| author | haftmann | 
| Thu, 25 Jun 2009 15:42:36 +0200 | |
| changeset 31805 | 2f0adf64985b | 
| parent 31690 | cc37bf07f9bb | 
| child 31970 | ccaadfcf6941 | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Transitive_Closure.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | Copyright 1992 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 12691 | 6 | header {* Reflexive and Transitive closure of a relation *}
 | 
| 7 | ||
| 15131 | 8 | theory Transitive_Closure | 
| 22262 | 9 | imports Predicate | 
| 21589 | 10 | uses "~~/src/Provers/trancl.ML" | 
| 15131 | 11 | begin | 
| 12691 | 12 | |
| 13 | text {*
 | |
| 14 |   @{text rtrancl} is reflexive/transitive closure,
 | |
| 15 |   @{text trancl} is transitive closure,
 | |
| 16 |   @{text reflcl} is reflexive closure.
 | |
| 17 | ||
| 18 |   These postfix operators have \emph{maximum priority}, forcing their
 | |
| 19 | operands to be atomic. | |
| 20 | *} | |
| 10213 | 21 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 22 | inductive_set | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 23 |   rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"   ("(_^*)" [1000] 999)
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 24 |   for r :: "('a \<times> 'a) set"
 | 
| 22262 | 25 | where | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 26 | rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 27 | | rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*" | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 28 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 29 | inductive_set | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 30 |   trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_^+)" [1000] 999)
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 31 |   for r :: "('a \<times> 'a) set"
 | 
| 22262 | 32 | where | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 33 | r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 34 | | trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a, c) : r^+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 35 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 36 | notation | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 37 |   rtranclp  ("(_^**)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 38 |   tranclp  ("(_^++)" [1000] 1000)
 | 
| 10213 | 39 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 40 | abbreviation | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 41 |   reflclp :: "('a => 'a => bool) => 'a => 'a => bool"  ("(_^==)" [1000] 1000) where
 | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 42 | "r^== == sup r op =" | 
| 22262 | 43 | |
| 44 | abbreviation | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 45 |   reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 46 | "r^= == r \<union> Id" | 
| 10213 | 47 | |
| 21210 | 48 | notation (xsymbols) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 49 |   rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 50 |   tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 51 |   reflclp  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 52 |   rtrancl  ("(_\<^sup>*)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 53 |   trancl  ("(_\<^sup>+)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 54 |   reflcl  ("(_\<^sup>=)" [1000] 999)
 | 
| 12691 | 55 | |
| 21210 | 56 | notation (HTML output) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 57 |   rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 58 |   tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 59 |   reflclp  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 60 |   rtrancl  ("(_\<^sup>*)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 61 |   trancl  ("(_\<^sup>+)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 62 |   reflcl  ("(_\<^sup>=)" [1000] 999)
 | 
| 14565 | 63 | |
| 12691 | 64 | |
| 26271 | 65 | subsection {* Reflexive closure *}
 | 
| 66 | ||
| 30198 | 67 | lemma refl_reflcl[simp]: "refl(r^=)" | 
| 68 | by(simp add:refl_on_def) | |
| 26271 | 69 | |
| 70 | lemma antisym_reflcl[simp]: "antisym(r^=) = antisym r" | |
| 71 | by(simp add:antisym_def) | |
| 72 | ||
| 73 | lemma trans_reflclI[simp]: "trans r \<Longrightarrow> trans(r^=)" | |
| 74 | unfolding trans_def by blast | |
| 75 | ||
| 76 | ||
| 12691 | 77 | subsection {* Reflexive-transitive closure *}
 | 
| 78 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 79 | lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) op =) = (\<lambda>x y. (x, y) \<in> r Un Id)" | 
| 22262 | 80 | by (simp add: expand_fun_eq) | 
| 81 | ||
| 12691 | 82 | lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*" | 
| 83 |   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | |
| 84 | apply (simp only: split_tupled_all) | |
| 85 | apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl]) | |
| 86 | done | |
| 87 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 88 | lemma r_into_rtranclp [intro]: "r x y ==> r^** x y" | 
| 22262 | 89 |   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 90 | by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) | 
| 22262 | 91 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 92 | lemma rtranclp_mono: "r \<le> s ==> r^** \<le> s^**" | 
| 12691 | 93 |   -- {* monotonicity of @{text rtrancl} *}
 | 
| 22262 | 94 | apply (rule predicate2I) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 95 | apply (erule rtranclp.induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 96 | apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+) | 
| 12691 | 97 | done | 
| 98 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 99 | lemmas rtrancl_mono = rtranclp_mono [to_set] | 
| 22262 | 100 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 101 | theorem rtranclp_induct [consumes 1, case_names base step, induct set: rtranclp]: | 
| 22262 | 102 | assumes a: "r^** a b" | 
| 103 | and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 104 | shows "P b" | 
| 12691 | 105 | proof - | 
| 106 | from a have "a = a --> P b" | |
| 17589 | 107 | by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 108 | then show ?thesis by iprover | 
| 12691 | 109 | qed | 
| 110 | ||
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 111 | lemmas rtrancl_induct [induct set: rtrancl] = rtranclp_induct [to_set] | 
| 22262 | 112 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 113 | lemmas rtranclp_induct2 = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 114 | rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, | 
| 22262 | 115 | consumes 1, case_names refl step] | 
| 116 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 117 | lemmas rtrancl_induct2 = | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 118 | rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 119 | consumes 1, case_names refl step] | 
| 18372 | 120 | |
| 30198 | 121 | lemma refl_rtrancl: "refl (r^*)" | 
| 122 | by (unfold refl_on_def) fast | |
| 19228 | 123 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 124 | text {* Transitivity of transitive closure. *}
 | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 125 | lemma trans_rtrancl: "trans (r^*)" | 
| 12823 | 126 | proof (rule transI) | 
| 127 | fix x y z | |
| 128 | assume "(x, y) \<in> r\<^sup>*" | |
| 129 | assume "(y, z) \<in> r\<^sup>*" | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 130 | then show "(x, z) \<in> r\<^sup>*" | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 131 | proof induct | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 132 | case base | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 133 | show "(x, y) \<in> r\<^sup>*" by fact | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 134 | next | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 135 | case (step u v) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 136 | from `(x, u) \<in> r\<^sup>*` and `(u, v) \<in> r` | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 137 | show "(x, v) \<in> r\<^sup>*" .. | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 138 | qed | 
| 12823 | 139 | qed | 
| 12691 | 140 | |
| 141 | lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard] | |
| 142 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 143 | lemma rtranclp_trans: | 
| 22262 | 144 | assumes xy: "r^** x y" | 
| 145 | and yz: "r^** y z" | |
| 146 | shows "r^** x z" using yz xy | |
| 147 | by induct iprover+ | |
| 148 | ||
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 149 | lemma rtranclE [cases set: rtrancl]: | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 150 | assumes major: "(a::'a, b) : r^*" | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 151 | obtains | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 152 | (base) "a = b" | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 153 | | (step) y where "(a, y) : r^*" and "(y, b) : r" | 
| 12691 | 154 |   -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
 | 
| 18372 | 155 | apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)") | 
| 156 | apply (rule_tac [2] major [THEN rtrancl_induct]) | |
| 157 | prefer 2 apply blast | |
| 158 | prefer 2 apply blast | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 159 | apply (erule asm_rl exE disjE conjE base step)+ | 
| 18372 | 160 | done | 
| 12691 | 161 | |
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 162 | lemma rtrancl_Int_subset: "[| Id \<subseteq> s; r O (r^* \<inter> s) \<subseteq> s|] ==> r^* \<subseteq> s" | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 163 | apply (rule subsetI) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 164 | apply (rule_tac p="x" in PairE, clarify) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 165 | apply (erule rtrancl_induct, auto) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 166 | done | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 167 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 168 | lemma converse_rtranclp_into_rtranclp: | 
| 22262 | 169 | "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 170 | by (rule rtranclp_trans) iprover+ | 
| 22262 | 171 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 172 | lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] | 
| 12691 | 173 | |
| 174 | text {*
 | |
| 175 |   \medskip More @{term "r^*"} equations and inclusions.
 | |
| 176 | *} | |
| 177 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 178 | lemma rtranclp_idemp [simp]: "(r^**)^** = r^**" | 
| 22262 | 179 | apply (auto intro!: order_antisym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 180 | apply (erule rtranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 181 | apply (rule rtranclp.rtrancl_refl) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 182 | apply (blast intro: rtranclp_trans) | 
| 12691 | 183 | done | 
| 184 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 185 | lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] | 
| 22262 | 186 | |
| 12691 | 187 | lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*" | 
| 188 | apply (rule set_ext) | |
| 189 | apply (simp only: split_tupled_all) | |
| 190 | apply (blast intro: rtrancl_trans) | |
| 191 | done | |
| 192 | ||
| 193 | lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*" | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 194 | apply (drule rtrancl_mono) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 195 | apply simp | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 196 | done | 
| 12691 | 197 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 198 | lemma rtranclp_subset: "R \<le> S ==> S \<le> R^** ==> S^** = R^**" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 199 | apply (drule rtranclp_mono) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 200 | apply (drule rtranclp_mono) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 201 | apply simp | 
| 12691 | 202 | done | 
| 203 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 204 | lemmas rtrancl_subset = rtranclp_subset [to_set] | 
| 22262 | 205 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 206 | lemma rtranclp_sup_rtranclp: "(sup (R^**) (S^**))^** = (sup R S)^**" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 207 | by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) | 
| 12691 | 208 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 209 | lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] | 
| 22262 | 210 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 211 | lemma rtranclp_reflcl [simp]: "(R^==)^** = R^**" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 212 | by (blast intro!: rtranclp_subset) | 
| 22262 | 213 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 214 | lemmas rtrancl_reflcl [simp] = rtranclp_reflcl [to_set] | 
| 12691 | 215 | |
| 216 | lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*" | |
| 217 | apply (rule sym) | |
| 14208 | 218 | apply (rule rtrancl_subset, blast, clarify) | 
| 12691 | 219 | apply (rename_tac a b) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 220 | apply (case_tac "a = b") | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 221 | apply blast | 
| 12691 | 222 | apply (blast intro!: r_into_rtrancl) | 
| 223 | done | |
| 224 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 225 | lemma rtranclp_r_diff_Id: "(inf r op ~=)^** = r^**" | 
| 22262 | 226 | apply (rule sym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 227 | apply (rule rtranclp_subset) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 228 | apply blast+ | 
| 22262 | 229 | done | 
| 230 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 231 | theorem rtranclp_converseD: | 
| 22262 | 232 | assumes r: "(r^--1)^** x y" | 
| 233 | shows "r^** y x" | |
| 12823 | 234 | proof - | 
| 235 | from r show ?thesis | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 236 | by induct (iprover intro: rtranclp_trans dest!: conversepD)+ | 
| 12823 | 237 | qed | 
| 12691 | 238 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 239 | lemmas rtrancl_converseD = rtranclp_converseD [to_set] | 
| 22262 | 240 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 241 | theorem rtranclp_converseI: | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 242 | assumes "r^** y x" | 
| 22262 | 243 | shows "(r^--1)^** x y" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 244 | using assms | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 245 | by induct (iprover intro: rtranclp_trans conversepI)+ | 
| 12691 | 246 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 247 | lemmas rtrancl_converseI = rtranclp_converseI [to_set] | 
| 22262 | 248 | |
| 12691 | 249 | lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1" | 
| 250 | by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) | |
| 251 | ||
| 19228 | 252 | lemma sym_rtrancl: "sym r ==> sym (r^*)" | 
| 253 | by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) | |
| 254 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 255 | theorem converse_rtranclp_induct[consumes 1]: | 
| 22262 | 256 | assumes major: "r^** a b" | 
| 257 | and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 258 | shows "P a" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 259 | using rtranclp_converseI [OF major] | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 260 | by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+ | 
| 12691 | 261 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 262 | lemmas converse_rtrancl_induct = converse_rtranclp_induct [to_set] | 
| 22262 | 263 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 264 | lemmas converse_rtranclp_induct2 = | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 265 | converse_rtranclp_induct [of _ "(ax,ay)" "(bx,by)", split_rule, | 
| 22262 | 266 | consumes 1, case_names refl step] | 
| 267 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 268 | lemmas converse_rtrancl_induct2 = | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 269 | converse_rtrancl_induct [of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 270 | consumes 1, case_names refl step] | 
| 12691 | 271 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 272 | lemma converse_rtranclpE: | 
| 22262 | 273 | assumes major: "r^** x z" | 
| 18372 | 274 | and cases: "x=z ==> P" | 
| 22262 | 275 | "!!y. [| r x y; r^** y z |] ==> P" | 
| 18372 | 276 | shows P | 
| 22262 | 277 | apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)") | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 278 | apply (rule_tac [2] major [THEN converse_rtranclp_induct]) | 
| 18372 | 279 | prefer 2 apply iprover | 
| 280 | prefer 2 apply iprover | |
| 281 | apply (erule asm_rl exE disjE conjE cases)+ | |
| 282 | done | |
| 12691 | 283 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 284 | lemmas converse_rtranclE = converse_rtranclpE [to_set] | 
| 22262 | 285 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 286 | lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule] | 
| 22262 | 287 | |
| 288 | lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule] | |
| 12691 | 289 | |
| 290 | lemma r_comp_rtrancl_eq: "r O r^* = r^* O r" | |
| 291 | by (blast elim: rtranclE converse_rtranclE | |
| 292 | intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) | |
| 293 | ||
| 20716 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 krauss parents: 
19656diff
changeset | 294 | lemma rtrancl_unfold: "r^* = Id Un r O r^*" | 
| 15551 | 295 | by (auto intro: rtrancl_into_rtrancl elim: rtranclE) | 
| 296 | ||
| 31690 | 297 | lemma rtrancl_Un_separatorE: | 
| 298 | "(a,b) : (P \<union> Q)^* \<Longrightarrow> \<forall>x y. (a,x) : P^* \<longrightarrow> (x,y) : Q \<longrightarrow> x=y \<Longrightarrow> (a,b) : P^*" | |
| 299 | apply (induct rule:rtrancl.induct) | |
| 300 | apply blast | |
| 301 | apply (blast intro:rtrancl_trans) | |
| 302 | done | |
| 303 | ||
| 304 | lemma rtrancl_Un_separator_converseE: | |
| 305 | "(a,b) : (P \<union> Q)^* \<Longrightarrow> \<forall>x y. (x,b) : P^* \<longrightarrow> (y,x) : Q \<longrightarrow> y=x \<Longrightarrow> (a,b) : P^*" | |
| 306 | apply (induct rule:converse_rtrancl_induct) | |
| 307 | apply blast | |
| 308 | apply (blast intro:rtrancl_trans) | |
| 309 | done | |
| 310 | ||
| 12691 | 311 | |
| 312 | subsection {* Transitive closure *}
 | |
| 10331 | 313 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 314 | lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 315 | apply (simp add: split_tupled_all) | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 316 | apply (erule trancl.induct) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 317 | apply (iprover dest: subsetD)+ | 
| 12691 | 318 | done | 
| 319 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 320 | lemma r_into_trancl': "!!p. p : r ==> p : r^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 321 | by (simp only: split_tupled_all) (erule r_into_trancl) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 322 | |
| 12691 | 323 | text {*
 | 
| 324 |   \medskip Conversions between @{text trancl} and @{text rtrancl}.
 | |
| 325 | *} | |
| 326 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 327 | lemma tranclp_into_rtranclp: "r^++ a b ==> r^** a b" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 328 | by (erule tranclp.induct) iprover+ | 
| 12691 | 329 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 330 | lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set] | 
| 22262 | 331 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 332 | lemma rtranclp_into_tranclp1: assumes r: "r^** a b" | 
| 22262 | 333 | shows "!!c. r b c ==> r^++ a c" using r | 
| 17589 | 334 | by induct iprover+ | 
| 12691 | 335 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 336 | lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] | 
| 22262 | 337 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 338 | lemma rtranclp_into_tranclp2: "[| r a b; r^** b c |] ==> r^++ a c" | 
| 12691 | 339 |   -- {* intro rule from @{text r} and @{text rtrancl} *}
 | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 340 | apply (erule rtranclp.cases) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 341 | apply iprover | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 342 | apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1]) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 343 | apply (simp | rule r_into_rtranclp)+ | 
| 12691 | 344 | done | 
| 345 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 346 | lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] | 
| 22262 | 347 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 348 | text {* Nice induction rule for @{text trancl} *}
 | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 349 | lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]: | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 350 | assumes "r^++ a b" | 
| 22262 | 351 | and cases: "!!y. r a y ==> P y" | 
| 352 | "!!y z. r^++ a y ==> r y z ==> P y ==> P z" | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 353 | shows "P b" | 
| 12691 | 354 | proof - | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 355 | from `r^++ a b` have "a = a --> P b" | 
| 17589 | 356 | by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 357 | then show ?thesis by iprover | 
| 12691 | 358 | qed | 
| 359 | ||
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 360 | lemmas trancl_induct [induct set: trancl] = tranclp_induct [to_set] | 
| 22262 | 361 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 362 | lemmas tranclp_induct2 = | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 363 | tranclp_induct [of _ "(ax,ay)" "(bx,by)", split_rule, | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 364 | consumes 1, case_names base step] | 
| 22262 | 365 | |
| 22172 | 366 | lemmas trancl_induct2 = | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 367 | trancl_induct [of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 368 | consumes 1, case_names base step] | 
| 22172 | 369 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 370 | lemma tranclp_trans_induct: | 
| 22262 | 371 | assumes major: "r^++ x y" | 
| 372 | and cases: "!!x y. r x y ==> P x y" | |
| 373 | "!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z" | |
| 18372 | 374 | shows "P x y" | 
| 12691 | 375 |   -- {* Another induction rule for trancl, incorporating transitivity *}
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 376 | by (iprover intro: major [THEN tranclp_induct] cases) | 
| 12691 | 377 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 378 | lemmas trancl_trans_induct = tranclp_trans_induct [to_set] | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 379 | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 380 | lemma tranclE [cases set: trancl]: | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 381 | assumes "(a, b) : r^+" | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 382 | obtains | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 383 | (base) "(a, b) : r" | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 384 | | (step) c where "(a, c) : r^+" and "(c, b) : r" | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 385 | using assms by cases simp_all | 
| 10980 | 386 | |
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 387 | lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s" | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 388 | apply (rule subsetI) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 389 | apply (rule_tac p = x in PairE) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 390 | apply clarify | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 391 | apply (erule trancl_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 392 | apply auto | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 393 | done | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 394 | |
| 20716 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 krauss parents: 
19656diff
changeset | 395 | lemma trancl_unfold: "r^+ = r Un r O r^+" | 
| 15551 | 396 | by (auto intro: trancl_into_trancl elim: tranclE) | 
| 397 | ||
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 398 | text {* Transitivity of @{term "r^+"} *}
 | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 399 | lemma trans_trancl [simp]: "trans (r^+)" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 400 | proof (rule transI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 401 | fix x y z | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 402 | assume "(x, y) \<in> r^+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 403 | assume "(y, z) \<in> r^+" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 404 | then show "(x, z) \<in> r^+" | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 405 | proof induct | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 406 | case (base u) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 407 | from `(x, y) \<in> r^+` and `(y, u) \<in> r` | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 408 | show "(x, u) \<in> r^+" .. | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 409 | next | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 410 | case (step u v) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 411 | from `(x, u) \<in> r^+` and `(u, v) \<in> r` | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 412 | show "(x, v) \<in> r^+" .. | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 413 | qed | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 414 | qed | 
| 12691 | 415 | |
| 416 | lemmas trancl_trans = trans_trancl [THEN transD, standard] | |
| 417 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 418 | lemma tranclp_trans: | 
| 22262 | 419 | assumes xy: "r^++ x y" | 
| 420 | and yz: "r^++ y z" | |
| 421 | shows "r^++ x z" using yz xy | |
| 422 | by induct iprover+ | |
| 423 | ||
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 424 | lemma trancl_id [simp]: "trans r \<Longrightarrow> r^+ = r" | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 425 | apply auto | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 426 | apply (erule trancl_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 427 | apply assumption | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 428 | apply (unfold trans_def) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 429 | apply blast | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 430 | done | 
| 19623 | 431 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 432 | lemma rtranclp_tranclp_tranclp: | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 433 | assumes "r^** x y" | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 434 | shows "!!z. r^++ y z ==> r^++ x z" using assms | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 435 | by induct (iprover intro: tranclp_trans)+ | 
| 12691 | 436 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 437 | lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set] | 
| 22262 | 438 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 439 | lemma tranclp_into_tranclp2: "r a b ==> r^++ b c ==> r^++ a c" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 440 | by (erule tranclp_trans [OF tranclp.r_into_trancl]) | 
| 22262 | 441 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 442 | lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] | 
| 12691 | 443 | |
| 444 | lemma trancl_insert: | |
| 445 |   "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
 | |
| 446 |   -- {* primitive recursion for @{text trancl} over finite relations *}
 | |
| 447 | apply (rule equalityI) | |
| 448 | apply (rule subsetI) | |
| 449 | apply (simp only: split_tupled_all) | |
| 14208 | 450 | apply (erule trancl_induct, blast) | 
| 12691 | 451 | apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans) | 
| 452 | apply (rule subsetI) | |
| 453 | apply (blast intro: trancl_mono rtrancl_mono | |
| 454 | [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2) | |
| 455 | done | |
| 456 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 457 | lemma tranclp_converseI: "(r^++)^--1 x y ==> (r^--1)^++ x y" | 
| 22262 | 458 | apply (drule conversepD) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 459 | apply (erule tranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 460 | apply (iprover intro: conversepI tranclp_trans)+ | 
| 12691 | 461 | done | 
| 462 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 463 | lemmas trancl_converseI = tranclp_converseI [to_set] | 
| 22262 | 464 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 465 | lemma tranclp_converseD: "(r^--1)^++ x y ==> (r^++)^--1 x y" | 
| 22262 | 466 | apply (rule conversepI) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 467 | apply (erule tranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 468 | apply (iprover dest: conversepD intro: tranclp_trans)+ | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 469 | done | 
| 12691 | 470 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 471 | lemmas trancl_converseD = tranclp_converseD [to_set] | 
| 22262 | 472 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 473 | lemma tranclp_converse: "(r^--1)^++ = (r^++)^--1" | 
| 22262 | 474 | by (fastsimp simp add: expand_fun_eq | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 475 | intro!: tranclp_converseI dest!: tranclp_converseD) | 
| 22262 | 476 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 477 | lemmas trancl_converse = tranclp_converse [to_set] | 
| 12691 | 478 | |
| 19228 | 479 | lemma sym_trancl: "sym r ==> sym (r^+)" | 
| 480 | by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) | |
| 481 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 482 | lemma converse_tranclp_induct: | 
| 22262 | 483 | assumes major: "r^++ a b" | 
| 484 | and cases: "!!y. r y b ==> P(y)" | |
| 485 | "!!y z.[| r y z; r^++ z b; P(z) |] ==> P(y)" | |
| 18372 | 486 | shows "P a" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 487 | apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major]) | 
| 18372 | 488 | apply (rule cases) | 
| 22262 | 489 | apply (erule conversepD) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 490 | apply (blast intro: prems dest!: tranclp_converseD conversepD) | 
| 18372 | 491 | done | 
| 12691 | 492 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 493 | lemmas converse_trancl_induct = converse_tranclp_induct [to_set] | 
| 22262 | 494 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 495 | lemma tranclpD: "R^++ x y ==> EX z. R x z \<and> R^** z y" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 496 | apply (erule converse_tranclp_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 497 | apply auto | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 498 | apply (blast intro: rtranclp_trans) | 
| 12691 | 499 | done | 
| 500 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 501 | lemmas tranclD = tranclpD [to_set] | 
| 22262 | 502 | |
| 31577 | 503 | lemma converse_tranclpE: | 
| 504 | assumes major: "tranclp r x z" | |
| 505 | assumes base: "r x z ==> P" | |
| 506 | assumes step: "\<And> y. [| r x y; tranclp r y z |] ==> P" | |
| 507 | shows P | |
| 508 | proof - | |
| 509 | from tranclpD[OF major] | |
| 510 | obtain y where "r x y" and "rtranclp r y z" by iprover | |
| 511 | from this(2) show P | |
| 512 | proof (cases rule: rtranclp.cases) | |
| 513 | case rtrancl_refl | |
| 514 | with `r x y` base show P by iprover | |
| 515 | next | |
| 516 | case rtrancl_into_rtrancl | |
| 517 | from this have "tranclp r y z" | |
| 518 | by (iprover intro: rtranclp_into_tranclp1) | |
| 519 | with `r x y` step show P by iprover | |
| 520 | qed | |
| 521 | qed | |
| 522 | ||
| 523 | lemmas converse_tranclE = converse_tranclpE [to_set] | |
| 524 | ||
| 25295 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 525 | lemma tranclD2: | 
| 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 526 | "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R" | 
| 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 527 | by (blast elim: tranclE intro: trancl_into_rtrancl) | 
| 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 528 | |
| 13867 | 529 | lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
 | 
| 18372 | 530 | by (blast elim: tranclE dest: trancl_into_rtrancl) | 
| 12691 | 531 | |
| 532 | lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y" | |
| 533 | by (blast dest: r_into_trancl) | |
| 534 | ||
| 535 | lemma trancl_subset_Sigma_aux: | |
| 536 | "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A" | |
| 18372 | 537 | by (induct rule: rtrancl_induct) auto | 
| 12691 | 538 | |
| 539 | lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A" | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 540 | apply (rule subsetI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 541 | apply (simp only: split_tupled_all) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 542 | apply (erule tranclE) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 543 | apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ | 
| 12691 | 544 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 545 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 546 | lemma reflcl_tranclp [simp]: "(r^++)^== = r^**" | 
| 22262 | 547 | apply (safe intro!: order_antisym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 548 | apply (erule tranclp_into_rtranclp) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 549 | apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1) | 
| 11084 | 550 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 551 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 552 | lemmas reflcl_trancl [simp] = reflcl_tranclp [to_set] | 
| 22262 | 553 | |
| 11090 | 554 | lemma trancl_reflcl [simp]: "(r^=)^+ = r^*" | 
| 11084 | 555 | apply safe | 
| 14208 | 556 | apply (drule trancl_into_rtrancl, simp) | 
| 557 | apply (erule rtranclE, safe) | |
| 558 | apply (rule r_into_trancl, simp) | |
| 11084 | 559 | apply (rule rtrancl_into_trancl1) | 
| 14208 | 560 | apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast) | 
| 11084 | 561 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 562 | |
| 11090 | 563 | lemma trancl_empty [simp]: "{}^+ = {}"
 | 
| 11084 | 564 | by (auto elim: trancl_induct) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 565 | |
| 11090 | 566 | lemma rtrancl_empty [simp]: "{}^* = Id"
 | 
| 11084 | 567 | by (rule subst [OF reflcl_trancl]) simp | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 568 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 569 | lemma rtranclpD: "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 570 | by (force simp add: reflcl_tranclp [symmetric] simp del: reflcl_tranclp) | 
| 22262 | 571 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 572 | lemmas rtranclD = rtranclpD [to_set] | 
| 11084 | 573 | |
| 16514 | 574 | lemma rtrancl_eq_or_trancl: | 
| 575 | "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)" | |
| 576 | by (fast elim: trancl_into_rtrancl dest: rtranclD) | |
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 577 | |
| 12691 | 578 | text {* @{text Domain} and @{text Range} *}
 | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 579 | |
| 11090 | 580 | lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV" | 
| 11084 | 581 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 582 | |
| 11090 | 583 | lemma Range_rtrancl [simp]: "Range (R^*) = UNIV" | 
| 11084 | 584 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 585 | |
| 11090 | 586 | lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*" | 
| 11084 | 587 | by (rule rtrancl_Un_rtrancl [THEN subst]) fast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 588 | |
| 11090 | 589 | lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*" | 
| 11084 | 590 | by (blast intro: subsetD [OF rtrancl_Un_subset]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 591 | |
| 11090 | 592 | lemma trancl_domain [simp]: "Domain (r^+) = Domain r" | 
| 11084 | 593 | by (unfold Domain_def) (blast dest: tranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 594 | |
| 11090 | 595 | lemma trancl_range [simp]: "Range (r^+) = Range r" | 
| 26271 | 596 | unfolding Range_def by(simp add: trancl_converse [symmetric]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 597 | |
| 11115 | 598 | lemma Not_Domain_rtrancl: | 
| 12691 | 599 | "x ~: Domain R ==> ((x, y) : R^*) = (x = y)" | 
| 600 | apply auto | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 601 | apply (erule rev_mp) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 602 | apply (erule rtrancl_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 603 | apply auto | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 604 | done | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 605 | |
| 29609 | 606 | lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r" | 
| 607 | apply clarify | |
| 608 | apply (erule trancl_induct) | |
| 609 | apply (auto simp add: Field_def) | |
| 610 | done | |
| 611 | ||
| 612 | lemma finite_trancl: "finite (r^+) = finite r" | |
| 613 | apply auto | |
| 614 | prefer 2 | |
| 615 | apply (rule trancl_subset_Field2 [THEN finite_subset]) | |
| 616 | apply (rule finite_SigmaI) | |
| 617 | prefer 3 | |
| 618 | apply (blast intro: r_into_trancl' finite_subset) | |
| 619 | apply (auto simp add: finite_Field) | |
| 620 | done | |
| 621 | ||
| 12691 | 622 | text {* More about converse @{text rtrancl} and @{text trancl}, should
 | 
| 623 | be merged with main body. *} | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 624 | |
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 625 | lemma single_valued_confluent: | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 626 | "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk> | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 627 | \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 628 | apply (erule rtrancl_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 629 | apply simp | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 630 | apply (erule disjE) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 631 | apply (blast elim:converse_rtranclE dest:single_valuedD) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 632 | apply(blast intro:rtrancl_trans) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 633 | done | 
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 634 | |
| 12691 | 635 | lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+" | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 636 | by (fast intro: trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 637 | |
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 638 | lemma trancl_into_trancl [rule_format]: | 
| 12691 | 639 | "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+" | 
| 640 | apply (erule trancl_induct) | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 641 | apply (fast intro: r_r_into_trancl) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 642 | apply (fast intro: r_r_into_trancl trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 643 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 644 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 645 | lemma tranclp_rtranclp_tranclp: | 
| 22262 | 646 | "r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 647 | apply (drule tranclpD) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 648 | apply (elim exE conjE) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 649 | apply (drule rtranclp_trans, assumption) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 650 | apply (drule rtranclp_into_tranclp2, assumption, assumption) | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 651 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 652 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 653 | lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set] | 
| 22262 | 654 | |
| 12691 | 655 | lemmas transitive_closure_trans [trans] = | 
| 656 | r_r_into_trancl trancl_trans rtrancl_trans | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 657 | trancl.trancl_into_trancl trancl_into_trancl2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 658 | rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl | 
| 12691 | 659 | rtrancl_trancl_trancl trancl_rtrancl_trancl | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 660 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 661 | lemmas transitive_closurep_trans' [trans] = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 662 | tranclp_trans rtranclp_trans | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 663 | tranclp.trancl_into_trancl tranclp_into_tranclp2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 664 | rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 665 | rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp | 
| 22262 | 666 | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 667 | declare trancl_into_rtrancl [elim] | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 668 | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 669 | subsection {* The power operation on relations *}
 | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 670 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 671 | text {* @{text "R ^^ n = R O ... O R"}, the n-fold composition of @{text R} *}
 | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 672 | |
| 30971 | 673 | overloading | 
| 674 |   relpow == "compow :: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | |
| 675 | begin | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 676 | |
| 30971 | 677 | primrec relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" where
 | 
| 678 | "relpow 0 R = Id" | |
| 679 | | "relpow (Suc n) R = R O (R ^^ n)" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 680 | |
| 30971 | 681 | end | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 682 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 683 | lemma rel_pow_1 [simp]: | 
| 30971 | 684 |   fixes R :: "('a \<times> 'a) set"
 | 
| 685 | shows "R ^^ 1 = R" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 686 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 687 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 688 | lemma rel_pow_0_I: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 689 | "(x, x) \<in> R ^^ 0" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 690 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 691 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 692 | lemma rel_pow_Suc_I: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 693 | "(x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 694 | by auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 695 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 696 | lemma rel_pow_Suc_I2: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 697 | "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 698 | by (induct n arbitrary: z) (simp, fastsimp) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 699 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 700 | lemma rel_pow_0_E: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 701 | "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 702 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 703 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 704 | lemma rel_pow_Suc_E: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 705 | "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 706 | by auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 707 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 708 | lemma rel_pow_E: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 709 | "(x, z) \<in> R ^^ n \<Longrightarrow> (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 710 | \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 711 | \<Longrightarrow> P" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 712 | by (cases n) auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 713 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 714 | lemma rel_pow_Suc_D2: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 715 | "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 716 | apply (induct n arbitrary: x z) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 717 | apply (blast intro: rel_pow_0_I elim: rel_pow_0_E rel_pow_Suc_E) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 718 | apply (blast intro: rel_pow_Suc_I elim: rel_pow_0_E rel_pow_Suc_E) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 719 | done | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 720 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 721 | lemma rel_pow_Suc_E2: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 722 | "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 723 | by (blast dest: rel_pow_Suc_D2) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 724 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 725 | lemma rel_pow_Suc_D2': | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 726 | "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 727 | by (induct n) (simp_all, blast) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 728 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 729 | lemma rel_pow_E2: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 730 | "(x, z) \<in> R ^^ n \<Longrightarrow> (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 731 | \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 732 | \<Longrightarrow> P" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 733 | apply (cases n, simp) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 734 | apply (cut_tac n=nat and R=R in rel_pow_Suc_D2', simp, blast) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 735 | done | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 736 | |
| 31351 | 737 | lemma rel_pow_add: "R ^^ (m+n) = R^^n O R^^m" | 
| 738 | by(induct n) auto | |
| 739 | ||
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 740 | lemma rtrancl_imp_UN_rel_pow: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 741 | assumes "p \<in> R^*" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 742 | shows "p \<in> (\<Union>n. R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 743 | proof (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 744 | case (Pair x y) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 745 | with assms have "(x, y) \<in> R^*" by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 746 | then have "(x, y) \<in> (\<Union>n. R ^^ n)" proof induct | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 747 | case base show ?case by (blast intro: rel_pow_0_I) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 748 | next | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 749 | case step then show ?case by (blast intro: rel_pow_Suc_I) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 750 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 751 | with Pair show ?thesis by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 752 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 753 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 754 | lemma rel_pow_imp_rtrancl: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 755 | assumes "p \<in> R ^^ n" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 756 | shows "p \<in> R^*" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 757 | proof (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 758 | case (Pair x y) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 759 | with assms have "(x, y) \<in> R ^^ n" by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 760 | then have "(x, y) \<in> R^*" proof (induct n arbitrary: x y) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 761 | case 0 then show ?case by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 762 | next | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 763 | case Suc then show ?case | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 764 | by (blast elim: rel_pow_Suc_E intro: rtrancl_into_rtrancl) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 765 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 766 | with Pair show ?thesis by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 767 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 768 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 769 | lemma rtrancl_is_UN_rel_pow: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 770 | "R^* = (\<Union>n. R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 771 | by (blast intro: rtrancl_imp_UN_rel_pow rel_pow_imp_rtrancl) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 772 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 773 | lemma rtrancl_power: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 774 | "p \<in> R^* \<longleftrightarrow> (\<exists>n. p \<in> R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 775 | by (simp add: rtrancl_is_UN_rel_pow) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 776 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 777 | lemma trancl_power: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 778 | "p \<in> R^+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 779 | apply (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 780 | apply simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 781 | apply (rule iffI) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 782 | apply (drule tranclD2) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 783 | apply (clarsimp simp: rtrancl_is_UN_rel_pow) | 
| 30971 | 784 | apply (rule_tac x="Suc n" in exI) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 785 | apply (clarsimp simp: rel_comp_def) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 786 | apply fastsimp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 787 | apply clarsimp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 788 | apply (case_tac n, simp) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 789 | apply clarsimp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 790 | apply (drule rel_pow_imp_rtrancl) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 791 | apply (drule rtrancl_into_trancl1) apply auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 792 | done | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 793 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 794 | lemma rtrancl_imp_rel_pow: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 795 | "p \<in> R^* \<Longrightarrow> \<exists>n. p \<in> R ^^ n" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 796 | by (auto dest: rtrancl_imp_UN_rel_pow) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 797 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 798 | lemma single_valued_rel_pow: | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 799 |   fixes R :: "('a * 'a) set"
 | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 800 | shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 801 | apply (induct n arbitrary: R) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 802 | apply simp_all | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 803 | apply (rule single_valuedI) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 804 | apply (fast dest: single_valuedD elim: rel_pow_Suc_E) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 805 | done | 
| 15551 | 806 | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 807 | subsection {* Setup of transitivity reasoner *}
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 808 | |
| 26340 | 809 | ML {*
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 810 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 811 | structure Trancl_Tac = Trancl_Tac_Fun ( | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 812 | struct | 
| 26340 | 813 |     val r_into_trancl = @{thm trancl.r_into_trancl};
 | 
| 814 |     val trancl_trans  = @{thm trancl_trans};
 | |
| 815 |     val rtrancl_refl = @{thm rtrancl.rtrancl_refl};
 | |
| 816 |     val r_into_rtrancl = @{thm r_into_rtrancl};
 | |
| 817 |     val trancl_into_rtrancl = @{thm trancl_into_rtrancl};
 | |
| 818 |     val rtrancl_trancl_trancl = @{thm rtrancl_trancl_trancl};
 | |
| 819 |     val trancl_rtrancl_trancl = @{thm trancl_rtrancl_trancl};
 | |
| 820 |     val rtrancl_trans = @{thm rtrancl_trans};
 | |
| 15096 | 821 | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 822 |   fun decomp (@{const Trueprop} $ t) =
 | 
| 18372 | 823 |     let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 824 |         let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 825 |               | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
 | 
| 18372 | 826 | | decr r = (r,"r"); | 
| 26801 
244184661a09
- Function dec in Trancl_Tac must eta-contract relation before calling
 berghofe parents: 
26340diff
changeset | 827 | val (rel,r) = decr (Envir.beta_eta_contract rel); | 
| 18372 | 828 | in SOME (a,b,rel,r) end | 
| 829 | | dec _ = NONE | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 830 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 831 | | decomp _ = NONE; | 
| 18372 | 832 | |
| 21589 | 833 | end); | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 834 | |
| 22262 | 835 | structure Tranclp_Tac = Trancl_Tac_Fun ( | 
| 836 | struct | |
| 26340 | 837 |     val r_into_trancl = @{thm tranclp.r_into_trancl};
 | 
| 838 |     val trancl_trans  = @{thm tranclp_trans};
 | |
| 839 |     val rtrancl_refl = @{thm rtranclp.rtrancl_refl};
 | |
| 840 |     val r_into_rtrancl = @{thm r_into_rtranclp};
 | |
| 841 |     val trancl_into_rtrancl = @{thm tranclp_into_rtranclp};
 | |
| 842 |     val rtrancl_trancl_trancl = @{thm rtranclp_tranclp_tranclp};
 | |
| 843 |     val trancl_rtrancl_trancl = @{thm tranclp_rtranclp_tranclp};
 | |
| 844 |     val rtrancl_trans = @{thm rtranclp_trans};
 | |
| 22262 | 845 | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 846 |   fun decomp (@{const Trueprop} $ t) =
 | 
| 22262 | 847 | let fun dec (rel $ a $ b) = | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 848 |         let fun decr (Const ("Transitive_Closure.rtranclp", _ ) $ r) = (r,"r*")
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 849 |               | decr (Const ("Transitive_Closure.tranclp", _ ) $ r)  = (r,"r+")
 | 
| 22262 | 850 | | decr r = (r,"r"); | 
| 851 | val (rel,r) = decr rel; | |
| 26801 
244184661a09
- Function dec in Trancl_Tac must eta-contract relation before calling
 berghofe parents: 
26340diff
changeset | 852 | in SOME (a, b, rel, r) end | 
| 22262 | 853 | | dec _ = NONE | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 854 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 855 | | decomp _ = NONE; | 
| 22262 | 856 | |
| 857 | end); | |
| 26340 | 858 | *} | 
| 22262 | 859 | |
| 26340 | 860 | declaration {* fn _ =>
 | 
| 861 | Simplifier.map_ss (fn ss => ss | |
| 862 | addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac)) | |
| 863 | addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)) | |
| 864 | addSolver (mk_solver "Tranclp" (fn _ => Tranclp_Tac.trancl_tac)) | |
| 865 | addSolver (mk_solver "Rtranclp" (fn _ => Tranclp_Tac.rtrancl_tac))) | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 866 | *} | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 867 | |
| 21589 | 868 | (* Optional methods *) | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 869 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 870 | method_setup trancl = | 
| 30549 | 871 |   {* Scan.succeed (K (SIMPLE_METHOD' Trancl_Tac.trancl_tac)) *}
 | 
| 18372 | 872 |   {* simple transitivity reasoner *}
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 873 | method_setup rtrancl = | 
| 30549 | 874 |   {* Scan.succeed (K (SIMPLE_METHOD' Trancl_Tac.rtrancl_tac)) *}
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 875 |   {* simple transitivity reasoner *}
 | 
| 22262 | 876 | method_setup tranclp = | 
| 30549 | 877 |   {* Scan.succeed (K (SIMPLE_METHOD' Tranclp_Tac.trancl_tac)) *}
 | 
| 22262 | 878 |   {* simple transitivity reasoner (predicate version) *}
 | 
| 879 | method_setup rtranclp = | |
| 30549 | 880 |   {* Scan.succeed (K (SIMPLE_METHOD' Tranclp_Tac.rtrancl_tac)) *}
 | 
| 22262 | 881 |   {* simple transitivity reasoner (predicate version) *}
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 882 | |
| 10213 | 883 | end |