 720 | assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" | 
| 27443 | 721 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 722 | |
| 27443 | 723 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 724 | "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 725 | apply (cut_tac bounded, erule exE) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 726 | apply (rule_tac x="max 1 K" in exI, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 727 | apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 728 | apply (drule spec, drule spec, erule order_trans) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 729 | apply (rule mult_left_mono [OF le_maxI2]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 730 | apply (intro mult_nonneg_nonneg norm_ge_zero) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 731 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 732 | |
| 27443 | 733 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 734 | "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 735 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 736 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 737 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 738 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 739 | |
| 27443 | 740 | lemma additive_right: "additive (\<lambda>b. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 741 | by (rule additive.intro, rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 742 | |
| 27443 | 743 | lemma additive_left: "additive (\<lambda>a. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 744 | by (rule additive.intro, rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 745 | |
| 27443 | 746 | lemma zero_left: "prod 0 b = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 747 | by (rule additive.zero [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 748 | |
| 27443 | 749 | lemma zero_right: "prod a 0 = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 750 | by (rule additive.zero [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 751 | |
| 27443 | 752 | lemma minus_left: "prod (- a) b = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 753 | by (rule additive.minus [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 754 | |
| 27443 | 755 | lemma minus_right: "prod a (- b) = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 756 | by (rule additive.minus [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 757 | |
| 27443 | 758 | lemma diff_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 759 | "prod (a - a') b = prod a b - prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 760 | by (rule additive.diff [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 761 | |
| 27443 | 762 | lemma diff_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 763 | "prod a (b - b') = prod a b - prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 764 | by (rule additive.diff [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 765 | |
| 27443 | 766 | lemma bounded_linear_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 767 | "bounded_linear (\<lambda>a. a ** b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 768 | apply (unfold_locales) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 769 | apply (rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 770 | apply (rule scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 771 | apply (cut_tac bounded, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 772 | apply (rule_tac x="norm b * K" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 773 | apply (simp add: mult_ac) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 774 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 775 | |
| 27443 | 776 | lemma bounded_linear_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 777 | "bounded_linear (\<lambda>b. a ** b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 778 | apply (unfold_locales) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 779 | apply (rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 780 | apply (rule scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 781 | apply (cut_tac bounded, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 782 | apply (rule_tac x="norm a * K" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 783 | apply (simp add: mult_ac) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 784 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 785 | |
| 27443 | 786 | lemma prod_diff_prod: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 787 | "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 788 | by (simp add: diff_left diff_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 789 | |
| 27443 | 790 | end | 
| 791 | ||
| 29233 | 792 | interpretation mult!: | 
| 29229 | 793 | bounded_bilinear "op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 794 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 795 | apply (rule left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 796 | apply (rule right_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 797 | apply (rule mult_scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 798 | apply (rule mult_scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 799 | apply (rule_tac x="1" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 800 | apply (simp add: norm_mult_ineq) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 801 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 802 | |
| 29233 | 803 | interpretation mult_left!: | 
| 29229 | 804 | bounded_linear "(\<lambda>x::'a::real_normed_algebra. x * y)" | 
| 23127 | 805 | by (rule mult.bounded_linear_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 806 | |
| 29233 | 807 | interpretation mult_right!: | 
| 29229 | 808 | bounded_linear "(\<lambda>y::'a::real_normed_algebra. x * y)" | 
| 23127 | 809 | by (rule mult.bounded_linear_right) | 
| 810 | ||
| 29233 | 811 | interpretation divide!: | 
| 29229 | 812 | bounded_linear "(\<lambda>x::'a::real_normed_field. x / y)" | 
| 23127 | 813 | unfolding divide_inverse by (rule mult.bounded_linear_left) | 
| 23120 | 814 | |
| 29233 | 815 | interpretation scaleR!: bounded_bilinear "scaleR" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 816 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 817 | apply (rule scaleR_left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 818 | apply (rule scaleR_right_distrib) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 819 | apply simp | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 820 | apply (rule scaleR_left_commute) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 821 | apply (rule_tac x="1" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 822 | apply (simp add: norm_scaleR) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 823 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 824 | |
| 29233 | 825 | interpretation scaleR_left!: bounded_linear "\<lambda>r. scaleR r x" | 
| 23127 | 826 | by (rule scaleR.bounded_linear_left) | 
| 827 | ||
| 29233 | 828 | interpretation scaleR_right!: bounded_linear "\<lambda>x. scaleR r x" | 
| 23127 | 829 | by (rule scaleR.bounded_linear_right) | 
| 830 | ||
| 29233 | 831 | interpretation of_real!: bounded_linear "\<lambda>r. of_real r" | 
| 23127 | 832 | unfolding of_real_def by (rule scaleR.bounded_linear_left) | 
| 22625 | 833 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 834 | end |