| author | wenzelm | 
| Sun, 08 Jun 2008 14:29:09 +0200 | |
| changeset 27090 | 2f45c1b1b05d | 
| parent 26480 | 544cef16045b | 
| child 27250 | 7eef2b183032 | 
| permissions | -rw-r--r-- | 
| 14770 | 1 | (* Title: HOL/OrderedGroup.thy | 
| 14738 | 2 | ID: $Id$ | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 3 | Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel, | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 14738 | 5 | *) | 
| 6 | ||
| 7 | header {* Ordered Groups *}
 | |
| 8 | ||
| 15131 | 9 | theory OrderedGroup | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 10 | imports Lattices | 
| 19798 | 11 | uses "~~/src/Provers/Arith/abel_cancel.ML" | 
| 15131 | 12 | begin | 
| 14738 | 13 | |
| 14 | text {*
 | |
| 15 | The theory of partially ordered groups is taken from the books: | |
| 16 |   \begin{itemize}
 | |
| 17 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 18 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 19 |   \end{itemize}
 | |
| 20 | Most of the used notions can also be looked up in | |
| 21 |   \begin{itemize}
 | |
| 14770 | 22 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 23 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 24 |   \end{itemize}
 | |
| 25 | *} | |
| 26 | ||
| 23085 | 27 | subsection {* Semigroups and Monoids *}
 | 
| 14738 | 28 | |
| 22390 | 29 | class semigroup_add = plus + | 
| 25062 | 30 | assumes add_assoc: "(a + b) + c = a + (b + c)" | 
| 22390 | 31 | |
| 32 | class ab_semigroup_add = semigroup_add + | |
| 25062 | 33 | assumes add_commute: "a + b = b + a" | 
| 34 | begin | |
| 14738 | 35 | |
| 25062 | 36 | lemma add_left_commute: "a + (b + c) = b + (a + c)" | 
| 37 | by (rule mk_left_commute [of "plus", OF add_assoc add_commute]) | |
| 38 | ||
| 39 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 40 | ||
| 41 | end | |
| 14738 | 42 | |
| 43 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 44 | ||
| 22390 | 45 | class semigroup_mult = times + | 
| 25062 | 46 | assumes mult_assoc: "(a * b) * c = a * (b * c)" | 
| 14738 | 47 | |
| 22390 | 48 | class ab_semigroup_mult = semigroup_mult + | 
| 25062 | 49 | assumes mult_commute: "a * b = b * a" | 
| 23181 | 50 | begin | 
| 14738 | 51 | |
| 25062 | 52 | lemma mult_left_commute: "a * (b * c) = b * (a * c)" | 
| 53 | by (rule mk_left_commute [of "times", OF mult_assoc mult_commute]) | |
| 54 | ||
| 55 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 23181 | 56 | |
| 57 | end | |
| 14738 | 58 | |
| 59 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 60 | ||
| 26015 | 61 | class ab_semigroup_idem_mult = ab_semigroup_mult + | 
| 62 | assumes mult_idem: "x * x = x" | |
| 63 | begin | |
| 64 | ||
| 65 | lemma mult_left_idem: "x * (x * y) = x * y" | |
| 66 | unfolding mult_assoc [symmetric, of x] mult_idem .. | |
| 67 | ||
| 68 | lemmas mult_ac_idem = mult_ac mult_idem mult_left_idem | |
| 69 | ||
| 70 | end | |
| 71 | ||
| 72 | lemmas mult_ac_idem = mult_ac mult_idem mult_left_idem | |
| 73 | ||
| 23085 | 74 | class monoid_add = zero + semigroup_add + | 
| 25062 | 75 | assumes add_0_left [simp]: "0 + a = a" | 
| 76 | and add_0_right [simp]: "a + 0 = a" | |
| 23085 | 77 | |
| 26071 | 78 | lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0" | 
| 79 | by (rule eq_commute) | |
| 80 | ||
| 22390 | 81 | class comm_monoid_add = zero + ab_semigroup_add + | 
| 25062 | 82 | assumes add_0: "0 + a = a" | 
| 83 | begin | |
| 23085 | 84 | |
| 25062 | 85 | subclass monoid_add | 
| 86 | by unfold_locales (insert add_0, simp_all add: add_commute) | |
| 87 | ||
| 88 | end | |
| 14738 | 89 | |
| 22390 | 90 | class monoid_mult = one + semigroup_mult + | 
| 25062 | 91 | assumes mult_1_left [simp]: "1 * a = a" | 
| 92 | assumes mult_1_right [simp]: "a * 1 = a" | |
| 14738 | 93 | |
| 26071 | 94 | lemma one_reorient: "1 = x \<longleftrightarrow> x = 1" | 
| 95 | by (rule eq_commute) | |
| 96 | ||
| 22390 | 97 | class comm_monoid_mult = one + ab_semigroup_mult + | 
| 25062 | 98 | assumes mult_1: "1 * a = a" | 
| 99 | begin | |
| 14738 | 100 | |
| 25062 | 101 | subclass monoid_mult | 
| 25613 | 102 | by unfold_locales (insert mult_1, simp_all add: mult_commute) | 
| 25062 | 103 | |
| 104 | end | |
| 14738 | 105 | |
| 22390 | 106 | class cancel_semigroup_add = semigroup_add + | 
| 25062 | 107 | assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 108 | assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c" | |
| 14738 | 109 | |
| 22390 | 110 | class cancel_ab_semigroup_add = ab_semigroup_add + | 
| 25062 | 111 | assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 25267 | 112 | begin | 
| 14738 | 113 | |
| 25267 | 114 | subclass cancel_semigroup_add | 
| 25062 | 115 | proof unfold_locales | 
| 22390 | 116 | fix a b c :: 'a | 
| 117 | assume "a + b = a + c" | |
| 118 | then show "b = c" by (rule add_imp_eq) | |
| 119 | next | |
| 14738 | 120 | fix a b c :: 'a | 
| 121 | assume "b + a = c + a" | |
| 22390 | 122 | then have "a + b = a + c" by (simp only: add_commute) | 
| 123 | then show "b = c" by (rule add_imp_eq) | |
| 14738 | 124 | qed | 
| 125 | ||
| 25267 | 126 | end | 
| 127 | ||
| 25194 | 128 | context cancel_ab_semigroup_add | 
| 129 | begin | |
| 25062 | 130 | |
| 23085 | 131 | lemma add_left_cancel [simp]: | 
| 25062 | 132 | "a + b = a + c \<longleftrightarrow> b = c" | 
| 23085 | 133 | by (blast dest: add_left_imp_eq) | 
| 134 | ||
| 135 | lemma add_right_cancel [simp]: | |
| 25062 | 136 | "b + a = c + a \<longleftrightarrow> b = c" | 
| 23085 | 137 | by (blast dest: add_right_imp_eq) | 
| 138 | ||
| 25062 | 139 | end | 
| 140 | ||
| 23085 | 141 | subsection {* Groups *}
 | 
| 142 | ||
| 25762 | 143 | class group_add = minus + uminus + monoid_add + | 
| 25062 | 144 | assumes left_minus [simp]: "- a + a = 0" | 
| 145 | assumes diff_minus: "a - b = a + (- b)" | |
| 146 | begin | |
| 23085 | 147 | |
| 25062 | 148 | lemma minus_add_cancel: "- a + (a + b) = b" | 
| 149 | by (simp add: add_assoc[symmetric]) | |
| 14738 | 150 | |
| 25062 | 151 | lemma minus_zero [simp]: "- 0 = 0" | 
| 14738 | 152 | proof - | 
| 25062 | 153 | have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right) | 
| 154 | also have "\<dots> = 0" by (rule minus_add_cancel) | |
| 14738 | 155 | finally show ?thesis . | 
| 156 | qed | |
| 157 | ||
| 25062 | 158 | lemma minus_minus [simp]: "- (- a) = a" | 
| 23085 | 159 | proof - | 
| 25062 | 160 | have "- (- a) = - (- a) + (- a + a)" by simp | 
| 161 | also have "\<dots> = a" by (rule minus_add_cancel) | |
| 23085 | 162 | finally show ?thesis . | 
| 163 | qed | |
| 14738 | 164 | |
| 25062 | 165 | lemma right_minus [simp]: "a + - a = 0" | 
| 14738 | 166 | proof - | 
| 25062 | 167 | have "a + - a = - (- a) + - a" by simp | 
| 168 | also have "\<dots> = 0" by (rule left_minus) | |
| 14738 | 169 | finally show ?thesis . | 
| 170 | qed | |
| 171 | ||
| 25062 | 172 | lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b" | 
| 14738 | 173 | proof | 
| 23085 | 174 | assume "a - b = 0" | 
| 175 | have "a = (a - b) + b" by (simp add:diff_minus add_assoc) | |
| 176 | also have "\<dots> = b" using `a - b = 0` by simp | |
| 177 | finally show "a = b" . | |
| 14738 | 178 | next | 
| 23085 | 179 | assume "a = b" thus "a - b = 0" by (simp add: diff_minus) | 
| 14738 | 180 | qed | 
| 181 | ||
| 25062 | 182 | lemma equals_zero_I: | 
| 183 | assumes "a + b = 0" | |
| 184 | shows "- a = b" | |
| 23085 | 185 | proof - | 
| 25062 | 186 | have "- a = - a + (a + b)" using assms by simp | 
| 187 | also have "\<dots> = b" by (simp add: add_assoc[symmetric]) | |
| 23085 | 188 | finally show ?thesis . | 
| 189 | qed | |
| 14738 | 190 | |
| 25062 | 191 | lemma diff_self [simp]: "a - a = 0" | 
| 192 | by (simp add: diff_minus) | |
| 14738 | 193 | |
| 25062 | 194 | lemma diff_0 [simp]: "0 - a = - a" | 
| 195 | by (simp add: diff_minus) | |
| 14738 | 196 | |
| 25062 | 197 | lemma diff_0_right [simp]: "a - 0 = a" | 
| 198 | by (simp add: diff_minus) | |
| 14738 | 199 | |
| 25062 | 200 | lemma diff_minus_eq_add [simp]: "a - - b = a + b" | 
| 201 | by (simp add: diff_minus) | |
| 14738 | 202 | |
| 25062 | 203 | lemma neg_equal_iff_equal [simp]: | 
| 204 | "- a = - b \<longleftrightarrow> a = b" | |
| 14738 | 205 | proof | 
| 206 | assume "- a = - b" | |
| 207 | hence "- (- a) = - (- b)" | |
| 208 | by simp | |
| 25062 | 209 | thus "a = b" by simp | 
| 14738 | 210 | next | 
| 25062 | 211 | assume "a = b" | 
| 212 | thus "- a = - b" by simp | |
| 14738 | 213 | qed | 
| 214 | ||
| 25062 | 215 | lemma neg_equal_0_iff_equal [simp]: | 
| 216 | "- a = 0 \<longleftrightarrow> a = 0" | |
| 217 | by (subst neg_equal_iff_equal [symmetric], simp) | |
| 14738 | 218 | |
| 25062 | 219 | lemma neg_0_equal_iff_equal [simp]: | 
| 220 | "0 = - a \<longleftrightarrow> 0 = a" | |
| 221 | by (subst neg_equal_iff_equal [symmetric], simp) | |
| 14738 | 222 | |
| 223 | text{*The next two equations can make the simplifier loop!*}
 | |
| 224 | ||
| 25062 | 225 | lemma equation_minus_iff: | 
| 226 | "a = - b \<longleftrightarrow> b = - a" | |
| 14738 | 227 | proof - | 
| 25062 | 228 | have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal) | 
| 229 | thus ?thesis by (simp add: eq_commute) | |
| 230 | qed | |
| 231 | ||
| 232 | lemma minus_equation_iff: | |
| 233 | "- a = b \<longleftrightarrow> - b = a" | |
| 234 | proof - | |
| 235 | have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal) | |
| 14738 | 236 | thus ?thesis by (simp add: eq_commute) | 
| 237 | qed | |
| 238 | ||
| 25062 | 239 | end | 
| 240 | ||
| 25762 | 241 | class ab_group_add = minus + uminus + comm_monoid_add + | 
| 25062 | 242 | assumes ab_left_minus: "- a + a = 0" | 
| 243 | assumes ab_diff_minus: "a - b = a + (- b)" | |
| 25267 | 244 | begin | 
| 25062 | 245 | |
| 25267 | 246 | subclass group_add | 
| 25062 | 247 | by unfold_locales (simp_all add: ab_left_minus ab_diff_minus) | 
| 248 | ||
| 25267 | 249 | subclass cancel_ab_semigroup_add | 
| 25062 | 250 | proof unfold_locales | 
| 251 | fix a b c :: 'a | |
| 252 | assume "a + b = a + c" | |
| 253 | then have "- a + a + b = - a + a + c" | |
| 254 | unfolding add_assoc by simp | |
| 255 | then show "b = c" by simp | |
| 256 | qed | |
| 257 | ||
| 258 | lemma uminus_add_conv_diff: | |
| 259 | "- a + b = b - a" | |
| 260 | by (simp add:diff_minus add_commute) | |
| 261 | ||
| 262 | lemma minus_add_distrib [simp]: | |
| 263 | "- (a + b) = - a + - b" | |
| 264 | by (rule equals_zero_I) (simp add: add_ac) | |
| 265 | ||
| 266 | lemma minus_diff_eq [simp]: | |
| 267 | "- (a - b) = b - a" | |
| 268 | by (simp add: diff_minus add_commute) | |
| 269 | ||
| 25077 | 270 | lemma add_diff_eq: "a + (b - c) = (a + b) - c" | 
| 271 | by (simp add: diff_minus add_ac) | |
| 272 | ||
| 273 | lemma diff_add_eq: "(a - b) + c = (a + c) - b" | |
| 274 | by (simp add: diff_minus add_ac) | |
| 275 | ||
| 276 | lemma diff_eq_eq: "a - b = c \<longleftrightarrow> a = c + b" | |
| 277 | by (auto simp add: diff_minus add_assoc) | |
| 278 | ||
| 279 | lemma eq_diff_eq: "a = c - b \<longleftrightarrow> a + b = c" | |
| 280 | by (auto simp add: diff_minus add_assoc) | |
| 281 | ||
| 282 | lemma diff_diff_eq: "(a - b) - c = a - (b + c)" | |
| 283 | by (simp add: diff_minus add_ac) | |
| 284 | ||
| 285 | lemma diff_diff_eq2: "a - (b - c) = (a + c) - b" | |
| 286 | by (simp add: diff_minus add_ac) | |
| 287 | ||
| 288 | lemma diff_add_cancel: "a - b + b = a" | |
| 289 | by (simp add: diff_minus add_ac) | |
| 290 | ||
| 291 | lemma add_diff_cancel: "a + b - b = a" | |
| 292 | by (simp add: diff_minus add_ac) | |
| 293 | ||
| 294 | lemmas compare_rls = | |
| 295 | diff_minus [symmetric] | |
| 296 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 297 | diff_eq_eq eq_diff_eq | |
| 298 | ||
| 299 | lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0" | |
| 300 | by (simp add: compare_rls) | |
| 301 | ||
| 25062 | 302 | end | 
| 14738 | 303 | |
| 304 | subsection {* (Partially) Ordered Groups *} 
 | |
| 305 | ||
| 22390 | 306 | class pordered_ab_semigroup_add = order + ab_semigroup_add + | 
| 25062 | 307 | assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b" | 
| 308 | begin | |
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 309 | |
| 25062 | 310 | lemma add_right_mono: | 
| 311 | "a \<le> b \<Longrightarrow> a + c \<le> b + c" | |
| 22390 | 312 | by (simp add: add_commute [of _ c] add_left_mono) | 
| 14738 | 313 | |
| 314 | text {* non-strict, in both arguments *}
 | |
| 315 | lemma add_mono: | |
| 25062 | 316 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d" | 
| 14738 | 317 | apply (erule add_right_mono [THEN order_trans]) | 
| 318 | apply (simp add: add_commute add_left_mono) | |
| 319 | done | |
| 320 | ||
| 25062 | 321 | end | 
| 322 | ||
| 323 | class pordered_cancel_ab_semigroup_add = | |
| 324 | pordered_ab_semigroup_add + cancel_ab_semigroup_add | |
| 325 | begin | |
| 326 | ||
| 14738 | 327 | lemma add_strict_left_mono: | 
| 25062 | 328 | "a < b \<Longrightarrow> c + a < c + b" | 
| 329 | by (auto simp add: less_le add_left_mono) | |
| 14738 | 330 | |
| 331 | lemma add_strict_right_mono: | |
| 25062 | 332 | "a < b \<Longrightarrow> a + c < b + c" | 
| 333 | by (simp add: add_commute [of _ c] add_strict_left_mono) | |
| 14738 | 334 | |
| 335 | text{*Strict monotonicity in both arguments*}
 | |
| 25062 | 336 | lemma add_strict_mono: | 
| 337 | "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | |
| 338 | apply (erule add_strict_right_mono [THEN less_trans]) | |
| 14738 | 339 | apply (erule add_strict_left_mono) | 
| 340 | done | |
| 341 | ||
| 342 | lemma add_less_le_mono: | |
| 25062 | 343 | "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d" | 
| 344 | apply (erule add_strict_right_mono [THEN less_le_trans]) | |
| 345 | apply (erule add_left_mono) | |
| 14738 | 346 | done | 
| 347 | ||
| 348 | lemma add_le_less_mono: | |
| 25062 | 349 | "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 350 | apply (erule add_right_mono [THEN le_less_trans]) | |
| 14738 | 351 | apply (erule add_strict_left_mono) | 
| 352 | done | |
| 353 | ||
| 25062 | 354 | end | 
| 355 | ||
| 356 | class pordered_ab_semigroup_add_imp_le = | |
| 357 | pordered_cancel_ab_semigroup_add + | |
| 358 | assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b" | |
| 359 | begin | |
| 360 | ||
| 14738 | 361 | lemma add_less_imp_less_left: | 
| 25062 | 362 | assumes less: "c + a < c + b" | 
| 363 | shows "a < b" | |
| 14738 | 364 | proof - | 
| 365 | from less have le: "c + a <= c + b" by (simp add: order_le_less) | |
| 366 | have "a <= b" | |
| 367 | apply (insert le) | |
| 368 | apply (drule add_le_imp_le_left) | |
| 369 | by (insert le, drule add_le_imp_le_left, assumption) | |
| 370 | moreover have "a \<noteq> b" | |
| 371 | proof (rule ccontr) | |
| 372 | assume "~(a \<noteq> b)" | |
| 373 | then have "a = b" by simp | |
| 374 | then have "c + a = c + b" by simp | |
| 375 | with less show "False"by simp | |
| 376 | qed | |
| 377 | ultimately show "a < b" by (simp add: order_le_less) | |
| 378 | qed | |
| 379 | ||
| 380 | lemma add_less_imp_less_right: | |
| 25062 | 381 | "a + c < b + c \<Longrightarrow> a < b" | 
| 14738 | 382 | apply (rule add_less_imp_less_left [of c]) | 
| 383 | apply (simp add: add_commute) | |
| 384 | done | |
| 385 | ||
| 386 | lemma add_less_cancel_left [simp]: | |
| 25062 | 387 | "c + a < c + b \<longleftrightarrow> a < b" | 
| 388 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | |
| 14738 | 389 | |
| 390 | lemma add_less_cancel_right [simp]: | |
| 25062 | 391 | "a + c < b + c \<longleftrightarrow> a < b" | 
| 392 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | |
| 14738 | 393 | |
| 394 | lemma add_le_cancel_left [simp]: | |
| 25062 | 395 | "c + a \<le> c + b \<longleftrightarrow> a \<le> b" | 
| 396 | by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) | |
| 14738 | 397 | |
| 398 | lemma add_le_cancel_right [simp]: | |
| 25062 | 399 | "a + c \<le> b + c \<longleftrightarrow> a \<le> b" | 
| 400 | by (simp add: add_commute [of a c] add_commute [of b c]) | |
| 14738 | 401 | |
| 402 | lemma add_le_imp_le_right: | |
| 25062 | 403 | "a + c \<le> b + c \<Longrightarrow> a \<le> b" | 
| 404 | by simp | |
| 405 | ||
| 25077 | 406 | lemma max_add_distrib_left: | 
| 407 | "max x y + z = max (x + z) (y + z)" | |
| 408 | unfolding max_def by auto | |
| 409 | ||
| 410 | lemma min_add_distrib_left: | |
| 411 | "min x y + z = min (x + z) (y + z)" | |
| 412 | unfolding min_def by auto | |
| 413 | ||
| 25062 | 414 | end | 
| 415 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 416 | subsection {* Support for reasoning about signs *}
 | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 417 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 418 | class pordered_comm_monoid_add = | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 419 | pordered_cancel_ab_semigroup_add + comm_monoid_add | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 420 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 421 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 422 | lemma add_pos_nonneg: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 423 | assumes "0 < a" and "0 \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 424 | shows "0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 425 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 426 | have "0 + 0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 427 | using assms by (rule add_less_le_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 428 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 429 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 430 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 431 | lemma add_pos_pos: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 432 | assumes "0 < a" and "0 < b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 433 | shows "0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 434 | by (rule add_pos_nonneg) (insert assms, auto) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 435 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 436 | lemma add_nonneg_pos: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 437 | assumes "0 \<le> a" and "0 < b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 438 | shows "0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 439 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 440 | have "0 + 0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 441 | using assms by (rule add_le_less_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 442 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 443 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 444 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 445 | lemma add_nonneg_nonneg: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 446 | assumes "0 \<le> a" and "0 \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 447 | shows "0 \<le> a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 448 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 449 | have "0 + 0 \<le> a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 450 | using assms by (rule add_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 451 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 452 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 453 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 454 | lemma add_neg_nonpos: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 455 | assumes "a < 0" and "b \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 456 | shows "a + b < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 457 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 458 | have "a + b < 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 459 | using assms by (rule add_less_le_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 460 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 461 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 462 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 463 | lemma add_neg_neg: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 464 | assumes "a < 0" and "b < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 465 | shows "a + b < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 466 | by (rule add_neg_nonpos) (insert assms, auto) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 467 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 468 | lemma add_nonpos_neg: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 469 | assumes "a \<le> 0" and "b < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 470 | shows "a + b < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 471 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 472 | have "a + b < 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 473 | using assms by (rule add_le_less_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 474 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 475 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 476 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 477 | lemma add_nonpos_nonpos: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 478 | assumes "a \<le> 0" and "b \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 479 | shows "a + b \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 480 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 481 | have "a + b \<le> 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 482 | using assms by (rule add_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 483 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 484 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 485 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 486 | end | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 487 | |
| 25062 | 488 | class pordered_ab_group_add = | 
| 489 | ab_group_add + pordered_ab_semigroup_add | |
| 490 | begin | |
| 491 | ||
| 492 | subclass pordered_cancel_ab_semigroup_add | |
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25307diff
changeset | 493 | by intro_locales | 
| 25062 | 494 | |
| 495 | subclass pordered_ab_semigroup_add_imp_le | |
| 496 | proof unfold_locales | |
| 497 | fix a b c :: 'a | |
| 498 | assume "c + a \<le> c + b" | |
| 499 | hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono) | |
| 500 | hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc) | |
| 501 | thus "a \<le> b" by simp | |
| 502 | qed | |
| 503 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 504 | subclass pordered_comm_monoid_add | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25307diff
changeset | 505 | by intro_locales | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 506 | |
| 25077 | 507 | lemma max_diff_distrib_left: | 
| 508 | shows "max x y - z = max (x - z) (y - z)" | |
| 509 | by (simp add: diff_minus, rule max_add_distrib_left) | |
| 510 | ||
| 511 | lemma min_diff_distrib_left: | |
| 512 | shows "min x y - z = min (x - z) (y - z)" | |
| 513 | by (simp add: diff_minus, rule min_add_distrib_left) | |
| 514 | ||
| 515 | lemma le_imp_neg_le: | |
| 516 | assumes "a \<le> b" | |
| 517 | shows "-b \<le> -a" | |
| 518 | proof - | |
| 519 | have "-a+a \<le> -a+b" | |
| 520 | using `a \<le> b` by (rule add_left_mono) | |
| 521 | hence "0 \<le> -a+b" | |
| 522 | by simp | |
| 523 | hence "0 + (-b) \<le> (-a + b) + (-b)" | |
| 524 | by (rule add_right_mono) | |
| 525 | thus ?thesis | |
| 526 | by (simp add: add_assoc) | |
| 527 | qed | |
| 528 | ||
| 529 | lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b" | |
| 530 | proof | |
| 531 | assume "- b \<le> - a" | |
| 532 | hence "- (- a) \<le> - (- b)" | |
| 533 | by (rule le_imp_neg_le) | |
| 534 | thus "a\<le>b" by simp | |
| 535 | next | |
| 536 | assume "a\<le>b" | |
| 537 | thus "-b \<le> -a" by (rule le_imp_neg_le) | |
| 538 | qed | |
| 539 | ||
| 540 | lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 541 | by (subst neg_le_iff_le [symmetric], simp) | |
| 542 | ||
| 543 | lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 544 | by (subst neg_le_iff_le [symmetric], simp) | |
| 545 | ||
| 546 | lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b" | |
| 547 | by (force simp add: less_le) | |
| 548 | ||
| 549 | lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a" | |
| 550 | by (subst neg_less_iff_less [symmetric], simp) | |
| 551 | ||
| 552 | lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0" | |
| 553 | by (subst neg_less_iff_less [symmetric], simp) | |
| 554 | ||
| 555 | text{*The next several equations can make the simplifier loop!*}
 | |
| 556 | ||
| 557 | lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a" | |
| 558 | proof - | |
| 559 | have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less) | |
| 560 | thus ?thesis by simp | |
| 561 | qed | |
| 562 | ||
| 563 | lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a" | |
| 564 | proof - | |
| 565 | have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less) | |
| 566 | thus ?thesis by simp | |
| 567 | qed | |
| 568 | ||
| 569 | lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a" | |
| 570 | proof - | |
| 571 | have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff) | |
| 572 | have "(- (- a) <= -b) = (b <= - a)" | |
| 573 | apply (auto simp only: le_less) | |
| 574 | apply (drule mm) | |
| 575 | apply (simp_all) | |
| 576 | apply (drule mm[simplified], assumption) | |
| 577 | done | |
| 578 | then show ?thesis by simp | |
| 579 | qed | |
| 580 | ||
| 581 | lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a" | |
| 582 | by (auto simp add: le_less minus_less_iff) | |
| 583 | ||
| 584 | lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0" | |
| 585 | proof - | |
| 586 | have "(a < b) = (a + (- b) < b + (-b))" | |
| 587 | by (simp only: add_less_cancel_right) | |
| 588 | also have "... = (a - b < 0)" by (simp add: diff_minus) | |
| 589 | finally show ?thesis . | |
| 590 | qed | |
| 591 | ||
| 592 | lemma diff_less_eq: "a - b < c \<longleftrightarrow> a < c + b" | |
| 593 | apply (subst less_iff_diff_less_0 [of a]) | |
| 594 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | |
| 595 | apply (simp add: diff_minus add_ac) | |
| 596 | done | |
| 597 | ||
| 598 | lemma less_diff_eq: "a < c - b \<longleftrightarrow> a + b < c" | |
| 599 | apply (subst less_iff_diff_less_0 [of "plus a b"]) | |
| 600 | apply (subst less_iff_diff_less_0 [of a]) | |
| 601 | apply (simp add: diff_minus add_ac) | |
| 602 | done | |
| 603 | ||
| 604 | lemma diff_le_eq: "a - b \<le> c \<longleftrightarrow> a \<le> c + b" | |
| 605 | by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel) | |
| 606 | ||
| 607 | lemma le_diff_eq: "a \<le> c - b \<longleftrightarrow> a + b \<le> c" | |
| 608 | by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel) | |
| 609 | ||
| 610 | lemmas compare_rls = | |
| 611 | diff_minus [symmetric] | |
| 612 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 613 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | |
| 614 | diff_eq_eq eq_diff_eq | |
| 615 | ||
| 616 | text{*This list of rewrites simplifies (in)equalities by bringing subtractions
 | |
| 617 | to the top and then moving negative terms to the other side. | |
| 618 |   Use with @{text add_ac}*}
 | |
| 619 | lemmas (in -) compare_rls = | |
| 620 | diff_minus [symmetric] | |
| 621 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 622 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | |
| 623 | diff_eq_eq eq_diff_eq | |
| 624 | ||
| 625 | lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0" | |
| 626 | by (simp add: compare_rls) | |
| 627 | ||
| 25230 | 628 | lemmas group_simps = | 
| 629 | add_ac | |
| 630 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 631 | diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff | |
| 632 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | |
| 633 | ||
| 25077 | 634 | end | 
| 635 | ||
| 25230 | 636 | lemmas group_simps = | 
| 637 | mult_ac | |
| 638 | add_ac | |
| 639 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 640 | diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff | |
| 641 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | |
| 642 | ||
| 25062 | 643 | class ordered_ab_semigroup_add = | 
| 644 | linorder + pordered_ab_semigroup_add | |
| 645 | ||
| 646 | class ordered_cancel_ab_semigroup_add = | |
| 647 | linorder + pordered_cancel_ab_semigroup_add | |
| 25267 | 648 | begin | 
| 25062 | 649 | |
| 25267 | 650 | subclass ordered_ab_semigroup_add | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25307diff
changeset | 651 | by intro_locales | 
| 25062 | 652 | |
| 25267 | 653 | subclass pordered_ab_semigroup_add_imp_le | 
| 25062 | 654 | proof unfold_locales | 
| 655 | fix a b c :: 'a | |
| 656 | assume le: "c + a <= c + b" | |
| 657 | show "a <= b" | |
| 658 | proof (rule ccontr) | |
| 659 | assume w: "~ a \<le> b" | |
| 660 | hence "b <= a" by (simp add: linorder_not_le) | |
| 661 | hence le2: "c + b <= c + a" by (rule add_left_mono) | |
| 662 | have "a = b" | |
| 663 | apply (insert le) | |
| 664 | apply (insert le2) | |
| 665 | apply (drule antisym, simp_all) | |
| 666 | done | |
| 667 | with w show False | |
| 668 | by (simp add: linorder_not_le [symmetric]) | |
| 669 | qed | |
| 670 | qed | |
| 671 | ||
| 25267 | 672 | end | 
| 673 | ||
| 25230 | 674 | class ordered_ab_group_add = | 
| 675 | linorder + pordered_ab_group_add | |
| 25267 | 676 | begin | 
| 25230 | 677 | |
| 25267 | 678 | subclass ordered_cancel_ab_semigroup_add | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25307diff
changeset | 679 | by intro_locales | 
| 25230 | 680 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 681 | lemma neg_less_eq_nonneg: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 682 | "- a \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 683 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 684 | assume A: "- a \<le> a" show "0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 685 | proof (rule classical) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 686 | assume "\<not> 0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 687 | then have "a < 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 688 | with A have "- a < 0" by (rule le_less_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 689 | then show ?thesis by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 690 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 691 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 692 | assume A: "0 \<le> a" show "- a \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 693 | proof (rule order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 694 | show "- a \<le> 0" using A by (simp add: minus_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 695 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 696 | show "0 \<le> a" using A . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 697 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 698 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 699 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 700 | lemma less_eq_neg_nonpos: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 701 | "a \<le> - a \<longleftrightarrow> a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 702 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 703 | assume A: "a \<le> - a" show "a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 704 | proof (rule classical) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 705 | assume "\<not> a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 706 | then have "0 < a" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 707 | then have "0 < - a" using A by (rule less_le_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 708 | then show ?thesis by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 709 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 710 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 711 | assume A: "a \<le> 0" show "a \<le> - a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 712 | proof (rule order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 713 | show "0 \<le> - a" using A by (simp add: minus_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 714 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 715 | show "a \<le> 0" using A . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 716 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 717 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 718 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 719 | lemma equal_neg_zero: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 720 | "a = - a \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 721 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 722 | assume "a = 0" then show "a = - a" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 723 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 724 | assume A: "a = - a" show "a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 725 | proof (cases "0 \<le> a") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 726 | case True with A have "0 \<le> - a" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 727 | with le_minus_iff have "a \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 728 | with True show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 729 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 730 | case False then have B: "a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 731 | with A have "- a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 732 | with B show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 733 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 734 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 735 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 736 | lemma neg_equal_zero: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 737 | "- a = a \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 738 | unfolding equal_neg_zero [symmetric] by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 739 | |
| 25267 | 740 | end | 
| 741 | ||
| 25077 | 742 | -- {* FIXME localize the following *}
 | 
| 14738 | 743 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 744 | lemma add_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 745 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 746 | shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c" | 
| 14738 | 747 | by (insert add_mono [of 0 a b c], simp) | 
| 748 | ||
| 15539 | 749 | lemma add_increasing2: | 
| 750 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | |
| 751 | shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c" | |
| 752 | by (simp add:add_increasing add_commute[of a]) | |
| 753 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 754 | lemma add_strict_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 755 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 756 | shows "[|0<a; b\<le>c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 757 | by (insert add_less_le_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 758 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 759 | lemma add_strict_increasing2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 760 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 761 | shows "[|0\<le>a; b<c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 762 | by (insert add_le_less_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 763 | |
| 14738 | 764 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 765 | class pordered_ab_group_add_abs = pordered_ab_group_add + abs + | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 766 | assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 767 | and abs_ge_self: "a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 768 | and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 769 | and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 770 | and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 771 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 772 | |
| 25307 | 773 | lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0" | 
| 774 | unfolding neg_le_0_iff_le by simp | |
| 775 | ||
| 776 | lemma abs_of_nonneg [simp]: | |
| 777 | assumes nonneg: "0 \<le> a" | |
| 778 | shows "\<bar>a\<bar> = a" | |
| 779 | proof (rule antisym) | |
| 780 | from nonneg le_imp_neg_le have "- a \<le> 0" by simp | |
| 781 | from this nonneg have "- a \<le> a" by (rule order_trans) | |
| 782 | then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI) | |
| 783 | qed (rule abs_ge_self) | |
| 784 | ||
| 785 | lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 786 | by (rule antisym) | |
| 787 | (auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"]) | |
| 788 | ||
| 789 | lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 790 | proof - | |
| 791 | have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0" | |
| 792 | proof (rule antisym) | |
| 793 | assume zero: "\<bar>a\<bar> = 0" | |
| 794 | with abs_ge_self show "a \<le> 0" by auto | |
| 795 | from zero have "\<bar>-a\<bar> = 0" by simp | |
| 796 | with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto | |
| 797 | with neg_le_0_iff_le show "0 \<le> a" by auto | |
| 798 | qed | |
| 799 | then show ?thesis by auto | |
| 800 | qed | |
| 801 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 802 | lemma abs_zero [simp]: "\<bar>0\<bar> = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 803 | by simp | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 804 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 805 | lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 806 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 807 | have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 808 | thus ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 809 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 810 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 811 | lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 812 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 813 | assume "\<bar>a\<bar> \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 814 | then have "\<bar>a\<bar> = 0" by (rule antisym) simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 815 | thus "a = 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 816 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 817 | assume "a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 818 | thus "\<bar>a\<bar> \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 819 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 820 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 821 | lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 822 | by (simp add: less_le) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 823 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 824 | lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 825 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 826 | have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 827 | show ?thesis by (simp add: a) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 828 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 829 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 830 | lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 831 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 832 | have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 833 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 834 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 835 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 836 | lemma abs_minus_commute: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 837 | "\<bar>a - b\<bar> = \<bar>b - a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 838 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 839 | have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 840 | also have "... = \<bar>b - a\<bar>" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 841 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 842 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 843 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 844 | lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 845 | by (rule abs_of_nonneg, rule less_imp_le) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 846 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 847 | lemma abs_of_nonpos [simp]: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 848 | assumes "a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 849 | shows "\<bar>a\<bar> = - a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 850 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 851 | let ?b = "- a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 852 | have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 853 | unfolding abs_minus_cancel [of "?b"] | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 854 | unfolding neg_le_0_iff_le [of "?b"] | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 855 | unfolding minus_minus by (erule abs_of_nonneg) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 856 | then show ?thesis using assms by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 857 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 858 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 859 | lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 860 | by (rule abs_of_nonpos, rule less_imp_le) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 861 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 862 | lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 863 | by (insert abs_ge_self, blast intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 864 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 865 | lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 866 | by (insert abs_le_D1 [of "uminus a"], simp) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 867 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 868 | lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 869 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 870 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 871 | lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 872 | apply (simp add: compare_rls) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 873 | apply (subgoal_tac "abs a = abs (plus (minus a b) b)") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 874 | apply (erule ssubst) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 875 | apply (rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 876 | apply (rule arg_cong) back | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 877 | apply (simp add: compare_rls) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 878 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 879 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 880 | lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 881 | apply (subst abs_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 882 | apply auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 883 | apply (rule abs_triangle_ineq2) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 884 | apply (subst abs_minus_commute) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 885 | apply (rule abs_triangle_ineq2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 886 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 887 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 888 | lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 889 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 890 | have "abs(a - b) = abs(a + - b)" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 891 | by (subst diff_minus, rule refl) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 892 | also have "... <= abs a + abs (- b)" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 893 | by (rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 894 | finally show ?thesis | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 895 | by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 896 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 897 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 898 | lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 899 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 900 | have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 901 | also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 902 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 903 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 904 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 905 | lemma abs_add_abs [simp]: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 906 | "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 907 | proof (rule antisym) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 908 | show "?L \<ge> ?R" by(rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 909 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 910 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 911 | also have "\<dots> = ?R" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 912 | finally show "?L \<le> ?R" . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 913 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 914 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 915 | end | 
| 14738 | 916 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 917 | |
| 14738 | 918 | subsection {* Lattice Ordered (Abelian) Groups *}
 | 
| 919 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 920 | class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice | 
| 25090 | 921 | begin | 
| 14738 | 922 | |
| 25090 | 923 | lemma add_inf_distrib_left: | 
| 924 | "a + inf b c = inf (a + b) (a + c)" | |
| 925 | apply (rule antisym) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 926 | apply (simp_all add: le_infI) | 
| 25090 | 927 | apply (rule add_le_imp_le_left [of "uminus a"]) | 
| 928 | apply (simp only: add_assoc [symmetric], simp) | |
| 21312 | 929 | apply rule | 
| 930 | apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+ | |
| 14738 | 931 | done | 
| 932 | ||
| 25090 | 933 | lemma add_inf_distrib_right: | 
| 934 | "inf a b + c = inf (a + c) (b + c)" | |
| 935 | proof - | |
| 936 | have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left) | |
| 937 | thus ?thesis by (simp add: add_commute) | |
| 938 | qed | |
| 939 | ||
| 940 | end | |
| 941 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 942 | class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice | 
| 25090 | 943 | begin | 
| 944 | ||
| 945 | lemma add_sup_distrib_left: | |
| 946 | "a + sup b c = sup (a + b) (a + c)" | |
| 947 | apply (rule antisym) | |
| 948 | apply (rule add_le_imp_le_left [of "uminus a"]) | |
| 14738 | 949 | apply (simp only: add_assoc[symmetric], simp) | 
| 21312 | 950 | apply rule | 
| 951 | apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+ | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 952 | apply (rule le_supI) | 
| 21312 | 953 | apply (simp_all) | 
| 14738 | 954 | done | 
| 955 | ||
| 25090 | 956 | lemma add_sup_distrib_right: | 
| 957 | "sup a b + c = sup (a+c) (b+c)" | |
| 14738 | 958 | proof - | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 959 | have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left) | 
| 14738 | 960 | thus ?thesis by (simp add: add_commute) | 
| 961 | qed | |
| 962 | ||
| 25090 | 963 | end | 
| 964 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 965 | class lordered_ab_group_add = pordered_ab_group_add + lattice | 
| 25090 | 966 | begin | 
| 967 | ||
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25307diff
changeset | 968 | subclass lordered_ab_group_add_meet by intro_locales | 
| 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25307diff
changeset | 969 | subclass lordered_ab_group_add_join by intro_locales | 
| 25090 | 970 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 971 | lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left | 
| 14738 | 972 | |
| 25090 | 973 | lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 974 | proof (rule inf_unique) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 975 | fix a b :: 'a | 
| 25090 | 976 | show "- sup (-a) (-b) \<le> a" | 
| 977 | by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"]) | |
| 978 | (simp, simp add: add_sup_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 979 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 980 | fix a b :: 'a | 
| 25090 | 981 | show "- sup (-a) (-b) \<le> b" | 
| 982 | by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"]) | |
| 983 | (simp, simp add: add_sup_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 984 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 985 | fix a b c :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 986 | assume "a \<le> b" "a \<le> c" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 987 | then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 988 | (simp add: le_supI) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 989 | qed | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 990 | |
| 25090 | 991 | lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 992 | proof (rule sup_unique) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 993 | fix a b :: 'a | 
| 25090 | 994 | show "a \<le> - inf (-a) (-b)" | 
| 995 | by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"]) | |
| 996 | (simp, simp add: add_inf_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 997 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 998 | fix a b :: 'a | 
| 25090 | 999 | show "b \<le> - inf (-a) (-b)" | 
| 1000 | by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"]) | |
| 1001 | (simp, simp add: add_inf_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 1002 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 1003 | fix a b c :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 1004 | assume "a \<le> c" "b \<le> c" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 1005 | then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 1006 | (simp add: le_infI) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 1007 | qed | 
| 14738 | 1008 | |
| 25230 | 1009 | lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)" | 
| 1010 | by (simp add: inf_eq_neg_sup) | |
| 1011 | ||
| 1012 | lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)" | |
| 1013 | by (simp add: sup_eq_neg_inf) | |
| 1014 | ||
| 25090 | 1015 | lemma add_eq_inf_sup: "a + b = sup a b + inf a b" | 
| 14738 | 1016 | proof - | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1017 | have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1018 | hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1019 | hence "0 = (-a + sup a b) + (inf a b + (-b))" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1020 | apply (simp add: add_sup_distrib_left add_inf_distrib_right) | 
| 14738 | 1021 | by (simp add: diff_minus add_commute) | 
| 1022 | thus ?thesis | |
| 1023 | apply (simp add: compare_rls) | |
| 25090 | 1024 | apply (subst add_left_cancel [symmetric, of "plus a b" "plus (sup a b) (inf a b)" "uminus a"]) | 
| 14738 | 1025 | apply (simp only: add_assoc, simp add: add_assoc[symmetric]) | 
| 1026 | done | |
| 1027 | qed | |
| 1028 | ||
| 1029 | subsection {* Positive Part, Negative Part, Absolute Value *}
 | |
| 1030 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1031 | definition | 
| 25090 | 1032 | nprt :: "'a \<Rightarrow> 'a" where | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1033 | "nprt x = inf x 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1034 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1035 | definition | 
| 25090 | 1036 | pprt :: "'a \<Rightarrow> 'a" where | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1037 | "pprt x = sup x 0" | 
| 14738 | 1038 | |
| 25230 | 1039 | lemma pprt_neg: "pprt (- x) = - nprt x" | 
| 1040 | proof - | |
| 1041 | have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero .. | |
| 1042 | also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup .. | |
| 1043 | finally have "sup (- x) 0 = - inf x 0" . | |
| 1044 | then show ?thesis unfolding pprt_def nprt_def . | |
| 1045 | qed | |
| 1046 | ||
| 1047 | lemma nprt_neg: "nprt (- x) = - pprt x" | |
| 1048 | proof - | |
| 1049 | from pprt_neg have "pprt (- (- x)) = - nprt (- x)" . | |
| 1050 | then have "pprt x = - nprt (- x)" by simp | |
| 1051 | then show ?thesis by simp | |
| 1052 | qed | |
| 1053 | ||
| 14738 | 1054 | lemma prts: "a = pprt a + nprt a" | 
| 25090 | 1055 | by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric]) | 
| 14738 | 1056 | |
| 1057 | lemma zero_le_pprt[simp]: "0 \<le> pprt a" | |
| 25090 | 1058 | by (simp add: pprt_def) | 
| 14738 | 1059 | |
| 1060 | lemma nprt_le_zero[simp]: "nprt a \<le> 0" | |
| 25090 | 1061 | by (simp add: nprt_def) | 
| 14738 | 1062 | |
| 25090 | 1063 | lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r") | 
| 14738 | 1064 | proof - | 
| 1065 | have a: "?l \<longrightarrow> ?r" | |
| 1066 | apply (auto) | |
| 25090 | 1067 | apply (rule add_le_imp_le_right[of _ "uminus b" _]) | 
| 14738 | 1068 | apply (simp add: add_assoc) | 
| 1069 | done | |
| 1070 | have b: "?r \<longrightarrow> ?l" | |
| 1071 | apply (auto) | |
| 1072 | apply (rule add_le_imp_le_right[of _ "b" _]) | |
| 1073 | apply (simp) | |
| 1074 | done | |
| 1075 | from a b show ?thesis by blast | |
| 1076 | qed | |
| 1077 | ||
| 15580 | 1078 | lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def) | 
| 1079 | lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def) | |
| 1080 | ||
| 25090 | 1081 | lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x" | 
| 1082 | by (simp add: pprt_def le_iff_sup sup_ACI) | |
| 15580 | 1083 | |
| 25090 | 1084 | lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x" | 
| 1085 | by (simp add: nprt_def le_iff_inf inf_ACI) | |
| 15580 | 1086 | |
| 25090 | 1087 | lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0" | 
| 1088 | by (simp add: pprt_def le_iff_sup sup_ACI) | |
| 15580 | 1089 | |
| 25090 | 1090 | lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0" | 
| 1091 | by (simp add: nprt_def le_iff_inf inf_ACI) | |
| 15580 | 1092 | |
| 25090 | 1093 | lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0" | 
| 14738 | 1094 | proof - | 
| 1095 |   {
 | |
| 1096 | fix a::'a | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1097 | assume hyp: "sup a (-a) = 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1098 | hence "sup a (-a) + a = a" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1099 | hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1100 | hence "sup (a+a) 0 <= a" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1101 | hence "0 <= a" by (blast intro: order_trans inf_sup_ord) | 
| 14738 | 1102 | } | 
| 1103 | note p = this | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1104 | assume hyp:"sup a (-a) = 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1105 | hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute) | 
| 14738 | 1106 | from p[OF hyp] p[OF hyp2] show "a = 0" by simp | 
| 1107 | qed | |
| 1108 | ||
| 25090 | 1109 | lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1110 | apply (simp add: inf_eq_neg_sup) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1111 | apply (simp add: sup_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1112 | apply (erule sup_0_imp_0) | 
| 15481 | 1113 | done | 
| 14738 | 1114 | |
| 25090 | 1115 | lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0" | 
| 1116 | by (rule, erule inf_0_imp_0) simp | |
| 14738 | 1117 | |
| 25090 | 1118 | lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0" | 
| 1119 | by (rule, erule sup_0_imp_0) simp | |
| 14738 | 1120 | |
| 25090 | 1121 | lemma zero_le_double_add_iff_zero_le_single_add [simp]: | 
| 1122 | "0 \<le> a + a \<longleftrightarrow> 0 \<le> a" | |
| 14738 | 1123 | proof | 
| 1124 | assume "0 <= a + a" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1125 | hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute) | 
| 25090 | 1126 | have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_") | 
| 1127 | by (simp add: add_sup_inf_distribs inf_ACI) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1128 | hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1129 | hence "inf a 0 = 0" by (simp only: add_right_cancel) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1130 | then show "0 <= a" by (simp add: le_iff_inf inf_commute) | 
| 14738 | 1131 | next | 
| 1132 | assume a: "0 <= a" | |
| 1133 | show "0 <= a + a" by (simp add: add_mono[OF a a, simplified]) | |
| 1134 | qed | |
| 1135 | ||
| 25090 | 1136 | lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0" | 
| 1137 | proof | |
| 1138 | assume assm: "a + a = 0" | |
| 1139 | then have "a + a + - a = - a" by simp | |
| 1140 | then have "a + (a + - a) = - a" by (simp only: add_assoc) | |
| 1141 | then have a: "- a = a" by simp (*FIXME tune proof*) | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25090diff
changeset | 1142 | show "a = 0" apply (rule antisym) | 
| 25090 | 1143 | apply (unfold neg_le_iff_le [symmetric, of a]) | 
| 1144 | unfolding a apply simp | |
| 1145 | unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a] | |
| 1146 | unfolding assm unfolding le_less apply simp_all done | |
| 1147 | next | |
| 1148 | assume "a = 0" then show "a + a = 0" by simp | |
| 1149 | qed | |
| 1150 | ||
| 1151 | lemma zero_less_double_add_iff_zero_less_single_add: | |
| 1152 | "0 < a + a \<longleftrightarrow> 0 < a" | |
| 1153 | proof (cases "a = 0") | |
| 1154 | case True then show ?thesis by auto | |
| 1155 | next | |
| 1156 | case False then show ?thesis (*FIXME tune proof*) | |
| 1157 | unfolding less_le apply simp apply rule | |
| 1158 | apply clarify | |
| 1159 | apply rule | |
| 1160 | apply assumption | |
| 1161 | apply (rule notI) | |
| 1162 | unfolding double_zero [symmetric, of a] apply simp | |
| 1163 | done | |
| 1164 | qed | |
| 1165 | ||
| 1166 | lemma double_add_le_zero_iff_single_add_le_zero [simp]: | |
| 1167 | "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" | |
| 14738 | 1168 | proof - | 
| 25090 | 1169 | have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp) | 
| 1170 | moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add) | |
| 14738 | 1171 | ultimately show ?thesis by blast | 
| 1172 | qed | |
| 1173 | ||
| 25090 | 1174 | lemma double_add_less_zero_iff_single_less_zero [simp]: | 
| 1175 | "a + a < 0 \<longleftrightarrow> a < 0" | |
| 1176 | proof - | |
| 1177 | have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp) | |
| 1178 | moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add) | |
| 1179 | ultimately show ?thesis by blast | |
| 14738 | 1180 | qed | 
| 1181 | ||
| 25230 | 1182 | declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp] | 
| 1183 | ||
| 1184 | lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 1185 | proof - | |
| 1186 | from add_le_cancel_left [of "uminus a" "plus a a" zero] | |
| 1187 | have "(a <= -a) = (a+a <= 0)" | |
| 1188 | by (simp add: add_assoc[symmetric]) | |
| 1189 | thus ?thesis by simp | |
| 1190 | qed | |
| 1191 | ||
| 1192 | lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a" | |
| 1193 | proof - | |
| 1194 | from add_le_cancel_left [of "uminus a" zero "plus a a"] | |
| 1195 | have "(-a <= a) = (0 <= a+a)" | |
| 1196 | by (simp add: add_assoc[symmetric]) | |
| 1197 | thus ?thesis by simp | |
| 1198 | qed | |
| 1199 | ||
| 1200 | lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0" | |
| 1201 | by (simp add: le_iff_inf nprt_def inf_commute) | |
| 1202 | ||
| 1203 | lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0" | |
| 1204 | by (simp add: le_iff_sup pprt_def sup_commute) | |
| 1205 | ||
| 1206 | lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a" | |
| 1207 | by (simp add: le_iff_sup pprt_def sup_commute) | |
| 1208 | ||
| 1209 | lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a" | |
| 1210 | by (simp add: le_iff_inf nprt_def inf_commute) | |
| 1211 | ||
| 1212 | lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b" | |
| 1213 | by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a]) | |
| 1214 | ||
| 1215 | lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b" | |
| 1216 | by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a]) | |
| 1217 | ||
| 25090 | 1218 | end | 
| 1219 | ||
| 1220 | lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left | |
| 1221 | ||
| 25230 | 1222 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1223 | class lordered_ab_group_add_abs = lordered_ab_group_add + abs + | 
| 25230 | 1224 | assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)" | 
| 1225 | begin | |
| 1226 | ||
| 1227 | lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a" | |
| 1228 | proof - | |
| 1229 | have "0 \<le> \<bar>a\<bar>" | |
| 1230 | proof - | |
| 1231 | have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice) | |
| 1232 | show ?thesis by (rule add_mono [OF a b, simplified]) | |
| 1233 | qed | |
| 1234 | then have "0 \<le> sup a (- a)" unfolding abs_lattice . | |
| 1235 | then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1) | |
| 1236 | then show ?thesis | |
| 1237 | by (simp add: add_sup_inf_distribs sup_ACI | |
| 1238 | pprt_def nprt_def diff_minus abs_lattice) | |
| 1239 | qed | |
| 1240 | ||
| 1241 | subclass pordered_ab_group_add_abs | |
| 1242 | proof - | |
| 1243 | have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>" | |
| 1244 | proof - | |
| 1245 | fix a b | |
| 1246 | have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice) | |
| 1247 | show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified]) | |
| 1248 | qed | |
| 1249 | have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | |
| 1250 | by (simp add: abs_lattice le_supI) | |
| 1251 | show ?thesis | |
| 1252 | proof unfold_locales | |
| 1253 | fix a | |
| 1254 | show "0 \<le> \<bar>a\<bar>" by simp | |
| 1255 | next | |
| 1256 | fix a | |
| 1257 | show "a \<le> \<bar>a\<bar>" | |
| 1258 | by (auto simp add: abs_lattice) | |
| 1259 | next | |
| 1260 | fix a | |
| 1261 | show "\<bar>-a\<bar> = \<bar>a\<bar>" | |
| 1262 | by (simp add: abs_lattice sup_commute) | |
| 1263 | next | |
| 1264 | fix a b | |
| 1265 | show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (erule abs_leI) | |
| 1266 | next | |
| 1267 | fix a b | |
| 1268 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | |
| 1269 | proof - | |
| 1270 | have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n") | |
| 1271 | by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus) | |
| 1272 | have a:"a+b <= sup ?m ?n" by (simp) | |
| 1273 | have b:"-a-b <= ?n" by (simp) | |
| 1274 | have c:"?n <= sup ?m ?n" by (simp) | |
| 1275 | from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans) | |
| 1276 | have e:"-a-b = -(a+b)" by (simp add: diff_minus) | |
| 1277 | from a d e have "abs(a+b) <= sup ?m ?n" | |
| 1278 | by (drule_tac abs_leI, auto) | |
| 1279 | with g[symmetric] show ?thesis by simp | |
| 1280 | qed | |
| 1281 | qed auto | |
| 1282 | qed | |
| 1283 | ||
| 1284 | end | |
| 1285 | ||
| 25090 | 1286 | lemma sup_eq_if: | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1287 |   fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
 | 
| 25090 | 1288 | shows "sup a (- a) = (if a < 0 then - a else a)" | 
| 1289 | proof - | |
| 1290 | note add_le_cancel_right [of a a "- a", symmetric, simplified] | |
| 1291 | moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified] | |
| 1292 | then show ?thesis by (auto simp: sup_max max_def) | |
| 1293 | qed | |
| 1294 | ||
| 1295 | lemma abs_if_lattice: | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1296 |   fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
 | 
| 25090 | 1297 | shows "\<bar>a\<bar> = (if a < 0 then - a else a)" | 
| 1298 | by auto | |
| 1299 | ||
| 1300 | ||
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1301 | text {* Needed for abelian cancellation simprocs: *}
 | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1302 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1303 | lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1304 | apply (subst add_left_commute) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1305 | apply (subst add_left_cancel) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1306 | apply simp | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1307 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1308 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1309 | lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1310 | apply (subst add_cancel_21[of _ _ _ 0, simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1311 | apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1312 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1313 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1314 | lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1315 | by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1316 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1317 | lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1318 | apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1319 | apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1320 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1321 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1322 | lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1323 | by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1324 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1325 | lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1326 | by (simp add: diff_minus) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1327 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1328 | lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1329 | by (simp add: add_assoc[symmetric]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1330 | |
| 25090 | 1331 | lemma le_add_right_mono: | 
| 15178 | 1332 | assumes | 
| 1333 | "a <= b + (c::'a::pordered_ab_group_add)" | |
| 1334 | "c <= d" | |
| 1335 | shows "a <= b + d" | |
| 1336 | apply (rule_tac order_trans[where y = "b+c"]) | |
| 1337 | apply (simp_all add: prems) | |
| 1338 | done | |
| 1339 | ||
| 1340 | lemma estimate_by_abs: | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1341 | "a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b" | 
| 15178 | 1342 | proof - | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1343 | assume "a+b <= c" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1344 | hence 2: "a <= c+(-b)" by (simp add: group_simps) | 
| 15178 | 1345 | have 3: "(-b) <= abs b" by (rule abs_ge_minus_self) | 
| 1346 | show ?thesis by (rule le_add_right_mono[OF 2 3]) | |
| 1347 | qed | |
| 1348 | ||
| 25090 | 1349 | subsection {* Tools setup *}
 | 
| 1350 | ||
| 25077 | 1351 | lemma add_mono_thms_ordered_semiring [noatp]: | 
| 1352 | fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add" | |
| 1353 | shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1354 | and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1355 | and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l" | |
| 1356 | and "i = j \<and> k = l \<Longrightarrow> i + k = j + l" | |
| 1357 | by (rule add_mono, clarify+)+ | |
| 1358 | ||
| 1359 | lemma add_mono_thms_ordered_field [noatp]: | |
| 1360 | fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add" | |
| 1361 | shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l" | |
| 1362 | and "i = j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1363 | and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l" | |
| 1364 | and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1365 | and "i < j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1366 | by (auto intro: add_strict_right_mono add_strict_left_mono | |
| 1367 | add_less_le_mono add_le_less_mono add_strict_mono) | |
| 1368 | ||
| 17085 | 1369 | text{*Simplification of @{term "x-y < 0"}, etc.*}
 | 
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1370 | lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric] | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1371 | lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric] | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1372 | lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric] | 
| 17085 | 1373 | |
| 22482 | 1374 | ML {*
 | 
| 1375 | structure ab_group_add_cancel = Abel_Cancel( | |
| 1376 | struct | |
| 1377 | ||
| 1378 | (* term order for abelian groups *) | |
| 1379 | ||
| 1380 | fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a') | |
| 22997 | 1381 |       [@{const_name HOL.zero}, @{const_name HOL.plus},
 | 
| 1382 |         @{const_name HOL.uminus}, @{const_name HOL.minus}]
 | |
| 22482 | 1383 | | agrp_ord _ = ~1; | 
| 1384 | ||
| 1385 | fun termless_agrp (a, b) = (Term.term_lpo agrp_ord (a, b) = LESS); | |
| 1386 | ||
| 1387 | local | |
| 1388 |   val ac1 = mk_meta_eq @{thm add_assoc};
 | |
| 1389 |   val ac2 = mk_meta_eq @{thm add_commute};
 | |
| 1390 |   val ac3 = mk_meta_eq @{thm add_left_commute};
 | |
| 22997 | 1391 |   fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
 | 
| 22482 | 1392 | SOME ac1 | 
| 22997 | 1393 |     | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
 | 
| 22482 | 1394 | if termless_agrp (y, x) then SOME ac3 else NONE | 
| 1395 | | solve_add_ac thy _ (_ $ x $ y) = | |
| 1396 | if termless_agrp (y, x) then SOME ac2 else NONE | |
| 1397 | | solve_add_ac thy _ _ = NONE | |
| 1398 | in | |
| 1399 |   val add_ac_proc = Simplifier.simproc @{theory}
 | |
| 1400 | "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac; | |
| 1401 | end; | |
| 1402 | ||
| 1403 | val cancel_ss = HOL_basic_ss settermless termless_agrp | |
| 1404 | addsimprocs [add_ac_proc] addsimps | |
| 23085 | 1405 |   [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
 | 
| 22482 | 1406 |    @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
 | 
| 1407 |    @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
 | |
| 1408 |    @{thm minus_add_cancel}];
 | |
| 1409 | ||
| 22548 | 1410 | val eq_reflection = @{thm eq_reflection};
 | 
| 22482 | 1411 | |
| 24137 
8d7896398147
replaced Theory.self_ref by Theory.check_thy, which now produces a checked ref;
 wenzelm parents: 
23879diff
changeset | 1412 | val thy_ref = Theory.check_thy @{theory};
 | 
| 22482 | 1413 | |
| 25077 | 1414 | val T = @{typ "'a\<Colon>ab_group_add"};
 | 
| 22482 | 1415 | |
| 22548 | 1416 | val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
 | 
| 22482 | 1417 | |
| 1418 | val dest_eqI = | |
| 1419 | fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of; | |
| 1420 | ||
| 1421 | end); | |
| 1422 | *} | |
| 1423 | ||
| 26480 | 1424 | ML {*
 | 
| 22482 | 1425 | Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]; | 
| 1426 | *} | |
| 17085 | 1427 | |
| 14738 | 1428 | end |