src/HOL/Transitive_Closure.thy
author paulson
Wed, 17 Jan 2007 09:53:50 +0100
changeset 22080 7bf8868ab3e4
parent 21589 1b02201d7195
child 22172 e7d6cb237b5e
permissions -rw-r--r--
induction rules for trancl/rtrancl expressed using subsets
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*  Title:      HOL/Transitive_Closure.thy
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     2
    ID:         $Id$
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     4
    Copyright   1992  University of Cambridge
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     5
*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     6
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
     7
header {* Reflexive and Transitive closure of a relation *}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15096
diff changeset
     9
theory Transitive_Closure
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    10
imports Inductive
21589
1b02201d7195 simplified method setup;
wenzelm
parents: 21404
diff changeset
    11
uses "~~/src/Provers/trancl.ML"
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15096
diff changeset
    12
begin
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    13
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    14
text {*
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    15
  @{text rtrancl} is reflexive/transitive closure,
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    16
  @{text trancl} is transitive closure,
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    17
  @{text reflcl} is reflexive closure.
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    18
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    19
  These postfix operators have \emph{maximum priority}, forcing their
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    20
  operands to be atomic.
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    21
*}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    22
11327
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
    23
consts
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    24
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
11327
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
    25
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
    26
inductive "r^*"
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    27
  intros
15801
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15551
diff changeset
    28
    rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15551
diff changeset
    29
    rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
11327
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
    30
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
    31
consts
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    32
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
    33
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
    34
inductive "r^+"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
    35
  intros
15801
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15551
diff changeset
    36
    r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
d2f5ca3c048d superceded by Pure.thy and CPure.thy;
wenzelm
parents: 15551
diff changeset
    37
    trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    38
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19623
diff changeset
    39
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    40
  reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19623
diff changeset
    41
  "r^= == r \<union> Id"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    42
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20716
diff changeset
    43
notation (xsymbols)
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    44
  rtrancl  ("(_\<^sup>*)" [1000] 999) and
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    45
  trancl  ("(_\<^sup>+)" [1000] 999) and
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19623
diff changeset
    46
  reflcl  ("(_\<^sup>=)" [1000] 999)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    47
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20716
diff changeset
    48
notation (HTML output)
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    49
  rtrancl  ("(_\<^sup>*)" [1000] 999) and
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    50
  trancl  ("(_\<^sup>+)" [1000] 999) and
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19623
diff changeset
    51
  reflcl  ("(_\<^sup>=)" [1000] 999)
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14404
diff changeset
    52
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    53
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    54
subsection {* Reflexive-transitive closure *}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    55
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    56
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    57
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    58
  apply (simp only: split_tupled_all)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    59
  apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    60
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    61
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    62
lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    63
  -- {* monotonicity of @{text rtrancl} *}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    64
  apply (rule subsetI)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    65
  apply (simp only: split_tupled_all)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    66
  apply (erule rtrancl.induct)
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
    67
   apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    68
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    69
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
    70
theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
    71
  assumes a: "(a, b) : r^*"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
    72
    and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
    73
  shows "P b"
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    74
proof -
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    75
  from a have "a = a --> P b"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
    76
    by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
    77
  thus ?thesis by iprover
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    78
qed
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    79
14404
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
    80
lemmas rtrancl_induct2 =
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
    81
  rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
    82
                 consumes 1, case_names refl step]
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
    83
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
    84
lemma reflexive_rtrancl: "reflexive (r^*)"
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
    85
  by (unfold refl_def) fast
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
    86
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    87
lemma trans_rtrancl: "trans(r^*)"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    88
  -- {* transitivity of transitive closure!! -- by induction *}
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
    89
proof (rule transI)
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
    90
  fix x y z
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
    91
  assume "(x, y) \<in> r\<^sup>*"
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
    92
  assume "(y, z) \<in> r\<^sup>*"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
    93
  thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
    94
qed
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    95
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    96
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    97
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
    98
lemma rtranclE:
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
    99
  assumes major: "(a::'a,b) : r^*"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   100
    and cases: "(a = b) ==> P"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   101
      "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   102
  shows P
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   103
  -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   104
  apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   105
   apply (rule_tac [2] major [THEN rtrancl_induct])
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   106
    prefer 2 apply blast
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   107
   prefer 2 apply blast
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   108
  apply (erule asm_rl exE disjE conjE cases)+
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   109
  done
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   110
22080
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   111
lemma rtrancl_Int_subset: "[| Id \<subseteq> s; r O (r^* \<inter> s) \<subseteq> s|] ==> r^* \<subseteq> s"
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   112
  apply (rule subsetI)
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   113
  apply (rule_tac p="x" in PairE, clarify)
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   114
  apply (erule rtrancl_induct, auto) 
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   115
  done
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   116
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   117
lemma converse_rtrancl_into_rtrancl:
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   118
  "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   119
  by (rule rtrancl_trans) iprover+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   120
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   121
text {*
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   122
  \medskip More @{term "r^*"} equations and inclusions.
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   123
*}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   124
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   125
lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   126
  apply auto
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   127
  apply (erule rtrancl_induct)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   128
   apply (rule rtrancl_refl)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   129
  apply (blast intro: rtrancl_trans)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   130
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   131
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   132
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   133
  apply (rule set_ext)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   134
  apply (simp only: split_tupled_all)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   135
  apply (blast intro: rtrancl_trans)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   136
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   137
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   138
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   139
by (drule rtrancl_mono, simp)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   140
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   141
lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   142
  apply (drule rtrancl_mono)
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14361
diff changeset
   143
  apply (drule rtrancl_mono, simp)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   144
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   145
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   146
lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   147
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   148
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   149
lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   150
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   151
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   152
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   153
  apply (rule sym)
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   154
  apply (rule rtrancl_subset, blast, clarify)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   155
  apply (rename_tac a b)
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   156
  apply (case_tac "a = b", blast)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   157
  apply (blast intro!: r_into_rtrancl)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   158
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   159
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   160
theorem rtrancl_converseD:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   161
  assumes r: "(x, y) \<in> (r^-1)^*"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   162
  shows "(y, x) \<in> r^*"
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   163
proof -
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   164
  from r show ?thesis
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   165
    by induct (iprover intro: rtrancl_trans dest!: converseD)+
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   166
qed
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   167
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   168
theorem rtrancl_converseI:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   169
  assumes r: "(y, x) \<in> r^*"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   170
  shows "(x, y) \<in> (r^-1)^*"
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   171
proof -
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   172
  from r show ?thesis
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   173
    by induct (iprover intro: rtrancl_trans converseI)+
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   174
qed
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   175
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   176
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   177
  by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   178
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
   179
lemma sym_rtrancl: "sym r ==> sym (r^*)"
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
   180
  by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
   181
14404
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
   182
theorem converse_rtrancl_induct[consumes 1]:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   183
  assumes major: "(a, b) : r^*"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   184
    and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12823
diff changeset
   185
  shows "P a"
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   186
proof -
12823
9d3f5056296b Made some proofs constructive.
berghofe
parents: 12691
diff changeset
   187
  from rtrancl_converseI [OF major]
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   188
  show ?thesis
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   189
    by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   190
qed
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   191
14404
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
   192
lemmas converse_rtrancl_induct2 =
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
   193
  converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
4952c5a92e04 Transitive_Closure: added consumes and case_names attributes
nipkow
parents: 14398
diff changeset
   194
                 consumes 1, case_names refl step]
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   195
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   196
lemma converse_rtranclE:
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   197
  assumes major: "(x,z):r^*"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   198
    and cases: "x=z ==> P"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   199
      "!!y. [| (x,y):r; (y,z):r^* |] ==> P"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   200
  shows P
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   201
  apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   202
   apply (rule_tac [2] major [THEN converse_rtrancl_induct])
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   203
    prefer 2 apply iprover
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   204
   prefer 2 apply iprover
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   205
  apply (erule asm_rl exE disjE conjE cases)+
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   206
  done
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   207
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   208
ML_setup {*
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   209
  bind_thm ("converse_rtranclE2", split_rule
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   210
    (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   211
*}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   212
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   213
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   214
  by (blast elim: rtranclE converse_rtranclE
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   215
    intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   216
20716
a6686a8e1b68 Changed precedence of "op O" (relation composition) from 60 to 75.
krauss
parents: 19656
diff changeset
   217
lemma rtrancl_unfold: "r^* = Id Un r O r^*"
15551
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   218
  by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   219
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   220
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   221
subsection {* Transitive closure *}
10331
7411e4659d4a more "xsymbols" syntax;
wenzelm
parents: 10213
diff changeset
   222
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   223
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   224
  apply (simp only: split_tupled_all)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   225
  apply (erule trancl.induct)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   226
  apply (iprover dest: subsetD)+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   227
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   228
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   229
lemma r_into_trancl': "!!p. p : r ==> p : r^+"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   230
  by (simp only: split_tupled_all) (erule r_into_trancl)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   231
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   232
text {*
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   233
  \medskip Conversions between @{text trancl} and @{text rtrancl}.
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   234
*}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   235
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   236
lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   237
  by (erule trancl.induct) iprover+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   238
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   239
lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   240
  shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   241
  by induct iprover+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   242
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   243
lemma rtrancl_into_trancl2: "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   244
  -- {* intro rule from @{text r} and @{text rtrancl} *}
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   245
  apply (erule rtranclE, iprover)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   246
  apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   247
   apply (assumption | rule r_into_rtrancl)+
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   248
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   249
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   250
lemma trancl_induct [consumes 1, induct set: trancl]:
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   251
  assumes a: "(a,b) : r^+"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   252
  and cases: "!!y. (a, y) : r ==> P y"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   253
    "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   254
  shows "P b"
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   255
  -- {* Nice induction rule for @{text trancl} *}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   256
proof -
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   257
  from a have "a = a --> P b"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   258
    by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   259
  thus ?thesis by iprover
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   260
qed
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   261
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   262
lemma trancl_trans_induct:
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   263
  assumes major: "(x,y) : r^+"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   264
    and cases: "!!x y. (x,y) : r ==> P x y"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   265
      "!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   266
  shows "P x y"
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   267
  -- {* Another induction rule for trancl, incorporating transitivity *}
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   268
  by (iprover intro: r_into_trancl major [THEN trancl_induct] cases)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   269
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   270
inductive_cases tranclE: "(a, b) : r^+"
10980
0a45f2efaaec Transitive_Closure turned into new-style theory;
wenzelm
parents: 10827
diff changeset
   271
22080
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   272
lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s"
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   273
  apply (rule subsetI)
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   274
  apply (rule_tac p="x" in PairE, clarify)
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   275
  apply (erule trancl_induct, auto) 
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   276
  done
7bf8868ab3e4 induction rules for trancl/rtrancl expressed using subsets
paulson
parents: 21589
diff changeset
   277
20716
a6686a8e1b68 Changed precedence of "op O" (relation composition) from 60 to 75.
krauss
parents: 19656
diff changeset
   278
lemma trancl_unfold: "r^+ = r Un r O r^+"
15551
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   279
  by (auto intro: trancl_into_trancl elim: tranclE)
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   280
19623
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   281
lemma trans_trancl[simp]: "trans(r^+)"
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   282
  -- {* Transitivity of @{term "r^+"} *}
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   283
proof (rule transI)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   284
  fix x y z
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   285
  assume xy: "(x, y) \<in> r^+"
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   286
  assume "(y, z) \<in> r^+"
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   287
  thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   288
qed
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   289
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   290
lemmas trancl_trans = trans_trancl [THEN transD, standard]
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   291
19623
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   292
lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r"
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   293
apply(auto)
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   294
apply(erule trancl_induct)
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   295
apply assumption
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   296
apply(unfold trans_def)
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   297
apply(blast)
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   298
done
12e6cc4382ae added lemma in_measure
nipkow
parents: 19228
diff changeset
   299
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   300
lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   301
  shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   302
  by induct (iprover intro: trancl_trans)+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   303
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   304
lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   305
  by (erule transD [OF trans_trancl r_into_trancl])
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   306
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   307
lemma trancl_insert:
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   308
  "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   309
  -- {* primitive recursion for @{text trancl} over finite relations *}
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   310
  apply (rule equalityI)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   311
   apply (rule subsetI)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   312
   apply (simp only: split_tupled_all)
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   313
   apply (erule trancl_induct, blast)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   314
   apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   315
  apply (rule subsetI)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   316
  apply (blast intro: trancl_mono rtrancl_mono
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   317
    [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   318
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   319
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   320
lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   321
  apply (drule converseD)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   322
  apply (erule trancl.induct)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   323
  apply (iprover intro: converseI trancl_trans)+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   324
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   325
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   326
lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   327
  apply (rule converseI)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   328
  apply (erule trancl.induct)
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 16514
diff changeset
   329
  apply (iprover dest: converseD intro: trancl_trans)+
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   330
  done
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   331
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   332
lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   333
  by (fastsimp simp add: split_tupled_all
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   334
    intro!: trancl_converseI trancl_converseD)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   335
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
   336
lemma sym_trancl: "sym r ==> sym (r^+)"
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
   337
  by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
30fce6da8cbe added many simple lemmas
huffman
parents: 18372
diff changeset
   338
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   339
lemma converse_trancl_induct:
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   340
  assumes major: "(a,b) : r^+"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   341
    and cases: "!!y. (y,b) : r ==> P(y)"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   342
      "!!y z.[| (y,z) : r;  (z,b) : r^+;  P(z) |] ==> P(y)"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   343
  shows "P a"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   344
  apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   345
   apply (rule cases)
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   346
   apply (erule converseD)
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   347
  apply (blast intro: prems dest!: trancl_converseD)
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   348
  done
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   349
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   350
lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*"
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   351
  apply (erule converse_trancl_induct, auto)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   352
  apply (blast intro: rtrancl_trans)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   353
  done
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   354
13867
1fdecd15437f just a few mods to a few thms
nipkow
parents: 13726
diff changeset
   355
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   356
  by (blast elim: tranclE dest: trancl_into_rtrancl)
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   357
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   358
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   359
  by (blast dest: r_into_trancl)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   360
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   361
lemma trancl_subset_Sigma_aux:
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   362
    "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A"
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   363
  by (induct rule: rtrancl_induct) auto
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   364
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   365
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A"
13704
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   366
  apply (rule subsetI)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   367
  apply (simp only: split_tupled_all)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   368
  apply (erule tranclE)
854501b1e957 Transitive closure is now defined inductively as well.
berghofe
parents: 12937
diff changeset
   369
  apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   370
  done
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   371
11090
wenzelm
parents: 11084
diff changeset
   372
lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   373
  apply safe
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   374
   apply (erule trancl_into_rtrancl)
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   375
  apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   376
  done
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   377
11090
wenzelm
parents: 11084
diff changeset
   378
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   379
  apply safe
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   380
   apply (drule trancl_into_rtrancl, simp)
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   381
  apply (erule rtranclE, safe)
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   382
   apply (rule r_into_trancl, simp)
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   383
  apply (rule rtrancl_into_trancl1)
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   384
   apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   385
  done
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   386
11090
wenzelm
parents: 11084
diff changeset
   387
lemma trancl_empty [simp]: "{}^+ = {}"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   388
  by (auto elim: trancl_induct)
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   389
11090
wenzelm
parents: 11084
diff changeset
   390
lemma rtrancl_empty [simp]: "{}^* = Id"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   391
  by (rule subst [OF reflcl_trancl]) simp
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   392
11090
wenzelm
parents: 11084
diff changeset
   393
lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   394
  by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   395
16514
090c6a98c704 lemma, equation between rtrancl and trancl
kleing
parents: 16417
diff changeset
   396
lemma rtrancl_eq_or_trancl:
090c6a98c704 lemma, equation between rtrancl and trancl
kleing
parents: 16417
diff changeset
   397
  "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
090c6a98c704 lemma, equation between rtrancl and trancl
kleing
parents: 16417
diff changeset
   398
  by (fast elim: trancl_into_rtrancl dest: rtranclD)
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   399
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   400
text {* @{text Domain} and @{text Range} *}
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   401
11090
wenzelm
parents: 11084
diff changeset
   402
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   403
  by blast
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   404
11090
wenzelm
parents: 11084
diff changeset
   405
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   406
  by blast
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   407
11090
wenzelm
parents: 11084
diff changeset
   408
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   409
  by (rule rtrancl_Un_rtrancl [THEN subst]) fast
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   410
11090
wenzelm
parents: 11084
diff changeset
   411
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   412
  by (blast intro: subsetD [OF rtrancl_Un_subset])
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   413
11090
wenzelm
parents: 11084
diff changeset
   414
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   415
  by (unfold Domain_def) (blast dest: tranclD)
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   416
11090
wenzelm
parents: 11084
diff changeset
   417
lemma trancl_range [simp]: "Range (r^+) = Range r"
11084
32c1deea5bcd unsymbolized;
wenzelm
parents: 10996
diff changeset
   418
  by (simp add: Range_def trancl_converse [symmetric])
10996
74e970389def Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents: 10980
diff changeset
   419
11115
285b31e9e026 a new theorem from Bryan Ford
paulson
parents: 11090
diff changeset
   420
lemma Not_Domain_rtrancl:
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   421
    "x ~: Domain R ==> ((x, y) : R^*) = (x = y)"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   422
  apply auto
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   423
  by (erule rev_mp, erule rtrancl_induct, auto)
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   424
11327
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
   425
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   426
text {* More about converse @{text rtrancl} and @{text trancl}, should
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   427
  be merged with main body. *}
12428
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   428
14337
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   429
lemma single_valued_confluent:
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   430
  "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk>
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   431
  \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*"
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   432
apply(erule rtrancl_induct)
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   433
 apply simp
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   434
apply(erule disjE)
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   435
 apply(blast elim:converse_rtranclE dest:single_valuedD)
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   436
apply(blast intro:rtrancl_trans)
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   437
done
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   438
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   439
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+"
12428
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   440
  by (fast intro: trancl_trans)
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   441
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   442
lemma trancl_into_trancl [rule_format]:
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   443
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+"
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   444
  apply (erule trancl_induct)
12428
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   445
   apply (fast intro: r_r_into_trancl)
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   446
  apply (fast intro: r_r_into_trancl trancl_trans)
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   447
  done
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   448
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   449
lemma trancl_rtrancl_trancl:
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   450
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+"
12428
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   451
  apply (drule tranclD)
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   452
  apply (erule exE, erule conjE)
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   453
  apply (drule rtrancl_trans, assumption)
14208
144f45277d5a misc tidying
paulson
parents: 13867
diff changeset
   454
  apply (drule rtrancl_into_trancl2, assumption, assumption)
12428
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   455
  done
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   456
12691
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   457
lemmas transitive_closure_trans [trans] =
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   458
  r_r_into_trancl trancl_trans rtrancl_trans
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   459
  trancl_into_trancl trancl_into_trancl2
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   460
  rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
d21db58bcdc2 converted theory Transitive_Closure;
wenzelm
parents: 12566
diff changeset
   461
  rtrancl_trancl_trancl trancl_rtrancl_trancl
12428
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   462
f3033eed309a setup [trans] rules for calculational Isar reasoning
kleing
parents: 11327
diff changeset
   463
declare trancl_into_rtrancl [elim]
11327
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
   464
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
   465
declare rtranclE [cases set: rtrancl]
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
   466
declare tranclE [cases set: trancl]
cd2c27a23df1 Transitive closure is now defined via "inductive".
berghofe
parents: 11115
diff changeset
   467
15551
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   468
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   469
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   470
af78481b37bf unfold theorems for trancl and rtrancl
paulson
parents: 15531
diff changeset
   471
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   472
subsection {* Setup of transitivity reasoner *}
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   473
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   474
ML_setup {*
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   475
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   476
structure Trancl_Tac = Trancl_Tac_Fun (
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   477
  struct
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   478
    val r_into_trancl = thm "r_into_trancl";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   479
    val trancl_trans  = thm "trancl_trans";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   480
    val rtrancl_refl = thm "rtrancl_refl";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   481
    val r_into_rtrancl = thm "r_into_rtrancl";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   482
    val trancl_into_rtrancl = thm "trancl_into_rtrancl";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   483
    val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   484
    val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   485
    val rtrancl_trans = thm "rtrancl_trans";
15096
be1d3b8cfbd5 Documentation added; minor improvements.
ballarin
parents: 15076
diff changeset
   486
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   487
  fun decomp (Trueprop $ t) =
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   488
    let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   489
        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   490
              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   491
              | decr r = (r,"r");
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   492
            val (rel,r) = decr rel;
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   493
        in SOME (a,b,rel,r) end
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   494
      | dec _ =  NONE
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   495
    in dec t end;
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   496
21589
1b02201d7195 simplified method setup;
wenzelm
parents: 21404
diff changeset
   497
  end);
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   498
17876
b9c92f384109 change_claset/simpset;
wenzelm
parents: 17589
diff changeset
   499
change_simpset (fn ss => ss
b9c92f384109 change_claset/simpset;
wenzelm
parents: 17589
diff changeset
   500
  addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
b9c92f384109 change_claset/simpset;
wenzelm
parents: 17589
diff changeset
   501
  addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)));
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   502
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   503
*}
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   504
21589
1b02201d7195 simplified method setup;
wenzelm
parents: 21404
diff changeset
   505
(* Optional methods *)
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   506
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   507
method_setup trancl =
21589
1b02201d7195 simplified method setup;
wenzelm
parents: 21404
diff changeset
   508
  {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.trancl_tac) *}
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 17876
diff changeset
   509
  {* simple transitivity reasoner *}
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   510
method_setup rtrancl =
21589
1b02201d7195 simplified method setup;
wenzelm
parents: 21404
diff changeset
   511
  {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *}
15076
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   512
  {* simple transitivity reasoner *}
4b3d280ef06a New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents: 14565
diff changeset
   513
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   514
end