src/HOL/OrderedGroup.thy
author haftmann
Fri, 19 Oct 2007 19:45:29 +0200
changeset 25102 db3e412c4cb1
parent 25090 4a50b958391a
child 25194 37a1743f0fc3
permissions -rw-r--r--
antisymmetry not a default intro rule any longer
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
     1
(*  Title:   HOL/OrderedGroup.thy
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     2
    ID:      $Id$
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
     3
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel,
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
     4
             with contributions by Jeremy Avigad
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     5
*)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     6
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     7
header {* Ordered Groups *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15093
diff changeset
     9
theory OrderedGroup
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
    10
imports Lattices
19798
wenzelm
parents: 19527
diff changeset
    11
uses "~~/src/Provers/Arith/abel_cancel.ML"
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15093
diff changeset
    12
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    13
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    14
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    15
  The theory of partially ordered groups is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    16
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    17
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    18
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    19
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    20
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    21
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    22
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    23
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    24
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    25
*}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    26
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
    27
subsection {* Semigroups and Monoids *}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    28
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    29
class semigroup_add = plus +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    30
  assumes add_assoc: "(a + b) + c = a + (b + c)"
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    31
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    32
class ab_semigroup_add = semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    33
  assumes add_commute: "a + b = b + a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    34
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    35
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    36
lemma add_left_commute: "a + (b + c) = b + (a + c)"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    37
  by (rule mk_left_commute [of "plus", OF add_assoc add_commute])
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    38
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    39
theorems add_ac = add_assoc add_commute add_left_commute
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    40
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    41
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    42
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    43
theorems add_ac = add_assoc add_commute add_left_commute
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    44
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    45
class semigroup_mult = times +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    46
  assumes mult_assoc: "(a * b) * c = a * (b * c)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    47
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    48
class ab_semigroup_mult = semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    49
  assumes mult_commute: "a * b = b * a"
23181
f52b555f8141 localized
haftmann
parents: 23085
diff changeset
    50
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    51
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    52
lemma mult_left_commute: "a * (b * c) = b * (a * c)"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    53
  by (rule mk_left_commute [of "times", OF mult_assoc mult_commute])
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    54
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    55
theorems mult_ac = mult_assoc mult_commute mult_left_commute
23181
f52b555f8141 localized
haftmann
parents: 23085
diff changeset
    56
f52b555f8141 localized
haftmann
parents: 23085
diff changeset
    57
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    58
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    59
theorems mult_ac = mult_assoc mult_commute mult_left_commute
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    60
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
    61
class monoid_add = zero + semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    62
  assumes add_0_left [simp]: "0 + a = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    63
    and add_0_right [simp]: "a + 0 = a"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
    64
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    65
class comm_monoid_add = zero + ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    66
  assumes add_0: "0 + a = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    67
begin
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
    68
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    69
subclass monoid_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    70
  by unfold_locales (insert add_0, simp_all add: add_commute)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    71
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    72
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    73
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    74
class monoid_mult = one + semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    75
  assumes mult_1_left [simp]: "1 * a  = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    76
  assumes mult_1_right [simp]: "a * 1 = a"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    77
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    78
class comm_monoid_mult = one + ab_semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    79
  assumes mult_1: "1 * a = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    80
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    81
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    82
subclass monoid_mult
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    83
  by unfold_locales (insert mult_1, simp_all add: mult_commute) 
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    84
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    85
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    86
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    87
class cancel_semigroup_add = semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    88
  assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    89
  assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    90
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    91
class cancel_ab_semigroup_add = ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    92
  assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    93
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    94
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    95
subclass cancel_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    96
proof unfold_locales
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    97
  fix a b c :: 'a
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    98
  assume "a + b = a + c" 
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    99
  then show "b = c" by (rule add_imp_eq)
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   100
next
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   101
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   102
  assume "b + a = c + a"
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   103
  then have "a + b = a + c" by (simp only: add_commute)
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   104
  then show "b = c" by (rule add_imp_eq)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   105
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   106
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   107
end context cancel_ab_semigroup_add begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   108
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   109
lemma add_left_cancel [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   110
  "a + b = a + c \<longleftrightarrow> b = c"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   111
  by (blast dest: add_left_imp_eq)
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   112
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   113
lemma add_right_cancel [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   114
  "b + a = c + a \<longleftrightarrow> b = c"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   115
  by (blast dest: add_right_imp_eq)
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   116
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   117
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   118
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   119
subsection {* Groups *}
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   120
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   121
class group_add = minus + monoid_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   122
  assumes left_minus [simp]: "- a + a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   123
  assumes diff_minus: "a - b = a + (- b)"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   124
begin
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   125
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   126
lemma minus_add_cancel: "- a + (a + b) = b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   127
  by (simp add: add_assoc[symmetric])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   128
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   129
lemma minus_zero [simp]: "- 0 = 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   130
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   131
  have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   132
  also have "\<dots> = 0" by (rule minus_add_cancel)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   133
  finally show ?thesis .
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   134
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   135
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   136
lemma minus_minus [simp]: "- (- a) = a"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   137
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   138
  have "- (- a) = - (- a) + (- a + a)" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   139
  also have "\<dots> = a" by (rule minus_add_cancel)
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   140
  finally show ?thesis .
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   141
qed
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   142
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   143
lemma right_minus [simp]: "a + - a = 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   144
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   145
  have "a + - a = - (- a) + - a" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   146
  also have "\<dots> = 0" by (rule left_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   147
  finally show ?thesis .
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   148
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   149
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   150
lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   151
proof
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   152
  assume "a - b = 0"
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   153
  have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   154
  also have "\<dots> = b" using `a - b = 0` by simp
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   155
  finally show "a = b" .
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   156
next
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   157
  assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   158
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   159
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   160
lemma equals_zero_I:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   161
  assumes "a + b = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   162
  shows "- a = b"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   163
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   164
  have "- a = - a + (a + b)" using assms by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   165
  also have "\<dots> = b" by (simp add: add_assoc[symmetric])
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   166
  finally show ?thesis .
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   167
qed
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   168
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   169
lemma diff_self [simp]: "a - a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   170
  by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   171
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   172
lemma diff_0 [simp]: "0 - a = - a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   173
  by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   174
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   175
lemma diff_0_right [simp]: "a - 0 = a" 
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   176
  by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   177
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   178
lemma diff_minus_eq_add [simp]: "a - - b = a + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   179
  by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   180
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   181
lemma neg_equal_iff_equal [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   182
  "- a = - b \<longleftrightarrow> a = b" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   183
proof 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   184
  assume "- a = - b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   185
  hence "- (- a) = - (- b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   186
    by simp
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   187
  thus "a = b" by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   188
next
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   189
  assume "a = b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   190
  thus "- a = - b" by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   191
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   192
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   193
lemma neg_equal_0_iff_equal [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   194
  "- a = 0 \<longleftrightarrow> a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   195
  by (subst neg_equal_iff_equal [symmetric], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   196
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   197
lemma neg_0_equal_iff_equal [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   198
  "0 = - a \<longleftrightarrow> 0 = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   199
  by (subst neg_equal_iff_equal [symmetric], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   200
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   201
text{*The next two equations can make the simplifier loop!*}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   202
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   203
lemma equation_minus_iff:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   204
  "a = - b \<longleftrightarrow> b = - a"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   205
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   206
  have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   207
  thus ?thesis by (simp add: eq_commute)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   208
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   209
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   210
lemma minus_equation_iff:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   211
  "- a = b \<longleftrightarrow> - b = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   212
proof -
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   213
  have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   214
  thus ?thesis by (simp add: eq_commute)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   215
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   216
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   217
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   218
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   219
class ab_group_add = minus + comm_monoid_add +
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   220
  assumes ab_left_minus: "- a + a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   221
  assumes ab_diff_minus: "a - b = a + (- b)"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   222
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   223
subclass (in ab_group_add) group_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   224
  by unfold_locales (simp_all add: ab_left_minus ab_diff_minus)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   225
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   226
subclass (in ab_group_add) cancel_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   227
proof unfold_locales
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   228
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   229
  assume "a + b = a + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   230
  then have "- a + a + b = - a + a + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   231
    unfolding add_assoc by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   232
  then show "b = c" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   233
next
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   234
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   235
  assume "b + a = c + a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   236
  then have "b + (a + - a) = c + (a + - a)"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   237
    unfolding add_assoc [symmetric] by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   238
  then show "b = c" by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   239
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   240
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   241
subclass (in ab_group_add) cancel_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   242
proof unfold_locales
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   243
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   244
  assume "a + b = a + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   245
  then have "- a + a + b = - a + a + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   246
    unfolding add_assoc by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   247
  then show "b = c" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   248
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   249
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   250
context ab_group_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   251
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   252
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   253
lemma uminus_add_conv_diff:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   254
  "- a + b = b - a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   255
  by (simp add:diff_minus add_commute)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   256
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   257
lemma minus_add_distrib [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   258
  "- (a + b) = - a + - b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   259
  by (rule equals_zero_I) (simp add: add_ac)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   260
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   261
lemma minus_diff_eq [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   262
  "- (a - b) = b - a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   263
  by (simp add: diff_minus add_commute)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   264
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   265
lemma add_diff_eq: "a + (b - c) = (a + b) - c"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   266
  by (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   267
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   268
lemma diff_add_eq: "(a - b) + c = (a + c) - b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   269
  by (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   270
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   271
lemma diff_eq_eq: "a - b = c \<longleftrightarrow> a = c + b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   272
  by (auto simp add: diff_minus add_assoc)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   273
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   274
lemma eq_diff_eq: "a = c - b \<longleftrightarrow> a + b = c"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   275
  by (auto simp add: diff_minus add_assoc)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   276
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   277
lemma diff_diff_eq: "(a - b) - c = a - (b + c)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   278
  by (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   279
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   280
lemma diff_diff_eq2: "a - (b - c) = (a + c) - b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   281
  by (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   282
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   283
lemma diff_add_cancel: "a - b + b = a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   284
  by (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   285
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   286
lemma add_diff_cancel: "a + b - b = a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   287
  by (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   288
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   289
lemmas compare_rls =
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   290
       diff_minus [symmetric]
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   291
       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   292
       diff_eq_eq eq_diff_eq
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   293
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   294
lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   295
  by (simp add: compare_rls)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   296
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   297
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   298
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   299
subsection {* (Partially) Ordered Groups *} 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   300
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   301
class pordered_ab_semigroup_add = order + ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   302
  assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   303
begin
24380
c215e256beca moved ordered_ab_semigroup_add to OrderedGroup.thy
haftmann
parents: 24286
diff changeset
   304
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   305
lemma add_right_mono:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   306
  "a \<le> b \<Longrightarrow> a + c \<le> b + c"
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   307
  by (simp add: add_commute [of _ c] add_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   308
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   309
text {* non-strict, in both arguments *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   310
lemma add_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   311
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   312
  apply (erule add_right_mono [THEN order_trans])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   313
  apply (simp add: add_commute add_left_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   314
  done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   315
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   316
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   317
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   318
class pordered_cancel_ab_semigroup_add =
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   319
  pordered_ab_semigroup_add + cancel_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   320
begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   321
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   322
lemma add_strict_left_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   323
  "a < b \<Longrightarrow> c + a < c + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   324
  by (auto simp add: less_le add_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   325
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   326
lemma add_strict_right_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   327
  "a < b \<Longrightarrow> a + c < b + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   328
  by (simp add: add_commute [of _ c] add_strict_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   329
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   330
text{*Strict monotonicity in both arguments*}
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   331
lemma add_strict_mono:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   332
  "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   333
apply (erule add_strict_right_mono [THEN less_trans])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   334
apply (erule add_strict_left_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   335
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   336
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   337
lemma add_less_le_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   338
  "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   339
apply (erule add_strict_right_mono [THEN less_le_trans])
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   340
apply (erule add_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   341
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   342
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   343
lemma add_le_less_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   344
  "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   345
apply (erule add_right_mono [THEN le_less_trans])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   346
apply (erule add_strict_left_mono) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   347
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   348
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   349
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   350
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   351
class pordered_ab_semigroup_add_imp_le =
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   352
  pordered_cancel_ab_semigroup_add +
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   353
  assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   354
begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   355
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   356
lemma add_less_imp_less_left:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   357
   assumes less: "c + a < c + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   358
   shows "a < b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   359
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   360
  from less have le: "c + a <= c + b" by (simp add: order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   361
  have "a <= b" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   362
    apply (insert le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   363
    apply (drule add_le_imp_le_left)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   364
    by (insert le, drule add_le_imp_le_left, assumption)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   365
  moreover have "a \<noteq> b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   366
  proof (rule ccontr)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   367
    assume "~(a \<noteq> b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   368
    then have "a = b" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   369
    then have "c + a = c + b" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   370
    with less show "False"by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   371
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   372
  ultimately show "a < b" by (simp add: order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   373
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   374
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   375
lemma add_less_imp_less_right:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   376
  "a + c < b + c \<Longrightarrow> a < b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   377
apply (rule add_less_imp_less_left [of c])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   378
apply (simp add: add_commute)  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   379
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   380
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   381
lemma add_less_cancel_left [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   382
  "c + a < c + b \<longleftrightarrow> a < b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   383
  by (blast intro: add_less_imp_less_left add_strict_left_mono) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   384
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   385
lemma add_less_cancel_right [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   386
  "a + c < b + c \<longleftrightarrow> a < b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   387
  by (blast intro: add_less_imp_less_right add_strict_right_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   388
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   389
lemma add_le_cancel_left [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   390
  "c + a \<le> c + b \<longleftrightarrow> a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   391
  by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   392
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   393
lemma add_le_cancel_right [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   394
  "a + c \<le> b + c \<longleftrightarrow> a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   395
  by (simp add: add_commute [of a c] add_commute [of b c])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   396
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   397
lemma add_le_imp_le_right:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   398
  "a + c \<le> b + c \<Longrightarrow> a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   399
  by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   400
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   401
lemma max_add_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   402
  "max x y + z = max (x + z) (y + z)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   403
  unfolding max_def by auto
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   404
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   405
lemma min_add_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   406
  "min x y + z = min (x + z) (y + z)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   407
  unfolding min_def by auto
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   408
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   409
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   410
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   411
class pordered_ab_group_add =
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   412
  ab_group_add + pordered_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   413
begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   414
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   415
subclass pordered_cancel_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   416
  by unfold_locales
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   417
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   418
subclass pordered_ab_semigroup_add_imp_le
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   419
proof unfold_locales
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   420
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   421
  assume "c + a \<le> c + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   422
  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   423
  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   424
  thus "a \<le> b" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   425
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   426
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   427
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   428
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   429
context pordered_ab_group_add
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   430
begin
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   431
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   432
lemma max_diff_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   433
  shows "max x y - z = max (x - z) (y - z)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   434
  by (simp add: diff_minus, rule max_add_distrib_left) 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   435
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   436
lemma min_diff_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   437
  shows "min x y - z = min (x - z) (y - z)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   438
  by (simp add: diff_minus, rule min_add_distrib_left) 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   439
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   440
lemma le_imp_neg_le:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   441
  assumes "a \<le> b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   442
  shows "-b \<le> -a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   443
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   444
  have "-a+a \<le> -a+b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   445
    using `a \<le> b` by (rule add_left_mono) 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   446
  hence "0 \<le> -a+b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   447
    by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   448
  hence "0 + (-b) \<le> (-a + b) + (-b)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   449
    by (rule add_right_mono) 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   450
  thus ?thesis
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   451
    by (simp add: add_assoc)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   452
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   453
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   454
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   455
proof 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   456
  assume "- b \<le> - a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   457
  hence "- (- a) \<le> - (- b)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   458
    by (rule le_imp_neg_le)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   459
  thus "a\<le>b" by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   460
next
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   461
  assume "a\<le>b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   462
  thus "-b \<le> -a" by (rule le_imp_neg_le)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   463
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   464
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   465
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   466
  by (subst neg_le_iff_le [symmetric], simp)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   467
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   468
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   469
  by (subst neg_le_iff_le [symmetric], simp)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   470
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   471
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   472
  by (force simp add: less_le) 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   473
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   474
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   475
  by (subst neg_less_iff_less [symmetric], simp)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   476
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   477
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   478
  by (subst neg_less_iff_less [symmetric], simp)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   479
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   480
text{*The next several equations can make the simplifier loop!*}
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   481
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   482
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   483
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   484
  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   485
  thus ?thesis by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   486
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   487
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   488
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   489
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   490
  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   491
  thus ?thesis by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   492
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   493
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   494
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   495
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   496
  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   497
  have "(- (- a) <= -b) = (b <= - a)" 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   498
    apply (auto simp only: le_less)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   499
    apply (drule mm)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   500
    apply (simp_all)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   501
    apply (drule mm[simplified], assumption)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   502
    done
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   503
  then show ?thesis by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   504
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   505
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   506
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   507
  by (auto simp add: le_less minus_less_iff)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   508
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   509
lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   510
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   511
  have  "(a < b) = (a + (- b) < b + (-b))"  
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   512
    by (simp only: add_less_cancel_right)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   513
  also have "... =  (a - b < 0)" by (simp add: diff_minus)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   514
  finally show ?thesis .
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   515
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   516
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   517
lemma diff_less_eq: "a - b < c \<longleftrightarrow> a < c + b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   518
apply (subst less_iff_diff_less_0 [of a])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   519
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   520
apply (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   521
done
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   522
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   523
lemma less_diff_eq: "a < c - b \<longleftrightarrow> a + b < c"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   524
apply (subst less_iff_diff_less_0 [of "plus a b"])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   525
apply (subst less_iff_diff_less_0 [of a])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   526
apply (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   527
done
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   528
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   529
lemma diff_le_eq: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   530
  by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   531
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   532
lemma le_diff_eq: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   533
  by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   534
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   535
lemmas compare_rls =
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   536
       diff_minus [symmetric]
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   537
       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   538
       diff_less_eq less_diff_eq diff_le_eq le_diff_eq
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   539
       diff_eq_eq eq_diff_eq
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   540
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   541
text{*This list of rewrites simplifies (in)equalities by bringing subtractions
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   542
  to the top and then moving negative terms to the other side.
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   543
  Use with @{text add_ac}*}
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   544
lemmas (in -) compare_rls =
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   545
       diff_minus [symmetric]
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   546
       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   547
       diff_less_eq less_diff_eq diff_le_eq le_diff_eq
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   548
       diff_eq_eq eq_diff_eq
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   549
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   550
lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   551
  by (simp add: compare_rls)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   552
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   553
end
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   554
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   555
class ordered_ab_semigroup_add =
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   556
  linorder + pordered_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   557
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   558
class ordered_cancel_ab_semigroup_add =
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   559
  linorder + pordered_cancel_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   560
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   561
subclass (in ordered_cancel_ab_semigroup_add) ordered_ab_semigroup_add
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   562
  by unfold_locales
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   563
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   564
subclass (in ordered_cancel_ab_semigroup_add) pordered_ab_semigroup_add_imp_le
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   565
proof unfold_locales
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   566
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   567
  assume le: "c + a <= c + b"  
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   568
  show "a <= b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   569
  proof (rule ccontr)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   570
    assume w: "~ a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   571
    hence "b <= a" by (simp add: linorder_not_le)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   572
    hence le2: "c + b <= c + a" by (rule add_left_mono)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   573
    have "a = b" 
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   574
      apply (insert le)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   575
      apply (insert le2)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   576
      apply (drule antisym, simp_all)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   577
      done
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   578
    with w show False 
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   579
      by (simp add: linorder_not_le [symmetric])
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   580
  qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   581
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   582
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   583
-- {* FIXME localize the following *}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   584
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   585
lemma add_increasing:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   586
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   587
  shows  "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   588
by (insert add_mono [of 0 a b c], simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   589
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   590
lemma add_increasing2:
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   591
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   592
  shows  "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   593
by (simp add:add_increasing add_commute[of a])
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   594
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   595
lemma add_strict_increasing:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   596
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   597
  shows "[|0<a; b\<le>c|] ==> b < a + c"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   598
by (insert add_less_le_mono [of 0 a b c], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   599
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   600
lemma add_strict_increasing2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   601
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   602
  shows "[|0\<le>a; b<c|] ==> b < a + c"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   603
by (insert add_le_less_mono [of 0 a b c], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   604
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   605
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   606
subsection {* Support for reasoning about signs *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   607
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   608
lemma add_pos_pos: "0 < 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   609
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   610
      ==> 0 < y ==> 0 < x + y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   611
apply (subgoal_tac "0 + 0 < x + y")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   612
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   613
apply (erule add_less_le_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   614
apply (erule order_less_imp_le)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   615
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   616
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   617
lemma add_pos_nonneg: "0 < 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   618
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   619
      ==> 0 <= y ==> 0 < x + y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   620
apply (subgoal_tac "0 + 0 < x + y")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   621
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   622
apply (erule add_less_le_mono, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   623
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   624
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   625
lemma add_nonneg_pos: "0 <= 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   626
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   627
      ==> 0 < y ==> 0 < x + y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   628
apply (subgoal_tac "0 + 0 < x + y")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   629
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   630
apply (erule add_le_less_mono, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   631
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   632
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   633
lemma add_nonneg_nonneg: "0 <= 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   634
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   635
      ==> 0 <= y ==> 0 <= x + y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   636
apply (subgoal_tac "0 + 0 <= x + y")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   637
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   638
apply (erule add_mono, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   639
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   640
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   641
lemma add_neg_neg: "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add})
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   642
    < 0 ==> y < 0 ==> x + y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   643
apply (subgoal_tac "x + y < 0 + 0")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   644
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   645
apply (erule add_less_le_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   646
apply (erule order_less_imp_le)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   647
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   648
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   649
lemma add_neg_nonpos: 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   650
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) < 0 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   651
      ==> y <= 0 ==> x + y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   652
apply (subgoal_tac "x + y < 0 + 0")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   653
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   654
apply (erule add_less_le_mono, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   655
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   656
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   657
lemma add_nonpos_neg: 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   658
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   659
      ==> y < 0 ==> x + y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   660
apply (subgoal_tac "x + y < 0 + 0")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   661
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   662
apply (erule add_le_less_mono, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   663
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   664
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   665
lemma add_nonpos_nonpos: 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   666
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   667
      ==> y <= 0 ==> x + y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   668
apply (subgoal_tac "x + y <= 0 + 0")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   669
apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   670
apply (erule add_mono, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   671
done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   672
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   673
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   674
subsection {* Lattice Ordered (Abelian) Groups *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   675
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   676
class lordered_ab_group_meet = pordered_ab_group_add + lower_semilattice
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   677
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   678
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   679
lemma add_inf_distrib_left:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   680
  "a + inf b c = inf (a + b) (a + c)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   681
apply (rule antisym)
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   682
apply (simp_all add: le_infI)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   683
apply (rule add_le_imp_le_left [of "uminus a"])
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   684
apply (simp only: add_assoc [symmetric], simp)
21312
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21245
diff changeset
   685
apply rule
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21245
diff changeset
   686
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   687
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   688
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   689
lemma add_inf_distrib_right:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   690
  "inf a b + c = inf (a + c) (b + c)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   691
proof -
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   692
  have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   693
  thus ?thesis by (simp add: add_commute)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   694
qed
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   695
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   696
end
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   697
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   698
class lordered_ab_group_join = pordered_ab_group_add + upper_semilattice
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   699
begin
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   700
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   701
lemma add_sup_distrib_left:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   702
  "a + sup b c = sup (a + b) (a + c)" 
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   703
apply (rule antisym)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   704
apply (rule add_le_imp_le_left [of "uminus a"])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   705
apply (simp only: add_assoc[symmetric], simp)
21312
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21245
diff changeset
   706
apply rule
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21245
diff changeset
   707
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   708
apply (rule le_supI)
21312
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21245
diff changeset
   709
apply (simp_all)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   710
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   711
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   712
lemma add_sup_distrib_right:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   713
  "sup a b + c = sup (a+c) (b+c)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   714
proof -
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   715
  have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   716
  thus ?thesis by (simp add: add_commute)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   717
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   718
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   719
end
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   720
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   721
class lordered_ab_group = pordered_ab_group_add + lattice
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   722
begin
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   723
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   724
subclass lordered_ab_group_meet by unfold_locales
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   725
subclass lordered_ab_group_join by unfold_locales
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   726
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   727
end
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   728
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   729
context lordered_ab_group
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   730
begin
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   731
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   732
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   733
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   734
lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   735
proof (rule inf_unique)
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   736
  fix a b :: 'a
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   737
  show "- sup (-a) (-b) \<le> a"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   738
    by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   739
      (simp, simp add: add_sup_distrib_left)
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   740
next
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   741
  fix a b :: 'a
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   742
  show "- sup (-a) (-b) \<le> b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   743
    by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   744
      (simp, simp add: add_sup_distrib_left)
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   745
next
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   746
  fix a b c :: 'a
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   747
  assume "a \<le> b" "a \<le> c"
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   748
  then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   749
    (simp add: le_supI)
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   750
qed
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   751
  
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   752
lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   753
proof (rule sup_unique)
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   754
  fix a b :: 'a
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   755
  show "a \<le> - inf (-a) (-b)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   756
    by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   757
      (simp, simp add: add_inf_distrib_left)
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   758
next
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   759
  fix a b :: 'a
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   760
  show "b \<le> - inf (-a) (-b)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   761
    by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   762
      (simp, simp add: add_inf_distrib_left)
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   763
next
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   764
  fix a b c :: 'a
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   765
  assume "a \<le> c" "b \<le> c"
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   766
  then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   767
    (simp add: le_infI)
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   768
qed
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   769
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   770
lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   771
proof -
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   772
  have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   773
  hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   774
  hence "0 = (-a + sup a b) + (inf a b + (-b))"
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   775
    apply (simp add: add_sup_distrib_left add_inf_distrib_right)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   776
    by (simp add: diff_minus add_commute)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   777
  thus ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   778
    apply (simp add: compare_rls)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   779
    apply (subst add_left_cancel [symmetric, of "plus a b" "plus (sup a b) (inf a b)" "uminus a"])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   780
    apply (simp only: add_assoc, simp add: add_assoc[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   781
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   782
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   783
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   784
subsection {* Positive Part, Negative Part, Absolute Value *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   785
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   786
definition
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   787
  nprt :: "'a \<Rightarrow> 'a" where
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   788
  "nprt x = inf x 0"
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   789
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   790
definition
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   791
  pprt :: "'a \<Rightarrow> 'a" where
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   792
  "pprt x = sup x 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   793
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   794
lemma prts: "a = pprt a + nprt a"
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   795
  by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   796
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   797
lemma zero_le_pprt[simp]: "0 \<le> pprt a"
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   798
  by (simp add: pprt_def)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   799
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   800
lemma nprt_le_zero[simp]: "nprt a \<le> 0"
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   801
  by (simp add: nprt_def)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   802
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   803
lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   804
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   805
  have a: "?l \<longrightarrow> ?r"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   806
    apply (auto)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   807
    apply (rule add_le_imp_le_right[of _ "uminus b" _])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   808
    apply (simp add: add_assoc)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   809
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   810
  have b: "?r \<longrightarrow> ?l"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   811
    apply (auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   812
    apply (rule add_le_imp_le_right[of _ "b" _])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   813
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   814
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   815
  from a b show ?thesis by blast
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   816
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   817
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   818
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   819
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   820
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   821
lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   822
  by (simp add: pprt_def le_iff_sup sup_ACI)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   823
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   824
lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   825
  by (simp add: nprt_def le_iff_inf inf_ACI)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   826
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   827
lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   828
  by (simp add: pprt_def le_iff_sup sup_ACI)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   829
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   830
lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   831
  by (simp add: nprt_def le_iff_inf inf_ACI)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15539
diff changeset
   832
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   833
lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   834
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   835
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   836
    fix a::'a
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   837
    assume hyp: "sup a (-a) = 0"
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   838
    hence "sup a (-a) + a = a" by (simp)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   839
    hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) 
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   840
    hence "sup (a+a) 0 <= a" by (simp)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   841
    hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   842
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   843
  note p = this
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   844
  assume hyp:"sup a (-a) = 0"
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   845
  hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   846
  from p[OF hyp] p[OF hyp2] show "a = 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   847
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   848
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   849
lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   850
apply (simp add: inf_eq_neg_sup)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   851
apply (simp add: sup_commute)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   852
apply (erule sup_0_imp_0)
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
   853
done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   854
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   855
lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   856
  by (rule, erule inf_0_imp_0) simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   857
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   858
lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   859
  by (rule, erule sup_0_imp_0) simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   860
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   861
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   862
  "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   863
proof
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   864
  assume "0 <= a + a"
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   865
  hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   866
  have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   867
    by (simp add: add_sup_inf_distribs inf_ACI)
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   868
  hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   869
  hence "inf a 0 = 0" by (simp only: add_right_cancel)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   870
  then show "0 <= a" by (simp add: le_iff_inf inf_commute)    
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   871
next  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   872
  assume a: "0 <= a"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   873
  show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   874
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   875
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   876
lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   877
proof
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   878
  assume assm: "a + a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   879
  then have "a + a + - a = - a" by simp
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   880
  then have "a + (a + - a) = - a" by (simp only: add_assoc)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   881
  then have a: "- a = a" by simp (*FIXME tune proof*)
25102
db3e412c4cb1 antisymmetry not a default intro rule any longer
haftmann
parents: 25090
diff changeset
   882
  show "a = 0" apply (rule antisym)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   883
  apply (unfold neg_le_iff_le [symmetric, of a])
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   884
  unfolding a apply simp
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   885
  unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   886
  unfolding assm unfolding le_less apply simp_all done
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   887
next
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   888
  assume "a = 0" then show "a + a = 0" by simp
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   889
qed
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   890
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   891
lemma zero_less_double_add_iff_zero_less_single_add:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   892
  "0 < a + a \<longleftrightarrow> 0 < a"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   893
proof (cases "a = 0")
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   894
  case True then show ?thesis by auto
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   895
next
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   896
  case False then show ?thesis (*FIXME tune proof*)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   897
  unfolding less_le apply simp apply rule
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   898
  apply clarify
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   899
  apply rule
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   900
  apply assumption
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   901
  apply (rule notI)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   902
  unfolding double_zero [symmetric, of a] apply simp
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   903
  done
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   904
qed
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   905
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   906
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   907
  "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   908
proof -
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   909
  have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   910
  moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   911
  ultimately show ?thesis by blast
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   912
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   913
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   914
lemma double_add_less_zero_iff_single_less_zero [simp]:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   915
  "a + a < 0 \<longleftrightarrow> a < 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   916
proof -
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   917
  have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   918
  moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   919
  ultimately show ?thesis by blast
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   920
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   921
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   922
end
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   923
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   924
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   925
23879
4776af8be741 split class abs from class minus
haftmann
parents: 23477
diff changeset
   926
class lordered_ab_group_abs = lordered_ab_group + abs +
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   927
  assumes abs_lattice: "\<bar>x\<bar> = sup x (- x)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   928
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   929
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   930
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   931
  by (simp add: abs_lattice)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   932
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   933
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   934
  by (simp add: abs_lattice)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   935
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   936
lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   937
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   938
  have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   939
  thus ?thesis by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   940
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   941
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   942
lemma neg_inf_eq_sup [simp]: "- inf a b = sup (-a) (-b)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   943
  by (simp add: inf_eq_neg_sup)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   944
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   945
lemma neg_sup_eq_inf [simp]: "- sup a b = inf (-a) (-b)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   946
  by (simp del: neg_inf_eq_sup add: sup_eq_neg_inf)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   947
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   948
lemma abs_ge_zero [simp]: "0 \<le> \<bar>a\<bar>"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   949
proof -
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   950
  have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   951
  show ?thesis by (rule add_mono [OF a b, simplified])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   952
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   953
  
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   954
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   955
proof
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   956
  assume "\<bar>a\<bar> \<le> 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   957
  then have "\<bar>a\<bar> = 0" by (rule antisym) simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   958
  thus "a = 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   959
next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   960
  assume "a = 0"
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   961
  thus "\<bar>a\<bar> \<le> 0" by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   962
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   963
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   964
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   965
  by (simp add: less_le)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   966
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   967
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   968
proof -
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   969
  have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   970
  show ?thesis by (simp add: a)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   971
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   972
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   973
lemma abs_ge_self: "a \<le> \<bar>a\<bar>"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   974
  by (auto simp add: abs_lattice)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   975
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   976
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   977
  by (auto simp add: abs_lattice)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   978
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   979
lemma abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   980
  by (simp add: abs_lattice sup_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   981
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   982
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   983
apply (simp add: abs_lattice [of "abs a"])
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   984
apply (subst sup_absorb1)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   985
apply (rule order_trans [of _ zero])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   986
by auto
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   987
15093
49ede01e9ee6 conversion of Integration and NSPrimes to Isar scripts
paulson
parents: 15010
diff changeset
   988
lemma abs_minus_commute: 
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   989
  "\<bar>a - b\<bar> = \<bar>b - a\<bar>"
15093
49ede01e9ee6 conversion of Integration and NSPrimes to Isar scripts
paulson
parents: 15010
diff changeset
   990
proof -
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   991
  have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   992
  also have "... = \<bar>b - a\<bar>" by simp
15093
49ede01e9ee6 conversion of Integration and NSPrimes to Isar scripts
paulson
parents: 15010
diff changeset
   993
  finally show ?thesis .
49ede01e9ee6 conversion of Integration and NSPrimes to Isar scripts
paulson
parents: 15010
diff changeset
   994
qed
49ede01e9ee6 conversion of Integration and NSPrimes to Isar scripts
paulson
parents: 15010
diff changeset
   995
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   996
lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   997
proof -
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   998
  have "0 \<le> \<bar>a\<bar>" by simp
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
   999
  then have "0 \<le> sup a (- a)" unfolding abs_lattice .
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1000
  then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1001
  then show ?thesis
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1002
    by (simp add: add_sup_inf_distribs sup_ACI
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1003
      pprt_def nprt_def diff_minus abs_lattice)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1004
qed
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1005
  
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1006
lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1007
  by (simp add: le_iff_inf nprt_def inf_commute)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1008
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1009
lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1010
  by (simp add: le_iff_sup pprt_def sup_commute)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1011
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1012
lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1013
  by (simp add: le_iff_sup pprt_def sup_commute)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1014
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1015
lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
  1016
by (simp add: le_iff_inf nprt_def inf_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1017
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1018
lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1019
  by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1020
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1021
lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1022
  by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1023
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1024
lemma pprt_neg: "pprt (- x) = - nprt x"
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 19233
diff changeset
  1025
  by (simp add: pprt_def nprt_def)
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 19233
diff changeset
  1026
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1027
lemma nprt_neg: "nprt (- x) = - pprt x"
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 19233
diff changeset
  1028
  by (simp add: pprt_def nprt_def)
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 19233
diff changeset
  1029
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1030
lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> \<bar>a\<bar> = a"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1031
  by (simp add: iffD1 [OF zero_le_iff_zero_nprt]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1032
    iffD1[OF le_zero_iff_pprt_id] abs_prts)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1033
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1034
lemma abs_of_pos: "0 < x \<Longrightarrow> \<bar>x\<bar> = x"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1035
  by (rule abs_of_nonneg, rule less_imp_le)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1036
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1037
lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> \<bar>a\<bar> = - a"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1038
  by (simp add: iffD1 [OF le_zero_iff_zero_pprt]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1039
    iffD1 [OF zero_le_iff_nprt_id] abs_prts)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1040
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1041
lemma abs_of_neg: "x < 0 \<Longrightarrow> \<bar>x\<bar> = - x"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1042
  by (rule abs_of_nonpos, rule less_imp_le)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1043
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1044
lemma abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1045
  by (simp add: abs_lattice le_supI)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1046
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1047
lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1048
proof -
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1049
  from add_le_cancel_left [of "uminus a" "plus a a" zero]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1050
  have "(a <= -a) = (a+a <= 0)" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1051
    by (simp add: add_assoc[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1052
  thus ?thesis by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1053
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1054
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1055
lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1056
proof -
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1057
  from add_le_cancel_left [of "uminus a" zero "plus a a"]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1058
  have "(-a <= a) = (0 <= a+a)" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1059
    by (simp add: add_assoc[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1060
  thus ?thesis by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1061
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1062
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1063
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1064
  by (insert abs_ge_self, blast intro: order_trans)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1065
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1066
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1067
  by (insert abs_le_D1 [of "uminus a"], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1068
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1069
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1070
  by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1071
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1072
lemma abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1073
proof -
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
  1074
  have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1075
    by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus)
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
  1076
  have a:"a+b <= sup ?m ?n" by (simp)
21312
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21245
diff changeset
  1077
  have b:"-a-b <= ?n" by (simp) 
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
  1078
  have c:"?n <= sup ?m ?n" by (simp)
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
  1079
  from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1080
  have e:"-a-b = -(a+b)" by (simp add: diff_minus)
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
  1081
  from a d e have "abs(a+b) <= sup ?m ?n" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1082
    by (drule_tac abs_leI, auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1083
  with g[symmetric] show ?thesis by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1084
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1085
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1086
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1087
  apply (simp add: compare_rls)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1088
  apply (subgoal_tac "abs a = abs (plus (minus a b) b)")
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1089
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1090
  apply (rule abs_triangle_ineq)
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1091
  apply (rule arg_cong) back
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1092
  apply (simp add: compare_rls)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1093
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1094
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1095
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1096
  apply (subst abs_le_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1097
  apply auto
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1098
  apply (rule abs_triangle_ineq2)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1099
  apply (subst abs_minus_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1100
  apply (rule abs_triangle_ineq2)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1101
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1102
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1103
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1104
proof -
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1105
  have "abs(a - b) = abs(a + - b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1106
    by (subst diff_minus, rule refl)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1107
  also have "... <= abs a + abs (- b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1108
    by (rule abs_triangle_ineq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1109
  finally show ?thesis
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1110
    by simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1111
qed
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1112
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1113
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1114
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1115
  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1116
  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1117
  finally show ?thesis .
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1118
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1119
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1120
lemma abs_add_abs[simp]:
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1121
  "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1122
proof (rule antisym)
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1123
  show "?L \<ge> ?R" by(rule abs_ge_self)
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1124
next
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1125
  have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1126
  also have "\<dots> = ?R" by simp
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1127
  finally show "?L \<le> ?R" .
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1128
qed
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
  1129
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1130
end
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1131
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1132
lemma sup_eq_if:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1133
  fixes a :: "'a\<Colon>{lordered_ab_group, linorder}"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1134
  shows "sup a (- a) = (if a < 0 then - a else a)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1135
proof -
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1136
  note add_le_cancel_right [of a a "- a", symmetric, simplified]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1137
  moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1138
  then show ?thesis by (auto simp: sup_max max_def)
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1139
qed
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1140
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1141
lemma abs_if_lattice:
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1142
  fixes a :: "'a\<Colon>{lordered_ab_group_abs, linorder}"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1143
  shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1144
  by auto
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1145
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1146
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1147
text {* Needed for abelian cancellation simprocs: *}
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1148
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1149
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1150
apply (subst add_left_commute)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1151
apply (subst add_left_cancel)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1152
apply simp
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1153
done
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1154
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1155
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1156
apply (subst add_cancel_21[of _ _ _ 0, simplified])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1157
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1158
done
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1159
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1160
lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1161
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1162
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1163
lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1164
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of  y' x'])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1165
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1166
done
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1167
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1168
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1169
by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1170
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1171
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1172
by (simp add: diff_minus)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1173
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1174
lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1175
by (simp add: add_assoc[symmetric])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1176
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1177
lemma le_add_right_mono: 
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1178
  assumes 
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1179
  "a <= b + (c::'a::pordered_ab_group_add)"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1180
  "c <= d"    
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1181
  shows "a <= b + d"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1182
  apply (rule_tac order_trans[where y = "b+c"])
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1183
  apply (simp_all add: prems)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1184
  done
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1185
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23389
diff changeset
  1186
lemmas group_simps =
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1187
  mult_ac
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1188
  add_ac
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1189
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1190
  diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23389
diff changeset
  1191
  diff_less_eq less_diff_eq diff_le_eq le_diff_eq
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1192
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1193
lemma estimate_by_abs:
24380
c215e256beca moved ordered_ab_semigroup_add to OrderedGroup.thy
haftmann
parents: 24286
diff changeset
  1194
  "a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b" 
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1195
proof -
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23389
diff changeset
  1196
  assume "a+b <= c"
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23389
diff changeset
  1197
  hence 2: "a <= c+(-b)" by (simp add: group_simps)
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1198
  have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1199
  show ?thesis by (rule le_add_right_mono[OF 2 3])
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1200
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1201
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1202
subsection {* Tools setup *}
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1203
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1204
lemma add_mono_thms_ordered_semiring [noatp]:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1205
  fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1206
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1207
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1208
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1209
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1210
by (rule add_mono, clarify+)+
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1211
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1212
lemma add_mono_thms_ordered_field [noatp]:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1213
  fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1214
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1215
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1216
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1217
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1218
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1219
by (auto intro: add_strict_right_mono add_strict_left_mono
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1220
  add_less_le_mono add_le_less_mono add_strict_mono)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1221
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1222
text{*Simplification of @{term "x-y < 0"}, etc.*}
24380
c215e256beca moved ordered_ab_semigroup_add to OrderedGroup.thy
haftmann
parents: 24286
diff changeset
  1223
lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric]
c215e256beca moved ordered_ab_semigroup_add to OrderedGroup.thy
haftmann
parents: 24286
diff changeset
  1224
lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric]
c215e256beca moved ordered_ab_semigroup_add to OrderedGroup.thy
haftmann
parents: 24286
diff changeset
  1225
lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1226
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1227
ML {*
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1228
structure ab_group_add_cancel = Abel_Cancel(
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1229
struct
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1230
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1231
(* term order for abelian groups *)
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1232
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1233
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
22997
d4f3b015b50b canonical prefixing of class constants
haftmann
parents: 22986
diff changeset
  1234
      [@{const_name HOL.zero}, @{const_name HOL.plus},
d4f3b015b50b canonical prefixing of class constants
haftmann
parents: 22986
diff changeset
  1235
        @{const_name HOL.uminus}, @{const_name HOL.minus}]
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1236
  | agrp_ord _ = ~1;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1237
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1238
fun termless_agrp (a, b) = (Term.term_lpo agrp_ord (a, b) = LESS);
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1239
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1240
local
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1241
  val ac1 = mk_meta_eq @{thm add_assoc};
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1242
  val ac2 = mk_meta_eq @{thm add_commute};
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1243
  val ac3 = mk_meta_eq @{thm add_left_commute};
22997
d4f3b015b50b canonical prefixing of class constants
haftmann
parents: 22986
diff changeset
  1244
  fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1245
        SOME ac1
22997
d4f3b015b50b canonical prefixing of class constants
haftmann
parents: 22986
diff changeset
  1246
    | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1247
        if termless_agrp (y, x) then SOME ac3 else NONE
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1248
    | solve_add_ac thy _ (_ $ x $ y) =
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1249
        if termless_agrp (y, x) then SOME ac2 else NONE
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1250
    | solve_add_ac thy _ _ = NONE
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1251
in
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1252
  val add_ac_proc = Simplifier.simproc @{theory}
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1253
    "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1254
end;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1255
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1256
val cancel_ss = HOL_basic_ss settermless termless_agrp
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1257
  addsimprocs [add_ac_proc] addsimps
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
  1258
  [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1259
   @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1260
   @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1261
   @{thm minus_add_cancel}];
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1262
  
22548
6ce4bddf3bcb dropped legacy ML bindings
haftmann
parents: 22482
diff changeset
  1263
val eq_reflection = @{thm eq_reflection};
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1264
  
24137
8d7896398147 replaced Theory.self_ref by Theory.check_thy, which now produces a checked ref;
wenzelm
parents: 23879
diff changeset
  1265
val thy_ref = Theory.check_thy @{theory};
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1266
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1267
val T = @{typ "'a\<Colon>ab_group_add"};
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1268
22548
6ce4bddf3bcb dropped legacy ML bindings
haftmann
parents: 22482
diff changeset
  1269
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1270
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1271
val dest_eqI = 
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1272
  fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1273
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1274
end);
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1275
*}
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1276
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1277
ML_setup {*
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1278
  Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1279
*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1280
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1281
end