| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30596 | 140b22f22071 | 
| child 30814 | 10dc9bc264b7 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Set.thy | 
| 12257 | 2 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | 
| 923 | 3 | *) | 
| 4 | ||
| 11979 | 5 | header {* Set theory for higher-order logic *}
 | 
| 6 | ||
| 15131 | 7 | theory Set | 
| 30304 
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
 haftmann parents: 
29901diff
changeset | 8 | imports Lattices | 
| 15131 | 9 | begin | 
| 11979 | 10 | |
| 11 | text {* A set in HOL is simply a predicate. *}
 | |
| 923 | 12 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 13 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 14 | subsection {* Basic syntax *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 15 | |
| 3947 | 16 | global | 
| 17 | ||
| 26800 | 18 | types 'a set = "'a => bool" | 
| 3820 | 19 | |
| 923 | 20 | consts | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 21 |   Collect       :: "('a => bool) => 'a set"              -- "comprehension"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 22 | "op :" :: "'a => 'a set => bool" -- "membership" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 23 | insert :: "'a => 'a set => 'a set" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 24 |   Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 25 |   Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 26 |   Bex1          :: "'a set => ('a => bool) => bool"      -- "bounded unique existential quantifiers"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 27 | Pow :: "'a set => 'a set set" -- "powerset" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 28 |   image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
 | 
| 30304 
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
 haftmann parents: 
29901diff
changeset | 29 | |
| 
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
 haftmann parents: 
29901diff
changeset | 30 | local | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 31 | |
| 21210 | 32 | notation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 33 |   "op :"  ("op :") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 34 |   "op :"  ("(_/ : _)" [50, 51] 50)
 | 
| 11979 | 35 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 36 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 37 | "not_mem x A == ~ (x : A)" -- "non-membership" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 38 | |
| 21210 | 39 | notation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 40 |   not_mem  ("op ~:") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 41 |   not_mem  ("(_/ ~: _)" [50, 51] 50)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 42 | |
| 21210 | 43 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 44 |   "op :"  ("op \<in>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 45 |   "op :"  ("(_/ \<in> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 46 |   not_mem  ("op \<notin>") and
 | 
| 30304 
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
 haftmann parents: 
29901diff
changeset | 47 |   not_mem  ("(_/ \<notin> _)" [50, 51] 50)
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 48 | |
| 21210 | 49 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 50 |   "op :"  ("op \<in>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 51 |   "op :"  ("(_/ \<in> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 52 |   not_mem  ("op \<notin>") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 53 |   not_mem  ("(_/ \<notin> _)" [50, 51] 50)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 54 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 55 | syntax | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 56 |   "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 57 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 58 | translations | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 59 |   "{x. P}"      == "Collect (%x. P)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 60 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 61 | definition empty :: "'a set" ("{}") where
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 62 |   "empty \<equiv> {x. False}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 63 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 64 | definition UNIV :: "'a set" where | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 65 |   "UNIV \<equiv> {x. True}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 66 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 67 | syntax | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 68 |   "@Finset"     :: "args => 'a set"                       ("{(_)}")
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 69 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 70 | translations | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 71 |   "{x, xs}"     == "insert x {xs}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 72 |   "{x}"         == "insert x {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 73 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 74 | definition Int :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 75 |   "A Int B \<equiv> {x. x \<in> A \<and> x \<in> B}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 76 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 77 | definition Un :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 78 |   "A Un B \<equiv> {x. x \<in> A \<or> x \<in> B}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 79 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 80 | notation (xsymbols) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 81 | "Int" (infixl "\<inter>" 70) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 82 | "Un" (infixl "\<union>" 65) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 83 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 84 | notation (HTML output) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 85 | "Int" (infixl "\<inter>" 70) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 86 | "Un" (infixl "\<union>" 65) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 87 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 88 | syntax | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 89 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 90 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 91 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3EX! _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 92 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 93 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 94 | syntax (HOL) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 95 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 96 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 97 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3?! _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 98 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 99 | syntax (xsymbols) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 100 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 101 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 102 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 103 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 104 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 105 | syntax (HTML output) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 106 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 107 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 108 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 109 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 110 | translations | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 111 | "ALL x:A. P" == "Ball A (%x. P)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 112 | "EX x:A. P" == "Bex A (%x. P)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 113 | "EX! x:A. P" == "Bex1 A (%x. P)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 114 | "LEAST x:A. P" => "LEAST x. x:A & P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 115 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 116 | definition INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 117 |   "INTER A B \<equiv> {y. \<forall>x\<in>A. y \<in> B x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 118 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 119 | definition UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 120 |   "UNION A B \<equiv> {y. \<exists>x\<in>A. y \<in> B x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 121 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 122 | definition Inter :: "'a set set \<Rightarrow> 'a set" where | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 123 | "Inter S \<equiv> INTER S (\<lambda>x. x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 124 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 125 | definition Union :: "'a set set \<Rightarrow> 'a set" where | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 126 | "Union S \<equiv> UNION S (\<lambda>x. x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 127 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 128 | notation (xsymbols) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 129 |   Inter  ("\<Inter>_" [90] 90) and
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 130 |   Union  ("\<Union>_" [90] 90)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 131 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 132 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 133 | subsection {* Additional concrete syntax *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 134 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 135 | syntax | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 136 |   "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 137 |   "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ :/ _./ _})")
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 138 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 139 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 140 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 141 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 142 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 143 | syntax (xsymbols) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 144 |   "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ \<in>/ _./ _})")
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 145 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 146 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 147 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 148 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 149 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 150 | syntax (latex output) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 151 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 152 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 153 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 154 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 155 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 156 | translations | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 157 |   "{x:A. P}"    => "{x. x:A & P}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 158 | "INT x y. B" == "INT x. INT y. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 159 | "INT x. B" == "CONST INTER CONST UNIV (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 160 | "INT x. B" == "INT x:CONST UNIV. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 161 | "INT x:A. B" == "CONST INTER A (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 162 | "UN x y. B" == "UN x. UN y. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 163 | "UN x. B" == "CONST UNION CONST UNIV (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 164 | "UN x. B" == "UN x:CONST UNIV. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 165 | "UN x:A. B" == "CONST UNION A (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 166 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 167 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 168 | Note the difference between ordinary xsymbol syntax of indexed | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 169 |   unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 170 |   and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 171 | former does not make the index expression a subscript of the | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 172 | union/intersection symbol because this leads to problems with nested | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 173 | subscripts in Proof General. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 174 | *} | 
| 2261 | 175 | |
| 21333 | 176 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 177 | subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 21819 | 178 | "subset \<equiv> less" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 179 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 180 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 181 | subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 21819 | 182 | "subset_eq \<equiv> less_eq" | 
| 21333 | 183 | |
| 184 | notation (output) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 185 |   subset  ("op <") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 186 |   subset  ("(_/ < _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 187 |   subset_eq  ("op <=") and
 | 
| 21333 | 188 |   subset_eq  ("(_/ <= _)" [50, 51] 50)
 | 
| 189 | ||
| 190 | notation (xsymbols) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 191 |   subset  ("op \<subset>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 192 |   subset  ("(_/ \<subset> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 193 |   subset_eq  ("op \<subseteq>") and
 | 
| 21333 | 194 |   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 | 
| 195 | ||
| 196 | notation (HTML output) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 197 |   subset  ("op \<subset>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 198 |   subset  ("(_/ \<subset> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 199 |   subset_eq  ("op \<subseteq>") and
 | 
| 21333 | 200 |   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 | 
| 201 | ||
| 202 | abbreviation (input) | |
| 21819 | 203 | supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 204 | "supset \<equiv> greater" | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 205 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 206 | abbreviation (input) | 
| 21819 | 207 | supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 208 | "supset_eq \<equiv> greater_eq" | |
| 209 | ||
| 210 | notation (xsymbols) | |
| 211 |   supset  ("op \<supset>") and
 | |
| 212 |   supset  ("(_/ \<supset> _)" [50, 51] 50) and
 | |
| 213 |   supset_eq  ("op \<supseteq>") and
 | |
| 214 |   supset_eq  ("(_/ \<supseteq> _)" [50, 51] 50)
 | |
| 21333 | 215 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 216 | abbreviation | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 217 |   range :: "('a => 'b) => 'b set" where -- "of function"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 218 | "range f == f ` UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 219 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 220 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 221 | subsubsection "Bounded quantifiers" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 222 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 223 | syntax (output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 224 |   "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 225 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 226 |   "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 227 |   "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 228 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 229 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 230 | syntax (xsymbols) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 231 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 232 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 233 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 234 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 235 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 236 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 237 | syntax (HOL output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 238 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 239 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 240 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 241 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 242 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3?! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 243 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 244 | syntax (HTML output) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 245 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 246 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 247 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 248 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 249 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 250 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 251 | translations | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 252 | "\<forall>A\<subset>B. P" => "ALL A. A \<subset> B --> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 253 | "\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 254 | "\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B --> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 255 | "\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 256 | "\<exists>!A\<subseteq>B. P" => "EX! A. A \<subseteq> B & P" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 257 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 258 | print_translation {*
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 259 | let | 
| 22377 | 260 |   val Type (set_type, _) = @{typ "'a set"};
 | 
| 261 |   val All_binder = Syntax.binder_name @{const_syntax "All"};
 | |
| 262 |   val Ex_binder = Syntax.binder_name @{const_syntax "Ex"};
 | |
| 263 |   val impl = @{const_syntax "op -->"};
 | |
| 264 |   val conj = @{const_syntax "op &"};
 | |
| 265 |   val sbset = @{const_syntax "subset"};
 | |
| 266 |   val sbset_eq = @{const_syntax "subset_eq"};
 | |
| 21819 | 267 | |
| 268 | val trans = | |
| 269 | [((All_binder, impl, sbset), "_setlessAll"), | |
| 270 | ((All_binder, impl, sbset_eq), "_setleAll"), | |
| 271 | ((Ex_binder, conj, sbset), "_setlessEx"), | |
| 272 | ((Ex_binder, conj, sbset_eq), "_setleEx")]; | |
| 273 | ||
| 274 | fun mk v v' c n P = | |
| 275 | if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) | |
| 276 | then Syntax.const c $ Syntax.mark_bound v' $ n $ P else raise Match; | |
| 277 | ||
| 278 | fun tr' q = (q, | |
| 279 |     fn [Const ("_bound", _) $ Free (v, Type (T, _)), Const (c, _) $ (Const (d, _) $ (Const ("_bound", _) $ Free (v', _)) $ n) $ P] =>
 | |
| 280 | if T = (set_type) then case AList.lookup (op =) trans (q, c, d) | |
| 281 | of NONE => raise Match | |
| 282 | | SOME l => mk v v' l n P | |
| 283 | else raise Match | |
| 284 | | _ => raise Match); | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 285 | in | 
| 21819 | 286 | [tr' All_binder, tr' Ex_binder] | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 287 | end | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 288 | *} | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 289 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 290 | |
| 11979 | 291 | text {*
 | 
| 292 |   \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
 | |
| 293 |   "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
 | |
| 294 |   only translated if @{text "[0..n] subset bvs(e)"}.
 | |
| 295 | *} | |
| 296 | ||
| 297 | parse_translation {*
 | |
| 298 | let | |
| 299 |     val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
 | |
| 3947 | 300 | |
| 11979 | 301 |     fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
 | 
| 302 | | nvars _ = 1; | |
| 303 | ||
| 304 | fun setcompr_tr [e, idts, b] = | |
| 305 | let | |
| 306 | val eq = Syntax.const "op =" $ Bound (nvars idts) $ e; | |
| 307 | val P = Syntax.const "op &" $ eq $ b; | |
| 308 | val exP = ex_tr [idts, P]; | |
| 17784 | 309 | in Syntax.const "Collect" $ Term.absdummy (dummyT, exP) end; | 
| 11979 | 310 | |
| 311 |   in [("@SetCompr", setcompr_tr)] end;
 | |
| 312 | *} | |
| 923 | 313 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 314 | (* To avoid eta-contraction of body: *) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 315 | print_translation {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 316 | let | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 317 | fun btr' syn [A, Abs abs] = | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 318 | let val (x, t) = atomic_abs_tr' abs | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 319 | in Syntax.const syn $ x $ A $ t end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 320 | in | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 321 | [(@{const_syntax Ball}, btr' "_Ball"), (@{const_syntax Bex}, btr' "_Bex"),
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 322 |  (@{const_syntax UNION}, btr' "@UNION"),(@{const_syntax INTER}, btr' "@INTER")]
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 323 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 324 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 325 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 326 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 327 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 328 |   val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 329 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 330 | fun setcompr_tr' [Abs (abs as (_, _, P))] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 331 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 332 |       fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 333 |         | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 334 | n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 335 | ((0 upto (n - 1)) subset add_loose_bnos (e, 0, [])) | 
| 13764 | 336 | | check _ = false | 
| 923 | 337 | |
| 11979 | 338 | fun tr' (_ $ abs) = | 
| 339 | let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] | |
| 340 | in Syntax.const "@SetCompr" $ e $ idts $ Q end; | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 341 | in if check (P, 0) then tr' P | 
| 15535 | 342 | else let val (x as _ $ Free(xN,_), t) = atomic_abs_tr' abs | 
| 343 | val M = Syntax.const "@Coll" $ x $ t | |
| 344 | in case t of | |
| 345 |                  Const("op &",_)
 | |
| 346 |                    $ (Const("op :",_) $ (Const("_bound",_) $ Free(yN,_)) $ A)
 | |
| 347 | $ P => | |
| 348 | if xN=yN then Syntax.const "@Collect" $ x $ A $ P else M | |
| 349 | | _ => M | |
| 350 | end | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 351 | end; | 
| 11979 | 352 |   in [("Collect", setcompr_tr')] end;
 | 
| 353 | *} | |
| 354 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 355 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 356 | subsection {* Rules and definitions *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 357 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 358 | text {* Isomorphisms between predicates and sets. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 359 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 360 | defs | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 361 | mem_def [code]: "x : S == S x" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 362 | Collect_def [code]: "Collect P == P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 363 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 364 | defs | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 365 | Ball_def: "Ball A P == ALL x. x:A --> P(x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 366 | Bex_def: "Bex A P == EX x. x:A & P(x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 367 | Bex1_def: "Bex1 A P == EX! x. x:A & P(x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 368 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 369 | instantiation "fun" :: (type, minus) minus | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 370 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 371 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 372 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 373 | fun_diff_def: "A - B = (%x. A x - B x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 374 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 375 | instance .. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 376 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 377 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 378 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 379 | instantiation bool :: minus | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 380 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 381 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 382 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 383 | bool_diff_def: "A - B = (A & ~ B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 384 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 385 | instance .. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 386 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 387 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 388 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 389 | instantiation "fun" :: (type, uminus) uminus | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 390 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 391 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 392 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 393 | fun_Compl_def: "- A = (%x. - A x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 394 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 395 | instance .. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 396 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 397 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 398 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 399 | instantiation bool :: uminus | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 400 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 401 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 402 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 403 | bool_Compl_def: "- A = (~ A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 404 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 405 | instance .. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 406 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 407 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 408 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 409 | defs | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 410 |   Pow_def:      "Pow A          == {B. B <= A}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 411 |   insert_def:   "insert a B     == {x. x=a} Un B"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 412 |   image_def:    "f`A            == {y. EX x:A. y = f(x)}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 413 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 414 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 415 | subsection {* Lemmas and proof tool setup *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 416 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 417 | subsubsection {* Relating predicates and sets *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 418 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 419 | lemma mem_Collect_eq [iff]: "(a : {x. P(x)}) = P(a)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 420 | by (simp add: Collect_def mem_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 421 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 422 | lemma Collect_mem_eq [simp]: "{x. x:A} = A"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 423 | by (simp add: Collect_def mem_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 424 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 425 | lemma CollectI: "P(a) ==> a : {x. P(x)}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 426 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 427 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 428 | lemma CollectD: "a : {x. P(x)} ==> P(a)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 429 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 430 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 431 | lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 432 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 433 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 434 | lemmas CollectE = CollectD [elim_format] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 435 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 436 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 437 | subsubsection {* Bounded quantifiers *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 438 | |
| 11979 | 439 | lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" | 
| 440 | by (simp add: Ball_def) | |
| 441 | ||
| 442 | lemmas strip = impI allI ballI | |
| 443 | ||
| 444 | lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" | |
| 445 | by (simp add: Ball_def) | |
| 446 | ||
| 447 | lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" | |
| 448 | by (unfold Ball_def) blast | |
| 22139 | 449 | |
| 450 | ML {* bind_thm ("rev_ballE", permute_prems 1 1 @{thm ballE}) *}
 | |
| 11979 | 451 | |
| 452 | text {*
 | |
| 453 |   \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
 | |
| 454 |   @{prop "a:A"}; creates assumption @{prop "P a"}.
 | |
| 455 | *} | |
| 456 | ||
| 457 | ML {*
 | |
| 22139 | 458 |   fun ball_tac i = etac @{thm ballE} i THEN contr_tac (i + 1)
 | 
| 11979 | 459 | *} | 
| 460 | ||
| 461 | text {*
 | |
| 462 | Gives better instantiation for bound: | |
| 463 | *} | |
| 464 | ||
| 26339 | 465 | declaration {* fn _ =>
 | 
| 466 |   Classical.map_cs (fn cs => cs addbefore ("bspec", datac @{thm bspec} 1))
 | |
| 11979 | 467 | *} | 
| 468 | ||
| 469 | lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" | |
| 470 |   -- {* Normally the best argument order: @{prop "P x"} constrains the
 | |
| 471 |     choice of @{prop "x:A"}. *}
 | |
| 472 | by (unfold Bex_def) blast | |
| 473 | ||
| 13113 | 474 | lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" | 
| 11979 | 475 |   -- {* The best argument order when there is only one @{prop "x:A"}. *}
 | 
| 476 | by (unfold Bex_def) blast | |
| 477 | ||
| 478 | lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" | |
| 479 | by (unfold Bex_def) blast | |
| 480 | ||
| 481 | lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" | |
| 482 | by (unfold Bex_def) blast | |
| 483 | ||
| 484 | lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" | |
| 485 |   -- {* Trival rewrite rule. *}
 | |
| 486 | by (simp add: Ball_def) | |
| 487 | ||
| 488 | lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" | |
| 489 |   -- {* Dual form for existentials. *}
 | |
| 490 | by (simp add: Bex_def) | |
| 491 | ||
| 492 | lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" | |
| 493 | by blast | |
| 494 | ||
| 495 | lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" | |
| 496 | by blast | |
| 497 | ||
| 498 | lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" | |
| 499 | by blast | |
| 500 | ||
| 501 | lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" | |
| 502 | by blast | |
| 503 | ||
| 504 | lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" | |
| 505 | by blast | |
| 506 | ||
| 507 | lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" | |
| 508 | by blast | |
| 509 | ||
| 26480 | 510 | ML {*
 | 
| 13462 | 511 | local | 
| 22139 | 512 |     val unfold_bex_tac = unfold_tac @{thms "Bex_def"};
 | 
| 18328 | 513 | fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac; | 
| 11979 | 514 | val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac; | 
| 515 | ||
| 22139 | 516 |     val unfold_ball_tac = unfold_tac @{thms "Ball_def"};
 | 
| 18328 | 517 | fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac; | 
| 11979 | 518 | val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac; | 
| 519 | in | |
| 18328 | 520 | val defBEX_regroup = Simplifier.simproc (the_context ()) | 
| 13462 | 521 | "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex; | 
| 18328 | 522 | val defBALL_regroup = Simplifier.simproc (the_context ()) | 
| 13462 | 523 | "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball; | 
| 11979 | 524 | end; | 
| 13462 | 525 | |
| 526 | Addsimprocs [defBALL_regroup, defBEX_regroup]; | |
| 11979 | 527 | *} | 
| 528 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 529 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 530 | subsubsection {* Congruence rules *}
 | 
| 11979 | 531 | |
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 532 | lemma ball_cong: | 
| 11979 | 533 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 534 | (ALL x:A. P x) = (ALL x:B. Q x)" | |
| 535 | by (simp add: Ball_def) | |
| 536 | ||
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 537 | lemma strong_ball_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 538 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 539 | (ALL x:A. P x) = (ALL x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 540 | by (simp add: simp_implies_def Ball_def) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 541 | |
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 542 | lemma bex_cong: | 
| 11979 | 543 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 544 | (EX x:A. P x) = (EX x:B. Q x)" | |
| 545 | by (simp add: Bex_def cong: conj_cong) | |
| 1273 | 546 | |
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 547 | lemma strong_bex_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 548 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 549 | (EX x:A. P x) = (EX x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 550 | by (simp add: simp_implies_def Bex_def cong: conj_cong) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 551 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 552 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 553 | subsubsection {* Subsets *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 554 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 555 | lemma subsetI [atp,intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 556 | by (auto simp add: mem_def intro: predicate1I) | 
| 30352 | 557 | |
| 11979 | 558 | text {*
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 559 |   \medskip Map the type @{text "'a set => anything"} to just @{typ
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 560 |   'a}; for overloading constants whose first argument has type @{typ
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 561 | "'a set"}. | 
| 11979 | 562 | *} | 
| 563 | ||
| 30596 | 564 | lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 565 |   -- {* Rule in Modus Ponens style. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 566 | by (unfold mem_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 567 | |
| 30596 | 568 | lemma rev_subsetD [intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 569 |   -- {* The same, with reversed premises for use with @{text erule} --
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 570 |       cf @{text rev_mp}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 571 | by (rule subsetD) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 572 | |
| 11979 | 573 | text {*
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 574 |   \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 575 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 576 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 577 | ML {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 578 |   fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 11979 | 579 | *} | 
| 580 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 581 | lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 582 |   -- {* Classical elimination rule. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 583 | by (unfold mem_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 584 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 585 | lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast | 
| 2388 | 586 | |
| 11979 | 587 | text {*
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 588 |   \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 589 |   creates the assumption @{prop "c \<in> B"}.
 | 
| 30352 | 590 | *} | 
| 591 | ||
| 592 | ML {*
 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 593 |   fun set_mp_tac i = etac @{thm subsetCE} i THEN mp_tac i
 | 
| 11979 | 594 | *} | 
| 595 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 596 | lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 597 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 598 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 599 | lemma subset_refl [simp,atp]: "A \<subseteq> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 600 | by fast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 601 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 602 | lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 603 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 604 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 605 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 606 | subsubsection {* Equality *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 607 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 608 | lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 609 | apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals]) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 610 | apply (rule Collect_mem_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 611 | apply (rule Collect_mem_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 612 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 613 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 614 | (* Due to Brian Huffman *) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 615 | lemma expand_set_eq: "(A = B) = (ALL x. (x:A) = (x:B))" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 616 | by(auto intro:set_ext) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 617 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 618 | lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 619 |   -- {* Anti-symmetry of the subset relation. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 620 | by (iprover intro: set_ext subsetD) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 621 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 622 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 623 | \medskip Equality rules from ZF set theory -- are they appropriate | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 624 | here? | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 625 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 626 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 627 | lemma equalityD1: "A = B ==> A \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 628 | by (simp add: subset_refl) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 629 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 630 | lemma equalityD2: "A = B ==> B \<subseteq> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 631 | by (simp add: subset_refl) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 632 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 633 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 634 |   \medskip Be careful when adding this to the claset as @{text
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 635 |   subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 636 |   \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
 | 
| 30352 | 637 | *} | 
| 638 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 639 | lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 640 | by (simp add: subset_refl) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 641 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 642 | lemma equalityCE [elim]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 643 | "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 644 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 645 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 646 | lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 647 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 648 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 649 | lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 650 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 651 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 652 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 653 | subsubsection {* The universal set -- UNIV *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 654 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 655 | lemma UNIV_I [simp]: "x : UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 656 | by (simp add: UNIV_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 657 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 658 | declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 659 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 660 | lemma UNIV_witness [intro?]: "EX x. x : UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 661 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 662 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 663 | lemma subset_UNIV [simp]: "A \<subseteq> UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 664 | by (rule subsetI) (rule UNIV_I) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 665 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 666 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 667 |   \medskip Eta-contracting these two rules (to remove @{text P})
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 668 | causes them to be ignored because of their interaction with | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 669 | congruence rules. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 670 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 671 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 672 | lemma ball_UNIV [simp]: "Ball UNIV P = All P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 673 | by (simp add: Ball_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 674 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 675 | lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 676 | by (simp add: Bex_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 677 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 678 | lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 679 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 680 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 681 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 682 | subsubsection {* The empty set *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 683 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 684 | lemma empty_iff [simp]: "(c : {}) = False"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 685 | by (simp add: empty_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 686 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 687 | lemma emptyE [elim!]: "a : {} ==> P"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 688 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 689 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 690 | lemma empty_subsetI [iff]: "{} \<subseteq> A"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 691 |     -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 692 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 693 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 694 | lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 695 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 696 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 697 | lemma equals0D: "A = {} ==> a \<notin> A"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 698 |     -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 699 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 700 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 701 | lemma ball_empty [simp]: "Ball {} P = True"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 702 | by (simp add: Ball_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 703 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 704 | lemma bex_empty [simp]: "Bex {} P = False"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 705 | by (simp add: Bex_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 706 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 707 | lemma UNIV_not_empty [iff]: "UNIV ~= {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 708 | by (blast elim: equalityE) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 709 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 710 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 711 | subsubsection {* The Powerset operator -- Pow *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 712 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 713 | lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 714 | by (simp add: Pow_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 715 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 716 | lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 717 | by (simp add: Pow_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 718 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 719 | lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 720 | by (simp add: Pow_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 721 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 722 | lemma Pow_bottom: "{} \<in> Pow B"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 723 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 724 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 725 | lemma Pow_top: "A \<in> Pow A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 726 | by (simp add: subset_refl) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 727 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 728 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 729 | subsubsection {* Set complement *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 730 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 731 | lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 732 | by (simp add: mem_def fun_Compl_def bool_Compl_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 733 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 734 | lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 735 | by (unfold mem_def fun_Compl_def bool_Compl_def) blast | 
| 923 | 736 | |
| 11979 | 737 | text {*
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 738 | \medskip This form, with negated conclusion, works well with the | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 739 | Classical prover. Negated assumptions behave like formulae on the | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 740 | right side of the notional turnstile ... *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 741 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 742 | lemma ComplD [dest!]: "c : -A ==> c~:A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 743 | by (simp add: mem_def fun_Compl_def bool_Compl_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 744 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 745 | lemmas ComplE = ComplD [elim_format] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 746 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 747 | lemma Compl_eq: "- A = {x. ~ x : A}" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 748 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 749 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 750 | subsubsection {* Binary union -- Un *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 751 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 752 | lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 753 | by (unfold Un_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 754 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 755 | lemma UnI1 [elim?]: "c:A ==> c : A Un B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 756 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 757 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 758 | lemma UnI2 [elim?]: "c:B ==> c : A Un B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 759 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 760 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 761 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 762 |   \medskip Classical introduction rule: no commitment to @{prop A} vs
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 763 |   @{prop B}.
 | 
| 11979 | 764 | *} | 
| 765 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 766 | lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 767 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 768 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 769 | lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 770 | by (unfold Un_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 771 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 772 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 773 | subsubsection {* Binary intersection -- Int *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 774 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 775 | lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 776 | by (unfold Int_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 777 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 778 | lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 779 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 780 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 781 | lemma IntD1: "c : A Int B ==> c:A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 782 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 783 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 784 | lemma IntD2: "c : A Int B ==> c:B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 785 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 786 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 787 | lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 788 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 789 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 790 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 791 | subsubsection {* Set difference *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 792 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 793 | lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 794 | by (simp add: mem_def fun_diff_def bool_diff_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 795 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 796 | lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 797 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 798 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 799 | lemma DiffD1: "c : A - B ==> c : A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 800 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 801 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 802 | lemma DiffD2: "c : A - B ==> c : B ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 803 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 804 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 805 | lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 806 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 807 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 808 | lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 809 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 810 | lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 811 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 812 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 813 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 814 | subsubsection {* Augmenting a set -- insert *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 815 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 816 | lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 817 | by (unfold insert_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 818 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 819 | lemma insertI1: "a : insert a B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 820 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 821 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 822 | lemma insertI2: "a : B ==> a : insert b B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 823 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 824 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 825 | lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 826 | by (unfold insert_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 827 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 828 | lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 829 |   -- {* Classical introduction rule. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 830 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 831 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 832 | lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 833 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 834 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 835 | lemma set_insert: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 836 | assumes "x \<in> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 837 | obtains B where "A = insert x B" and "x \<notin> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 838 | proof | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 839 |   from assms show "A = insert x (A - {x})" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 840 | next | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 841 |   show "x \<notin> A - {x}" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 842 | qed | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 843 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 844 | lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 845 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 846 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 847 | subsubsection {* Singletons, using insert *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 848 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 849 | lemma singletonI [intro!,noatp]: "a : {a}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 850 |     -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 851 | by (rule insertI1) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 852 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 853 | lemma singletonD [dest!,noatp]: "b : {a} ==> b = a"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 854 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 855 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 856 | lemmas singletonE = singletonD [elim_format] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 857 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 858 | lemma singleton_iff: "(b : {a}) = (b = a)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 859 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 860 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 861 | lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 862 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 863 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 864 | lemma singleton_insert_inj_eq [iff,noatp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 865 |      "({b} = insert a A) = (a = b & A \<subseteq> {b})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 866 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 867 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 868 | lemma singleton_insert_inj_eq' [iff,noatp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 869 |      "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 870 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 871 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 872 | lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 873 | by fast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 874 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 875 | lemma singleton_conv [simp]: "{x. x = a} = {a}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 876 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 877 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 878 | lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 879 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 880 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 881 | lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 882 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 883 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 884 | lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 885 | by (blast elim: equalityE) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 886 | |
| 11979 | 887 | |
| 888 | subsubsection {* Unions of families *}
 | |
| 889 | ||
| 890 | text {*
 | |
| 891 |   @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
 | |
| 892 | *} | |
| 893 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 894 | declare UNION_def [noatp] | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 895 | |
| 11979 | 896 | lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)" | 
| 897 | by (unfold UNION_def) blast | |
| 898 | ||
| 899 | lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)" | |
| 900 |   -- {* The order of the premises presupposes that @{term A} is rigid;
 | |
| 901 |     @{term b} may be flexible. *}
 | |
| 902 | by auto | |
| 903 | ||
| 904 | lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R" | |
| 905 | by (unfold UNION_def) blast | |
| 923 | 906 | |
| 11979 | 907 | lemma UN_cong [cong]: | 
| 908 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)" | |
| 909 | by (simp add: UNION_def) | |
| 910 | ||
| 29691 | 911 | lemma strong_UN_cong: | 
| 912 | "A = B ==> (!!x. x:B =simp=> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)" | |
| 913 | by (simp add: UNION_def simp_implies_def) | |
| 914 | ||
| 11979 | 915 | |
| 916 | subsubsection {* Intersections of families *}
 | |
| 917 | ||
| 918 | text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
 | |
| 919 | ||
| 920 | lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)" | |
| 921 | by (unfold INTER_def) blast | |
| 923 | 922 | |
| 11979 | 923 | lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)" | 
| 924 | by (unfold INTER_def) blast | |
| 925 | ||
| 926 | lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a" | |
| 927 | by auto | |
| 928 | ||
| 929 | lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R" | |
| 930 |   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
 | |
| 931 | by (unfold INTER_def) blast | |
| 932 | ||
| 933 | lemma INT_cong [cong]: | |
| 934 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)" | |
| 935 | by (simp add: INTER_def) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 936 | |
| 923 | 937 | |
| 11979 | 938 | subsubsection {* Union *}
 | 
| 939 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 940 | lemma Union_iff [simp,noatp]: "(A : Union C) = (EX X:C. A:X)" | 
| 11979 | 941 | by (unfold Union_def) blast | 
| 942 | ||
| 943 | lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C" | |
| 944 |   -- {* The order of the premises presupposes that @{term C} is rigid;
 | |
| 945 |     @{term A} may be flexible. *}
 | |
| 946 | by auto | |
| 947 | ||
| 948 | lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R" | |
| 949 | by (unfold Union_def) blast | |
| 950 | ||
| 951 | ||
| 952 | subsubsection {* Inter *}
 | |
| 953 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 954 | lemma Inter_iff [simp,noatp]: "(A : Inter C) = (ALL X:C. A:X)" | 
| 11979 | 955 | by (unfold Inter_def) blast | 
| 956 | ||
| 957 | lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C" | |
| 958 | by (simp add: Inter_def) | |
| 959 | ||
| 960 | text {*
 | |
| 961 |   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
 | |
| 962 |   contains @{term A} as an element, but @{prop "A:X"} can hold when
 | |
| 963 |   @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
 | |
| 964 | *} | |
| 965 | ||
| 966 | lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X" | |
| 967 | by auto | |
| 968 | ||
| 969 | lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R" | |
| 970 |   -- {* ``Classical'' elimination rule -- does not require proving
 | |
| 971 |     @{prop "X:C"}. *}
 | |
| 972 | by (unfold Inter_def) blast | |
| 973 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 974 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 975 |   \medskip Image of a set under a function.  Frequently @{term b} does
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 976 |   not have the syntactic form of @{term "f x"}.
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 977 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 978 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 979 | declare image_def [noatp] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 980 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 981 | lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 982 | by (unfold image_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 983 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 984 | lemma imageI: "x : A ==> f x : f ` A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 985 | by (rule image_eqI) (rule refl) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 986 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 987 | lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 988 |   -- {* This version's more effective when we already have the
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 989 |     required @{term x}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 990 | by (unfold image_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 991 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 992 | lemma imageE [elim!]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 993 | "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 994 |   -- {* The eta-expansion gives variable-name preservation. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 995 | by (unfold image_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 996 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 997 | lemma image_Un: "f`(A Un B) = f`A Un f`B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 998 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 999 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1000 | lemma image_eq_UN: "f`A = (UN x:A. {f x})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1001 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1002 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1003 | lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1004 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1005 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1006 | lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1007 |   -- {* This rewrite rule would confuse users if made default. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1008 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1009 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1010 | lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1011 | apply safe | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1012 | prefer 2 apply fast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1013 |   apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1014 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1015 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1016 | lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1017 |   -- {* Replaces the three steps @{text subsetI}, @{text imageE},
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1018 |     @{text hypsubst}, but breaks too many existing proofs. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1019 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1020 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1021 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1022 | \medskip Range of a function -- just a translation for image! | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1023 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1024 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1025 | lemma range_eqI: "b = f x ==> b \<in> range f" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1026 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1027 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1028 | lemma rangeI: "f x \<in> range f" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1029 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1030 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1031 | lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1032 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1033 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1034 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1035 | subsubsection {* Set reasoning tools *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1036 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1037 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1038 |   Rewrite rules for boolean case-splitting: faster than @{text
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1039 | "split_if [split]"}. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1040 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1041 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1042 | lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1043 | by (rule split_if) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1044 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1045 | lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1046 | by (rule split_if) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1047 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1048 | text {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1049 |   Split ifs on either side of the membership relation.  Not for @{text
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1050 | "[simp]"} -- can cause goals to blow up! | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1051 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1052 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1053 | lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1054 | by (rule split_if) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1055 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1056 | lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1057 | by (rule split_if [where P="%S. a : S"]) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1058 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1059 | lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1060 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1061 | (*Would like to add these, but the existing code only searches for the | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1062 | outer-level constant, which in this case is just "op :"; we instead need | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1063 | to use term-nets to associate patterns with rules. Also, if a rule fails to | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1064 | apply, then the formula should be kept. | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1065 |   [("HOL.uminus", Compl_iff RS iffD1), ("HOL.minus", [Diff_iff RS iffD1]),
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1066 |    ("Int", [IntD1,IntD2]),
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1067 |    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1068 | *) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1069 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1070 | ML {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1071 |   val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1072 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1073 | declaration {* fn _ =>
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1074 | Simplifier.map_ss (fn ss => ss setmksimps (mksimps mksimps_pairs)) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1075 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1076 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1077 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1078 | subsubsection {* The ``proper subset'' relation *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1079 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1080 | lemma psubsetI [intro!,noatp]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1081 | by (unfold less_le) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1082 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1083 | lemma psubsetE [elim!,noatp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1084 | "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1085 | by (unfold less_le) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1086 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1087 | lemma psubset_insert_iff: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1088 |   "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1089 | by (auto simp add: less_le subset_insert_iff) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1090 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1091 | lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1092 | by (simp only: less_le) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1093 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1094 | lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1095 | by (simp add: psubset_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1096 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1097 | lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1098 | apply (unfold less_le) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1099 | apply (auto dest: subset_antisym) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1100 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1101 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1102 | lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1103 | apply (unfold less_le) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1104 | apply (auto dest: subsetD) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1105 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1106 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1107 | lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1108 | by (auto simp add: psubset_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1109 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1110 | lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1111 | by (auto simp add: psubset_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1112 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1113 | lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1114 | by (unfold less_le) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1115 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1116 | lemma atomize_ball: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1117 | "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1118 | by (simp only: Ball_def atomize_all atomize_imp) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1119 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1120 | lemmas [symmetric, rulify] = atomize_ball | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1121 | and [symmetric, defn] = atomize_ball | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1122 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1123 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1124 | subsection {* Further set-theory lemmas *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1125 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1126 | subsubsection {* Derived rules involving subsets. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1127 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1128 | text {* @{text insert}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1129 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1130 | lemma subset_insertI: "B \<subseteq> insert a B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1131 | by (rule subsetI) (erule insertI2) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1132 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1133 | lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1134 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1135 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1136 | lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1137 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1138 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1139 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1140 | text {* \medskip Big Union -- least upper bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1141 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1142 | lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A" | 
| 17589 | 1143 | by (iprover intro: subsetI UnionI) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1144 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1145 | lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C" | 
| 17589 | 1146 | by (iprover intro: subsetI elim: UnionE dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1147 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1148 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1149 | text {* \medskip General union. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1150 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1151 | lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1152 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1153 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1154 | lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 17589 | 1155 | by (iprover intro: subsetI elim: UN_E dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1156 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1157 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1158 | text {* \medskip Big Intersection -- greatest lower bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1159 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1160 | lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1161 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1162 | |
| 14551 | 1163 | lemma Inter_subset: | 
| 1164 |   "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
 | |
| 1165 | by blast | |
| 1166 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1167 | lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A" | 
| 17589 | 1168 | by (iprover intro: InterI subsetI dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1169 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1170 | lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1171 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1172 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1173 | lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 17589 | 1174 | by (iprover intro: INT_I subsetI dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1175 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1176 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1177 | text {* \medskip Finite Union -- the least upper bound of two sets. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1178 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1179 | lemma Un_upper1: "A \<subseteq> A \<union> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1180 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1181 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1182 | lemma Un_upper2: "B \<subseteq> A \<union> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1183 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1184 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1185 | lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1186 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1187 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1188 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1189 | text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1190 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1191 | lemma Int_lower1: "A \<inter> B \<subseteq> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1192 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1193 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1194 | lemma Int_lower2: "A \<inter> B \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1195 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1196 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1197 | lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1198 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1199 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1200 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1201 | text {* \medskip Set difference. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1202 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1203 | lemma Diff_subset: "A - B \<subseteq> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1204 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1205 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1206 | lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1207 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1208 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1209 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1210 | subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1211 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1212 | text {* @{text "{}"}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1213 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1214 | lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1215 |   -- {* supersedes @{text "Collect_False_empty"} *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1216 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1217 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1218 | lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1219 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1220 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1221 | lemma not_psubset_empty [iff]: "\<not> (A < {})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1222 | by (unfold less_le) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1223 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1224 | lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1225 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1226 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1227 | lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1228 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1229 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1230 | lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1231 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1232 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1233 | lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1234 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1235 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1236 | lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1237 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1238 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1239 | lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1240 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1241 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1242 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1243 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1244 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1245 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1246 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1247 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1248 | lemma Collect_ex_eq [noatp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1249 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1250 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1251 | lemma Collect_bex_eq [noatp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1252 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1253 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1254 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1255 | text {* \medskip @{text insert}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1256 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1257 | lemma insert_is_Un: "insert a A = {a} Un A"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1258 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1259 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1260 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1261 | lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1262 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1263 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1264 | lemmas empty_not_insert = insert_not_empty [symmetric, standard] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1265 | declare empty_not_insert [simp] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1266 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1267 | lemma insert_absorb: "a \<in> A ==> insert a A = A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1268 |   -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1269 |   -- {* with \emph{quadratic} running time *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1270 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1271 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1272 | lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1273 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1274 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1275 | lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1276 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1277 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1278 | lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1279 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1280 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1281 | lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1282 |   -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1283 |   apply (rule_tac x = "A - {a}" in exI, blast)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1284 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1285 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1286 | lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1287 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1288 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1289 | lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1290 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1291 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1292 | lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" | 
| 14742 | 1293 | by blast | 
| 14302 | 1294 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1295 | lemma insert_disjoint [simp,noatp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1296 |  "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1297 |  "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1298 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1299 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1300 | lemma disjoint_insert [simp,noatp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1301 |  "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1302 |  "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1303 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1304 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1305 | text {* \medskip @{text image}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1306 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1307 | lemma image_empty [simp]: "f`{} = {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1308 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1309 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1310 | lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1311 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1312 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1313 | lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1314 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1315 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1316 | lemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1317 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1318 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1319 | lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1320 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1321 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1322 | lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1323 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1324 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1325 | lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1326 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1327 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1328 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1329 | lemma image_Collect [noatp]: "f ` {x. P x} = {f x | x. P x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1330 |   -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1331 | with its implicit quantifier and conjunction. Also image enjoys better | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1332 | equational properties than does the RHS. *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1333 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1334 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1335 | lemma if_image_distrib [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1336 | "(\<lambda>x. if P x then f x else g x) ` S | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1337 |     = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1338 | by (auto simp add: image_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1339 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1340 | lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1341 | by (simp add: image_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1342 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1343 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1344 | text {* \medskip @{text range}. *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 1345 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1346 | lemma full_SetCompr_eq [noatp]: "{u. \<exists>x. u = f x} = range f"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1347 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1348 | |
| 27418 | 1349 | lemma range_composition: "range (\<lambda>x. f (g x)) = f`range g" | 
| 14208 | 1350 | by (subst image_image, simp) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1351 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1352 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1353 | text {* \medskip @{text Int} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1354 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1355 | lemma Int_absorb [simp]: "A \<inter> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1356 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1357 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1358 | lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1359 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1360 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1361 | lemma Int_commute: "A \<inter> B = B \<inter> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1362 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1363 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1364 | lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1365 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1366 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1367 | lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1368 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1369 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1370 | lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1371 |   -- {* Intersection is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1372 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1373 | lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1374 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1375 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1376 | lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1377 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1378 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1379 | lemma Int_empty_left [simp]: "{} \<inter> B = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1380 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1381 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1382 | lemma Int_empty_right [simp]: "A \<inter> {} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1383 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1384 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1385 | lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1386 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1387 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1388 | lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1389 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1390 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1391 | lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1392 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1393 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1394 | lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1395 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1396 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1397 | lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1398 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1399 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1400 | lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1401 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1402 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1403 | lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1404 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1405 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1406 | lemma Int_UNIV [simp,noatp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1407 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1408 | |
| 15102 | 1409 | lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1410 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1411 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1412 | lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1413 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1414 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1415 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1416 | text {* \medskip @{text Un}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1417 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1418 | lemma Un_absorb [simp]: "A \<union> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1419 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1420 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1421 | lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1422 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1423 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1424 | lemma Un_commute: "A \<union> B = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1425 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1426 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1427 | lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1428 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1429 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1430 | lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1431 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1432 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1433 | lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1434 |   -- {* Union is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1435 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1436 | lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1437 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1438 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1439 | lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1440 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1441 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1442 | lemma Un_empty_left [simp]: "{} \<union> B = B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1443 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1444 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1445 | lemma Un_empty_right [simp]: "A \<union> {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1446 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1447 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1448 | lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1449 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1450 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1451 | lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1452 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1453 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1454 | lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1455 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1456 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1457 | lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1458 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1459 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1460 | lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1461 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1462 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1463 | lemma Int_insert_left: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1464 | "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1465 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1466 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1467 | lemma Int_insert_right: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1468 | "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1469 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1470 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1471 | lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1472 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1473 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1474 | lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1475 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1476 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1477 | lemma Un_Int_crazy: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1478 | "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1479 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1480 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1481 | lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1482 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1483 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1484 | lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1485 | by blast | 
| 15102 | 1486 | |
| 1487 | lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1488 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1489 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1490 | lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1491 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1492 | |
| 22172 | 1493 | lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B" | 
| 1494 | by blast | |
| 1495 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1496 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1497 | text {* \medskip Set complement *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1498 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1499 | lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1500 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1501 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1502 | lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1503 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1504 | |
| 13818 | 1505 | lemma Compl_partition: "A \<union> -A = UNIV" | 
| 1506 | by blast | |
| 1507 | ||
| 1508 | lemma Compl_partition2: "-A \<union> A = UNIV" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1509 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1510 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1511 | lemma double_complement [simp]: "- (-A) = (A::'a set)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1512 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1513 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1514 | lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1515 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1516 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1517 | lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1518 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1519 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1520 | lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1521 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1522 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1523 | lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1524 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1525 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1526 | lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1527 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1528 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1529 | lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1530 |   -- {* Halmos, Naive Set Theory, page 16. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1531 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1532 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1533 | lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1534 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1535 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1536 | lemma Compl_empty_eq [simp]: "-{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1537 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1538 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1539 | lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1540 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1541 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1542 | lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1543 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1544 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1545 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1546 | text {* \medskip @{text Union}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1547 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1548 | lemma Union_empty [simp]: "Union({}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1549 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1550 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1551 | lemma Union_UNIV [simp]: "Union UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1552 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1553 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1554 | lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1555 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1556 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1557 | lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1558 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1559 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1560 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1561 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1562 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1563 | lemma Union_empty_conv [simp,noatp]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1564 | by blast | 
| 1565 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1566 | lemma empty_Union_conv [simp,noatp]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1567 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1568 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1569 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1570 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1571 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1572 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1573 | text {* \medskip @{text Inter}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1574 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1575 | lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1576 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1577 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1578 | lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1579 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1580 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1581 | lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1582 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1583 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1584 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1585 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1586 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1587 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1588 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1589 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1590 | lemma Inter_UNIV_conv [simp,noatp]: | 
| 13653 | 1591 | "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)" | 
| 1592 | "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)" | |
| 14208 | 1593 | by blast+ | 
| 13653 | 1594 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1595 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1596 | text {*
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1597 |   \medskip @{text UN} and @{text INT}.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1598 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1599 | Basic identities: *} | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1600 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1601 | lemma UN_empty [simp,noatp]: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1602 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1603 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1604 | lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1605 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1606 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1607 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1608 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1609 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1610 | lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 15102 | 1611 | by auto | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1612 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1613 | lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1614 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1615 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1616 | lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1617 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1618 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1619 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1620 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1621 | |
| 24331 | 1622 | lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1623 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1624 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1625 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1626 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1627 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1628 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1629 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1630 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1631 | lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1632 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1633 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1634 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1635 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1636 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1637 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1638 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1639 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1640 | lemma INT_insert_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1641 | "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1642 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1643 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1644 | lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1645 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1646 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1647 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1648 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1649 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1650 | lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1651 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1652 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1653 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1654 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1655 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1656 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1657 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1658 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1659 | lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1660 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1661 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1662 | lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1663 |   -- {* Look: it has an \emph{existential} quantifier *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1664 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1665 | |
| 18447 | 1666 | lemma UNION_empty_conv[simp]: | 
| 13653 | 1667 |   "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
 | 
| 1668 |   "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
 | |
| 1669 | by blast+ | |
| 1670 | ||
| 18447 | 1671 | lemma INTER_UNIV_conv[simp]: | 
| 13653 | 1672 | "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 1673 | "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 1674 | by blast+ | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1675 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1676 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1677 | text {* \medskip Distributive laws: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1678 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1679 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1680 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1681 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1682 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1683 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1684 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1685 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1686 |   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1687 |   -- {* Union of a family of unions *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1688 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1689 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1690 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1691 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1692 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1693 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1694 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1695 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1696 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1697 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1698 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1699 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1700 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1701 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1702 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1703 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1704 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1705 |   -- {* Halmos, Naive Set Theory, page 35. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1706 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1707 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1708 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1709 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1710 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1711 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1712 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1713 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1714 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1715 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1716 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1717 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1718 | text {* \medskip Bounded quantifiers.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1719 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1720 | The following are not added to the default simpset because | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1721 |   (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1722 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1723 | lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1724 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1725 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1726 | lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1727 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1728 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1729 | lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1730 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1731 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1732 | lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1733 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1734 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1735 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1736 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1737 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1738 | lemma Diff_eq: "A - B = A \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1739 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1740 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1741 | lemma Diff_eq_empty_iff [simp,noatp]: "(A - B = {}) = (A \<subseteq> B)"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1742 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1743 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1744 | lemma Diff_cancel [simp]: "A - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1745 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1746 | |
| 14302 | 1747 | lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)" | 
| 1748 | by blast | |
| 1749 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1750 | lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1751 | by (blast elim: equalityE) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1752 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1753 | lemma empty_Diff [simp]: "{} - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1754 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1755 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1756 | lemma Diff_empty [simp]: "A - {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1757 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1758 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1759 | lemma Diff_UNIV [simp]: "A - UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1760 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1761 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1762 | lemma Diff_insert0 [simp,noatp]: "x \<notin> A ==> A - insert x B = A - B" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1763 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1764 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1765 | lemma Diff_insert: "A - insert a B = A - B - {a}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1766 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1767 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1768 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1769 | lemma Diff_insert2: "A - insert a B = A - {a} - B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1770 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1771 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1772 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1773 | lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1774 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1775 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1776 | lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1777 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1778 | |
| 14302 | 1779 | lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
 | 
| 1780 | by blast | |
| 1781 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1782 | lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1783 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1784 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1785 | lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1786 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1787 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1788 | lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1789 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1790 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1791 | lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1792 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1793 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1794 | lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1795 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1796 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1797 | lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1798 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1799 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1800 | lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1801 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1802 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1803 | lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1804 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1805 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1806 | lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1807 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1808 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1809 | lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1810 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1811 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1812 | lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1813 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1814 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1815 | lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1816 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1817 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1818 | lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1819 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1820 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1821 | lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1822 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1823 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1824 | lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1825 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1826 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1827 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1828 | text {* \medskip Quantification over type @{typ bool}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1829 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1830 | lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" | 
| 21549 | 1831 | by (cases x) auto | 
| 1832 | ||
| 1833 | lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False" | |
| 1834 | by (auto intro: bool_induct) | |
| 1835 | ||
| 1836 | lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True" | |
| 1837 | by (cases x) auto | |
| 1838 | ||
| 1839 | lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False" | |
| 1840 | by (auto intro: bool_contrapos) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1841 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1842 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1843 | by (auto simp add: split_if_mem2) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1844 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1845 | lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)" | 
| 21549 | 1846 | by (auto intro: bool_contrapos) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1847 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1848 | lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)" | 
| 21549 | 1849 | by (auto intro: bool_induct) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1850 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1851 | text {* \medskip @{text Pow} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1852 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1853 | lemma Pow_empty [simp]: "Pow {} = {{}}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1854 | by (auto simp add: Pow_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1855 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1856 | lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1857 |   by (blast intro: image_eqI [where ?x = "u - {a}", standard])
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1858 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1859 | lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1860 | by (blast intro: exI [where ?x = "- u", standard]) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1861 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1862 | lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1863 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1864 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1865 | lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1866 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1867 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1868 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1869 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1870 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1871 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1872 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1873 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1874 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1875 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1876 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1877 | lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1878 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1879 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1880 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1881 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1882 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1883 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1884 | text {* \medskip Miscellany. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1885 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1886 | lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1887 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1888 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1889 | lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1890 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1891 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1892 | lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" | 
| 26800 | 1893 | by (unfold less_le) blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1894 | |
| 18447 | 1895 | lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1896 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1897 | |
| 13831 | 1898 | lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
 | 
| 1899 | by blast | |
| 1900 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1901 | lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y" | 
| 17589 | 1902 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1903 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1904 | |
| 13860 | 1905 | text {* \medskip Miniscoping: pushing in quantifiers and big Unions
 | 
| 1906 | and Intersections. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1907 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1908 | lemma UN_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1909 |   "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1910 |   "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1911 |   "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1912 | "!!A B C. (UN x:C. A x Int B) = ((UN x:C. A x) Int B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1913 | "!!A B C. (UN x:C. A Int B x) = (A Int (UN x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1914 | "!!A B C. (UN x:C. A x - B) = ((UN x:C. A x) - B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1915 | "!!A B C. (UN x:C. A - B x) = (A - (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1916 | "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1917 | "!!A B C. (UN z: UNION A B. C z) = (UN x:A. UN z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1918 | "!!A B f. (UN x:f`A. B x) = (UN a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1919 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1920 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1921 | lemma INT_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1922 |   "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1923 |   "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1924 |   "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1925 |   "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1926 | "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1927 | "!!A B C. (INT x:C. A x Un B) = ((INT x:C. A x) Un B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1928 | "!!A B C. (INT x:C. A Un B x) = (A Un (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1929 | "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1930 | "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1931 | "!!A B f. (INT x:f`A. B x) = (INT a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1932 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1933 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1934 | lemma ball_simps [simp,noatp]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1935 | "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1936 | "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1937 | "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1938 | "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1939 |   "!!P. (ALL x:{}. P x) = True"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1940 | "!!P. (ALL x:UNIV. P x) = (ALL x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1941 | "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1942 | "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1943 | "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1944 | "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1945 | "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1946 | "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1947 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1948 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1949 | lemma bex_simps [simp,noatp]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1950 | "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1951 | "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1952 |   "!!P. (EX x:{}. P x) = False"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1953 | "!!P. (EX x:UNIV. P x) = (EX x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1954 | "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1955 | "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1956 | "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1957 | "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1958 | "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1959 | "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1960 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1961 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1962 | lemma ball_conj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1963 | "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1964 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1965 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1966 | lemma bex_disj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1967 | "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1968 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1969 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1970 | |
| 13860 | 1971 | text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
 | 
| 1972 | ||
| 1973 | lemma UN_extend_simps: | |
| 1974 |   "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
 | |
| 1975 |   "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
 | |
| 1976 |   "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
 | |
| 1977 | "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)" | |
| 1978 | "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)" | |
| 1979 | "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)" | |
| 1980 | "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)" | |
| 1981 | "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)" | |
| 1982 | "!!A B C. (UN x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)" | |
| 1983 | "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)" | |
| 1984 | by auto | |
| 1985 | ||
| 1986 | lemma INT_extend_simps: | |
| 1987 |   "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
 | |
| 1988 |   "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
 | |
| 1989 |   "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
 | |
| 1990 |   "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
 | |
| 1991 | "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))" | |
| 1992 | "!!A B C. ((INT x:C. A x) Un B) = (INT x:C. A x Un B)" | |
| 1993 | "!!A B C. A Un (INT x:C. B x) = (INT x:C. A Un B x)" | |
| 1994 | "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)" | |
| 1995 | "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)" | |
| 1996 | "!!A B f. (INT a:A. B (f a)) = (INT x:f`A. B x)" | |
| 1997 | by auto | |
| 1998 | ||
| 1999 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2000 | subsubsection {* Monotonicity of various operations *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2001 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2002 | lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2003 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2004 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2005 | lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2006 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2007 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2008 | lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2009 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2010 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2011 | lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2012 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2013 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2014 | lemma UN_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2015 | "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2016 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2017 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2018 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2019 | lemma INT_anti_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2020 | "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2021 | (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2022 |   -- {* The last inclusion is POSITIVE! *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2023 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2024 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2025 | lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2026 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2027 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2028 | lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2029 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2030 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2031 | lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2032 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2033 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2034 | lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2035 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2036 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2037 | lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2038 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2039 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2040 | text {* \medskip Monotonicity of implications. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2041 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2042 | lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2043 | apply (rule impI) | 
| 14208 | 2044 | apply (erule subsetD, assumption) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2045 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2046 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2047 | lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" | 
| 17589 | 2048 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2049 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2050 | lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" | 
| 17589 | 2051 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2052 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2053 | lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" | 
| 17589 | 2054 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2055 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2056 | lemma imp_refl: "P --> P" .. | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2057 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2058 | lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" | 
| 17589 | 2059 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2060 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2061 | lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" | 
| 17589 | 2062 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2063 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2064 | lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2065 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2066 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2067 | lemma Int_Collect_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2068 | "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2069 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2070 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2071 | lemmas basic_monos = | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2072 | subset_refl imp_refl disj_mono conj_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2073 | ex_mono Collect_mono in_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2074 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2075 | lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" | 
| 17589 | 2076 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2077 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2078 | lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c" | 
| 17589 | 2079 | by iprover | 
| 11979 | 2080 | |
| 12020 | 2081 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2082 | subsection {* Inverse image of a function *}
 | 
| 12257 | 2083 | |
| 2084 | constdefs | |
| 2085 |   vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
 | |
| 28562 | 2086 |   [code del]: "f -` B == {x. f x : B}"
 | 
| 12257 | 2087 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2088 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2089 | subsubsection {* Basic rules *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2090 | |
| 12257 | 2091 | lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" | 
| 2092 | by (unfold vimage_def) blast | |
| 2093 | ||
| 2094 | lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
 | |
| 2095 | by simp | |
| 2096 | ||
| 2097 | lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" | |
| 2098 | by (unfold vimage_def) blast | |
| 2099 | ||
| 2100 | lemma vimageI2: "f a : A ==> a : f -` A" | |
| 2101 | by (unfold vimage_def) fast | |
| 2102 | ||
| 2103 | lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" | |
| 2104 | by (unfold vimage_def) blast | |
| 2105 | ||
| 2106 | lemma vimageD: "a : f -` A ==> f a : A" | |
| 2107 | by (unfold vimage_def) fast | |
| 2108 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2109 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2110 | subsubsection {* Equations *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2111 | |
| 12257 | 2112 | lemma vimage_empty [simp]: "f -` {} = {}"
 | 
| 2113 | by blast | |
| 2114 | ||
| 2115 | lemma vimage_Compl: "f -` (-A) = -(f -` A)" | |
| 2116 | by blast | |
| 2117 | ||
| 2118 | lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" | |
| 2119 | by blast | |
| 2120 | ||
| 2121 | lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" | |
| 2122 | by fast | |
| 2123 | ||
| 2124 | lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)" | |
| 2125 | by blast | |
| 2126 | ||
| 2127 | lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)" | |
| 2128 | by blast | |
| 2129 | ||
| 2130 | lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)" | |
| 2131 | by blast | |
| 2132 | ||
| 2133 | lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
 | |
| 2134 | by blast | |
| 2135 | ||
| 2136 | lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" | |
| 2137 | by blast | |
| 2138 | ||
| 2139 | lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
 | |
| 2140 |   -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
 | |
| 2141 | by blast | |
| 2142 | ||
| 2143 | lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" | |
| 2144 | by blast | |
| 2145 | ||
| 2146 | lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" | |
| 2147 | by blast | |
| 2148 | ||
| 2149 | lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
 | |
| 2150 |   -- {* NOT suitable for rewriting *}
 | |
| 2151 | by blast | |
| 2152 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2153 | lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" | 
| 12257 | 2154 |   -- {* monotonicity *}
 | 
| 2155 | by blast | |
| 2156 | ||
| 26150 | 2157 | lemma vimage_image_eq [noatp]: "f -` (f ` A) = {y. EX x:A. f x = f y}"
 | 
| 2158 | by (blast intro: sym) | |
| 2159 | ||
| 2160 | lemma image_vimage_subset: "f ` (f -` A) <= A" | |
| 2161 | by blast | |
| 2162 | ||
| 2163 | lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" | |
| 2164 | by blast | |
| 2165 | ||
| 2166 | lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" | |
| 2167 | by blast | |
| 2168 | ||
| 2169 | lemma image_diff_subset: "f`A - f`B <= f`(A - B)" | |
| 2170 | by blast | |
| 2171 | ||
| 2172 | lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" | |
| 2173 | by blast | |
| 2174 | ||
| 12257 | 2175 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2176 | subsection {* Getting the Contents of a Singleton Set *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2177 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2178 | definition contents :: "'a set \<Rightarrow> 'a" where | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2179 |   [code del]: "contents X = (THE x. X = {x})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2180 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2181 | lemma contents_eq [simp]: "contents {x} = x"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2182 | by (simp add: contents_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2183 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2184 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2185 | subsection {* Transitivity rules for calculational reasoning *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2186 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2187 | lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2188 | by (rule subsetD) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2189 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2190 | lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2191 | by (rule subsetD) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2192 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2193 | lemmas basic_trans_rules [trans] = | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2194 | order_trans_rules set_rev_mp set_mp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2195 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2196 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2197 | subsection {* Least value operator *}
 | 
| 26800 | 2198 | |
| 2199 | lemma Least_mono: | |
| 2200 | "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y | |
| 2201 | ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" | |
| 2202 |     -- {* Courtesy of Stephan Merz *}
 | |
| 2203 | apply clarify | |
| 2204 | apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) | |
| 2205 | apply (rule LeastI2_order) | |
| 2206 | apply (auto elim: monoD intro!: order_antisym) | |
| 2207 | done | |
| 2208 | ||
| 24420 | 2209 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2210 | subsection {* Rudimentary code generation *}
 | 
| 27824 | 2211 | |
| 28562 | 2212 | lemma empty_code [code]: "{} x \<longleftrightarrow> False"
 | 
| 27824 | 2213 | unfolding empty_def Collect_def .. | 
| 2214 | ||
| 28562 | 2215 | lemma UNIV_code [code]: "UNIV x \<longleftrightarrow> True" | 
| 27824 | 2216 | unfolding UNIV_def Collect_def .. | 
| 2217 | ||
| 28562 | 2218 | lemma insert_code [code]: "insert y A x \<longleftrightarrow> y = x \<or> A x" | 
| 27824 | 2219 | unfolding insert_def Collect_def mem_def Un_def by auto | 
| 2220 | ||
| 28562 | 2221 | lemma inter_code [code]: "(A \<inter> B) x \<longleftrightarrow> A x \<and> B x" | 
| 27824 | 2222 | unfolding Int_def Collect_def mem_def .. | 
| 2223 | ||
| 28562 | 2224 | lemma union_code [code]: "(A \<union> B) x \<longleftrightarrow> A x \<or> B x" | 
| 27824 | 2225 | unfolding Un_def Collect_def mem_def .. | 
| 2226 | ||
| 28562 | 2227 | lemma vimage_code [code]: "(f -` A) x = A (f x)" | 
| 27824 | 2228 | unfolding vimage_def Collect_def mem_def .. | 
| 2229 | ||
| 2230 | ||
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2231 | subsection {* Complete lattices *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2232 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2233 | notation | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2234 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2235 | less (infix "\<sqsubset>" 50) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2236 | inf (infixl "\<sqinter>" 70) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2237 | sup (infixl "\<squnion>" 65) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2238 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2239 | class complete_lattice = lattice + bot + top + | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2240 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2241 |     and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2242 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2243 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2244 | assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2245 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2246 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2247 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2248 | lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2249 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2250 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2251 | lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2252 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2253 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2254 | lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2255 | unfolding Sup_Inf by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2256 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2257 | lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2258 | unfolding Inf_Sup by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2259 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2260 | lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2261 | by (auto intro: antisym Inf_greatest Inf_lower) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2262 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2263 | lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2264 | by (auto intro: antisym Sup_least Sup_upper) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2265 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2266 | lemma Inf_singleton [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2267 |   "\<Sqinter>{a} = a"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2268 | by (auto intro: antisym Inf_lower Inf_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2269 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2270 | lemma Sup_singleton [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2271 |   "\<Squnion>{a} = a"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2272 | by (auto intro: antisym Sup_upper Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2273 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2274 | lemma Inf_insert_simp: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2275 |   "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2276 |   by (cases "A = {}") (simp_all, simp add: Inf_insert)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2277 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2278 | lemma Sup_insert_simp: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2279 |   "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2280 |   by (cases "A = {}") (simp_all, simp add: Sup_insert)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2281 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2282 | lemma Inf_binary: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2283 |   "\<Sqinter>{a, b} = a \<sqinter> b"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2284 | by (simp add: Inf_insert_simp) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2285 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2286 | lemma Sup_binary: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2287 |   "\<Squnion>{a, b} = a \<squnion> b"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2288 | by (simp add: Sup_insert_simp) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2289 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2290 | lemma bot_def: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2291 |   "bot = \<Squnion>{}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2292 | by (auto intro: antisym Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2293 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2294 | lemma top_def: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2295 |   "top = \<Sqinter>{}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2296 | by (auto intro: antisym Inf_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2297 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2298 | lemma sup_bot [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2299 | "x \<squnion> bot = x" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2300 | using bot_least [of x] by (simp add: le_iff_sup sup_commute) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2301 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2302 | lemma inf_top [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2303 | "x \<sqinter> top = x" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2304 | using top_greatest [of x] by (simp add: le_iff_inf inf_commute) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2305 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2306 | definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2307 | "SUPR A f == \<Squnion> (f ` A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2308 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2309 | definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2310 | "INFI A f == \<Sqinter> (f ` A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2311 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2312 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2313 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2314 | syntax | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2315 |   "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2316 |   "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2317 |   "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2318 |   "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2319 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2320 | translations | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2321 | "SUP x y. B" == "SUP x. SUP y. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2322 | "SUP x. B" == "CONST SUPR CONST UNIV (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2323 | "SUP x. B" == "SUP x:CONST UNIV. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2324 | "SUP x:A. B" == "CONST SUPR A (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2325 | "INF x y. B" == "INF x. INF y. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2326 | "INF x. B" == "CONST INFI CONST UNIV (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2327 | "INF x. B" == "INF x:CONST UNIV. B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2328 | "INF x:A. B" == "CONST INFI A (%x. B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2329 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2330 | (* To avoid eta-contraction of body: *) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2331 | print_translation {*
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2332 | let | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2333 | fun btr' syn (A :: Abs abs :: ts) = | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2334 | let val (x,t) = atomic_abs_tr' abs | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2335 | in list_comb (Syntax.const syn $ x $ A $ t, ts) end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2336 |   val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2337 | in | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2338 | [(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2339 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2340 | *} | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2341 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2342 | context complete_lattice | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2343 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2344 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2345 | lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2346 | by (auto simp add: SUPR_def intro: Sup_upper) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2347 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2348 | lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2349 | by (auto simp add: SUPR_def intro: Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2350 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2351 | lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2352 | by (auto simp add: INFI_def intro: Inf_lower) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2353 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2354 | lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2355 | by (auto simp add: INFI_def intro: Inf_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2356 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2357 | lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2358 | by (auto intro: antisym SUP_leI le_SUPI) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2359 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2360 | lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2361 | by (auto intro: antisym INF_leI le_INFI) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2362 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2363 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2364 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2365 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2366 | subsection {* Bool as complete lattice *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2367 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2368 | instantiation bool :: complete_lattice | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2369 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2370 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2371 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2372 | Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2373 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2374 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2375 | Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2376 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2377 | instance | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2378 | by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2379 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2380 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2381 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2382 | lemma Inf_empty_bool [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2383 |   "\<Sqinter>{}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2384 | unfolding Inf_bool_def by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2385 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2386 | lemma not_Sup_empty_bool [simp]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2387 |   "\<not> Sup {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2388 | unfolding Sup_bool_def by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2389 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2390 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2391 | subsection {* Fun as complete lattice *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2392 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2393 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2394 | begin | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2395 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2396 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2397 |   Inf_fun_def [code del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2398 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2399 | definition | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2400 |   Sup_fun_def [code del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2401 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2402 | instance | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2403 | by intro_classes | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2404 | (auto simp add: Inf_fun_def Sup_fun_def le_fun_def | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2405 | intro: Inf_lower Sup_upper Inf_greatest Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2406 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2407 | end | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2408 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2409 | lemma Inf_empty_fun: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2410 |   "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2411 | by rule (auto simp add: Inf_fun_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2412 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2413 | lemma Sup_empty_fun: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2414 |   "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2415 | by rule (auto simp add: Sup_fun_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2416 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2417 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2418 | subsection {* Set as lattice *}
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2419 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2420 | lemma inf_set_eq: "A \<sqinter> B = A \<inter> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2421 | apply (rule subset_antisym) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2422 | apply (rule Int_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2423 | apply (rule inf_le1) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2424 | apply (rule inf_le2) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2425 | apply (rule inf_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2426 | apply (rule Int_lower1) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2427 | apply (rule Int_lower2) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2428 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2429 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2430 | lemma sup_set_eq: "A \<squnion> B = A \<union> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2431 | apply (rule subset_antisym) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2432 | apply (rule sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2433 | apply (rule Un_upper1) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2434 | apply (rule Un_upper2) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2435 | apply (rule Un_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2436 | apply (rule sup_ge1) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2437 | apply (rule sup_ge2) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2438 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2439 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2440 | lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2441 | apply (fold inf_set_eq sup_set_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2442 | apply (erule mono_inf) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2443 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2444 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2445 | lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2446 | apply (fold inf_set_eq sup_set_eq) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2447 | apply (erule mono_sup) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2448 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2449 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2450 | lemma Inf_set_eq: "\<Sqinter>S = \<Inter>S" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2451 | apply (rule subset_antisym) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2452 | apply (rule Inter_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2453 | apply (erule Inf_lower) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2454 | apply (rule Inf_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2455 | apply (erule Inter_lower) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2456 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2457 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2458 | lemma Sup_set_eq: "\<Squnion>S = \<Union>S" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2459 | apply (rule subset_antisym) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2460 | apply (rule Sup_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2461 | apply (erule Union_upper) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2462 | apply (rule Union_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2463 | apply (erule Sup_upper) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2464 | done | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2465 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2466 | lemma top_set_eq: "top = UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2467 | by (iprover intro!: subset_antisym subset_UNIV top_greatest) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2468 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2469 | lemma bot_set_eq: "bot = {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2470 | by (iprover intro!: subset_antisym empty_subsetI bot_least) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2471 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2472 | no_notation | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2473 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2474 | less (infix "\<sqsubset>" 50) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2475 | inf (infixl "\<sqinter>" 70) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2476 | sup (infixl "\<squnion>" 65) and | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2477 |   Inf  ("\<Sqinter>_" [900] 900) and
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2478 |   Sup  ("\<Squnion>_" [900] 900)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2479 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 2480 | |
| 30596 | 2481 | subsection {* Misc theorem and ML bindings *}
 | 
| 2482 | ||
| 2483 | lemmas equalityI = subset_antisym | |
| 2484 | lemmas mem_simps = | |
| 2485 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 2486 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 2487 |   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
 | |
| 21669 | 2488 | |
| 2489 | ML {*
 | |
| 22139 | 2490 | val Ball_def = @{thm Ball_def}
 | 
| 2491 | val Bex_def = @{thm Bex_def}
 | |
| 2492 | val CollectD = @{thm CollectD}
 | |
| 2493 | val CollectE = @{thm CollectE}
 | |
| 2494 | val CollectI = @{thm CollectI}
 | |
| 2495 | val Collect_conj_eq = @{thm Collect_conj_eq}
 | |
| 2496 | val Collect_mem_eq = @{thm Collect_mem_eq}
 | |
| 2497 | val IntD1 = @{thm IntD1}
 | |
| 2498 | val IntD2 = @{thm IntD2}
 | |
| 2499 | val IntE = @{thm IntE}
 | |
| 2500 | val IntI = @{thm IntI}
 | |
| 2501 | val Int_Collect = @{thm Int_Collect}
 | |
| 2502 | val UNIV_I = @{thm UNIV_I}
 | |
| 2503 | val UNIV_witness = @{thm UNIV_witness}
 | |
| 2504 | val UnE = @{thm UnE}
 | |
| 2505 | val UnI1 = @{thm UnI1}
 | |
| 2506 | val UnI2 = @{thm UnI2}
 | |
| 2507 | val ballE = @{thm ballE}
 | |
| 2508 | val ballI = @{thm ballI}
 | |
| 2509 | val bexCI = @{thm bexCI}
 | |
| 2510 | val bexE = @{thm bexE}
 | |
| 2511 | val bexI = @{thm bexI}
 | |
| 2512 | val bex_triv = @{thm bex_triv}
 | |
| 2513 | val bspec = @{thm bspec}
 | |
| 2514 | val contra_subsetD = @{thm contra_subsetD}
 | |
| 2515 | val distinct_lemma = @{thm distinct_lemma}
 | |
| 2516 | val eq_to_mono = @{thm eq_to_mono}
 | |
| 2517 | val eq_to_mono2 = @{thm eq_to_mono2}
 | |
| 2518 | val equalityCE = @{thm equalityCE}
 | |
| 2519 | val equalityD1 = @{thm equalityD1}
 | |
| 2520 | val equalityD2 = @{thm equalityD2}
 | |
| 2521 | val equalityE = @{thm equalityE}
 | |
| 2522 | val equalityI = @{thm equalityI}
 | |
| 2523 | val imageE = @{thm imageE}
 | |
| 2524 | val imageI = @{thm imageI}
 | |
| 2525 | val image_Un = @{thm image_Un}
 | |
| 2526 | val image_insert = @{thm image_insert}
 | |
| 2527 | val insert_commute = @{thm insert_commute}
 | |
| 2528 | val insert_iff = @{thm insert_iff}
 | |
| 2529 | val mem_Collect_eq = @{thm mem_Collect_eq}
 | |
| 2530 | val rangeE = @{thm rangeE}
 | |
| 2531 | val rangeI = @{thm rangeI}
 | |
| 2532 | val range_eqI = @{thm range_eqI}
 | |
| 2533 | val subsetCE = @{thm subsetCE}
 | |
| 2534 | val subsetD = @{thm subsetD}
 | |
| 2535 | val subsetI = @{thm subsetI}
 | |
| 2536 | val subset_refl = @{thm subset_refl}
 | |
| 2537 | val subset_trans = @{thm subset_trans}
 | |
| 2538 | val vimageD = @{thm vimageD}
 | |
| 2539 | val vimageE = @{thm vimageE}
 | |
| 2540 | val vimageI = @{thm vimageI}
 | |
| 2541 | val vimageI2 = @{thm vimageI2}
 | |
| 2542 | val vimage_Collect = @{thm vimage_Collect}
 | |
| 2543 | val vimage_Int = @{thm vimage_Int}
 | |
| 2544 | val vimage_Un = @{thm vimage_Un}
 | |
| 21669 | 2545 | *} | 
| 2546 | ||
| 11979 | 2547 | end |