| author | wenzelm | 
| Sun, 08 Jun 2008 14:29:09 +0200 | |
| changeset 27090 | 2f45c1b1b05d | 
| parent 26800 | dcf1dfc915a7 | 
| child 27106 | ff27dc6e7d05 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Set.thy | 
| 2 | ID: $Id$ | |
| 12257 | 3 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | 
| 923 | 4 | *) | 
| 5 | ||
| 11979 | 6 | header {* Set theory for higher-order logic *}
 | 
| 7 | ||
| 15131 | 8 | theory Set | 
| 26800 | 9 | imports Orderings | 
| 15131 | 10 | begin | 
| 11979 | 11 | |
| 12 | text {* A set in HOL is simply a predicate. *}
 | |
| 923 | 13 | |
| 2261 | 14 | |
| 11979 | 15 | subsection {* Basic syntax *}
 | 
| 2261 | 16 | |
| 3947 | 17 | global | 
| 18 | ||
| 26800 | 19 | types 'a set = "'a => bool" | 
| 3820 | 20 | |
| 923 | 21 | consts | 
| 11979 | 22 |   "{}"          :: "'a set"                             ("{}")
 | 
| 23 | UNIV :: "'a set" | |
| 24 | insert :: "'a => 'a set => 'a set" | |
| 25 |   Collect       :: "('a => bool) => 'a set"              -- "comprehension"
 | |
| 22845 | 26 | "op Int" :: "'a set => 'a set => 'a set" (infixl "Int" 70) | 
| 27 | "op Un" :: "'a set => 'a set => 'a set" (infixl "Un" 65) | |
| 11979 | 28 |   UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
 | 
| 29 |   INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
 | |
| 30 | Union :: "'a set set => 'a set" -- "union of a set" | |
| 31 | Inter :: "'a set set => 'a set" -- "intersection of a set" | |
| 32 | Pow :: "'a set => 'a set set" -- "powerset" | |
| 33 |   Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
 | |
| 34 |   Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 35 |   Bex1          :: "'a set => ('a => bool) => bool"      -- "bounded unique existential quantifiers"
 | 
| 11979 | 36 |   image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 37 | "op :" :: "'a => 'a set => bool" -- "membership" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 38 | |
| 21210 | 39 | notation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 40 |   "op :"  ("op :") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 41 |   "op :"  ("(_/ : _)" [50, 51] 50)
 | 
| 11979 | 42 | |
| 43 | local | |
| 44 | ||
| 923 | 45 | |
| 11979 | 46 | subsection {* Additional concrete syntax *}
 | 
| 2261 | 47 | |
| 19363 | 48 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 49 |   range :: "('a => 'b) => 'b set" where -- "of function"
 | 
| 19363 | 50 | "range f == f ` UNIV" | 
| 19323 | 51 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 52 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 53 | "not_mem x A == ~ (x : A)" -- "non-membership" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 54 | |
| 21210 | 55 | notation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 56 |   not_mem  ("op ~:") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 57 |   not_mem  ("(_/ ~: _)" [50, 51] 50)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 58 | |
| 21210 | 59 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 60 | "op Int" (infixl "\<inter>" 70) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 61 | "op Un" (infixl "\<union>" 65) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 62 |   "op :"  ("op \<in>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 63 |   "op :"  ("(_/ \<in> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 64 |   not_mem  ("op \<notin>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 65 |   not_mem  ("(_/ \<notin> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 66 |   Union  ("\<Union>_" [90] 90) and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 67 |   Inter  ("\<Inter>_" [90] 90)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 68 | |
| 21210 | 69 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 70 | "op Int" (infixl "\<inter>" 70) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 71 | "op Un" (infixl "\<union>" 65) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 72 |   "op :"  ("op \<in>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 73 |   "op :"  ("(_/ \<in> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 74 |   not_mem  ("op \<notin>") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 75 |   not_mem  ("(_/ \<notin> _)" [50, 51] 50)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 76 | |
| 923 | 77 | syntax | 
| 11979 | 78 |   "@Finset"     :: "args => 'a set"                       ("{(_)}")
 | 
| 79 |   "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
 | |
| 80 |   "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
 | |
| 15535 | 81 |   "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ :/ _./ _})")
 | 
| 22439 | 82 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
 | 
| 83 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
 | |
| 84 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 10] 10)
 | |
| 85 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 10] 10)
 | |
| 11979 | 86 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
 | 
| 87 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 88 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3EX! _:_./ _)" [0, 0, 10] 10)
 | 
| 22478 | 89 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST _:_./ _)" [0, 0, 10] 10)
 | 
| 18674 | 90 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 91 | syntax (HOL) | 
| 11979 | 92 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
 | 
| 93 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 94 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3?! _:_./ _)" [0, 0, 10] 10)
 | 
| 923 | 95 | |
| 96 | translations | |
| 97 |   "{x, xs}"     == "insert x {xs}"
 | |
| 98 |   "{x}"         == "insert x {}"
 | |
| 13764 | 99 |   "{x. P}"      == "Collect (%x. P)"
 | 
| 15535 | 100 |   "{x:A. P}"    => "{x. x:A & P}"
 | 
| 4159 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 101 | "UN x y. B" == "UN x. UN y. B" | 
| 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 102 | "UN x. B" == "UNION UNIV (%x. B)" | 
| 13858 | 103 | "UN x. B" == "UN x:UNIV. B" | 
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 104 | "INT x y. B" == "INT x. INT y. B" | 
| 4159 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 105 | "INT x. B" == "INTER UNIV (%x. B)" | 
| 13858 | 106 | "INT x. B" == "INT x:UNIV. B" | 
| 13764 | 107 | "UN x:A. B" == "UNION A (%x. B)" | 
| 108 | "INT x:A. B" == "INTER A (%x. B)" | |
| 109 | "ALL x:A. P" == "Ball A (%x. P)" | |
| 110 | "EX x:A. P" == "Bex A (%x. P)" | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 111 | "EX! x:A. P" == "Bex1 A (%x. P)" | 
| 18674 | 112 | "LEAST x:A. P" => "LEAST x. x:A & P" | 
| 113 | ||
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
12023diff
changeset | 114 | syntax (xsymbols) | 
| 14381 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 115 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 116 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 117 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 18674 | 118 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 14381 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 119 | |
| 14565 | 120 | syntax (HTML output) | 
| 121 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 122 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 123 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 14565 | 124 | |
| 15120 | 125 | syntax (xsymbols) | 
| 15535 | 126 |   "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ \<in>/ _./ _})")
 | 
| 22439 | 127 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
 | 
| 128 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
 | |
| 129 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 10] 10)
 | |
| 130 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 10] 10)
 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 131 | |
| 15120 | 132 | syntax (latex output) | 
| 22439 | 133 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 134 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 135 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 136 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 15120 | 137 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 138 | text{*
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 139 | Note the difference between ordinary xsymbol syntax of indexed | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 140 |   unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 141 |   and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 142 | former does not make the index expression a subscript of the | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 143 | union/intersection symbol because this leads to problems with nested | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 144 | subscripts in Proof General. *} | 
| 2261 | 145 | |
| 21333 | 146 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 147 | subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 21819 | 148 | "subset \<equiv> less" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 149 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 150 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 151 | subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 21819 | 152 | "subset_eq \<equiv> less_eq" | 
| 21333 | 153 | |
| 154 | notation (output) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 155 |   subset  ("op <") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 156 |   subset  ("(_/ < _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 157 |   subset_eq  ("op <=") and
 | 
| 21333 | 158 |   subset_eq  ("(_/ <= _)" [50, 51] 50)
 | 
| 159 | ||
| 160 | notation (xsymbols) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 161 |   subset  ("op \<subset>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 162 |   subset  ("(_/ \<subset> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 163 |   subset_eq  ("op \<subseteq>") and
 | 
| 21333 | 164 |   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 | 
| 165 | ||
| 166 | notation (HTML output) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 167 |   subset  ("op \<subset>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 168 |   subset  ("(_/ \<subset> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 169 |   subset_eq  ("op \<subseteq>") and
 | 
| 21333 | 170 |   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 | 
| 171 | ||
| 172 | abbreviation (input) | |
| 21819 | 173 | supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 174 | "supset \<equiv> greater" | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 175 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 176 | abbreviation (input) | 
| 21819 | 177 | supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 178 | "supset_eq \<equiv> greater_eq" | |
| 179 | ||
| 180 | notation (xsymbols) | |
| 181 |   supset  ("op \<supset>") and
 | |
| 182 |   supset  ("(_/ \<supset> _)" [50, 51] 50) and
 | |
| 183 |   supset_eq  ("op \<supseteq>") and
 | |
| 184 |   supset_eq  ("(_/ \<supseteq> _)" [50, 51] 50)
 | |
| 21333 | 185 | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 186 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 187 | subsubsection "Bounded quantifiers" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 188 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 189 | syntax (output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 190 |   "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 191 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 192 |   "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 193 |   "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 194 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 195 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 196 | syntax (xsymbols) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 197 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 198 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 199 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 200 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 201 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 202 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 203 | syntax (HOL output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 204 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 205 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 206 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 207 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 208 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3?! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 209 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 210 | syntax (HTML output) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 211 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 212 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 213 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 214 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 215 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 216 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 217 | translations | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 218 | "\<forall>A\<subset>B. P" => "ALL A. A \<subset> B --> P" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 219 | "\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" | 
| 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 220 | "\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B --> P" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 221 | "\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 222 | "\<exists>!A\<subseteq>B. P" => "EX! A. A \<subseteq> B & P" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 223 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 224 | print_translation {*
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 225 | let | 
| 22377 | 226 |   val Type (set_type, _) = @{typ "'a set"};
 | 
| 227 |   val All_binder = Syntax.binder_name @{const_syntax "All"};
 | |
| 228 |   val Ex_binder = Syntax.binder_name @{const_syntax "Ex"};
 | |
| 229 |   val impl = @{const_syntax "op -->"};
 | |
| 230 |   val conj = @{const_syntax "op &"};
 | |
| 231 |   val sbset = @{const_syntax "subset"};
 | |
| 232 |   val sbset_eq = @{const_syntax "subset_eq"};
 | |
| 21819 | 233 | |
| 234 | val trans = | |
| 235 | [((All_binder, impl, sbset), "_setlessAll"), | |
| 236 | ((All_binder, impl, sbset_eq), "_setleAll"), | |
| 237 | ((Ex_binder, conj, sbset), "_setlessEx"), | |
| 238 | ((Ex_binder, conj, sbset_eq), "_setleEx")]; | |
| 239 | ||
| 240 | fun mk v v' c n P = | |
| 241 | if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) | |
| 242 | then Syntax.const c $ Syntax.mark_bound v' $ n $ P else raise Match; | |
| 243 | ||
| 244 | fun tr' q = (q, | |
| 245 |     fn [Const ("_bound", _) $ Free (v, Type (T, _)), Const (c, _) $ (Const (d, _) $ (Const ("_bound", _) $ Free (v', _)) $ n) $ P] =>
 | |
| 246 | if T = (set_type) then case AList.lookup (op =) trans (q, c, d) | |
| 247 | of NONE => raise Match | |
| 248 | | SOME l => mk v v' l n P | |
| 249 | else raise Match | |
| 250 | | _ => raise Match); | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 251 | in | 
| 21819 | 252 | [tr' All_binder, tr' Ex_binder] | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 253 | end | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 254 | *} | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 255 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 256 | |
| 11979 | 257 | text {*
 | 
| 258 |   \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
 | |
| 259 |   "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
 | |
| 260 |   only translated if @{text "[0..n] subset bvs(e)"}.
 | |
| 261 | *} | |
| 262 | ||
| 263 | parse_translation {*
 | |
| 264 | let | |
| 265 |     val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
 | |
| 3947 | 266 | |
| 11979 | 267 |     fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
 | 
| 268 | | nvars _ = 1; | |
| 269 | ||
| 270 | fun setcompr_tr [e, idts, b] = | |
| 271 | let | |
| 272 | val eq = Syntax.const "op =" $ Bound (nvars idts) $ e; | |
| 273 | val P = Syntax.const "op &" $ eq $ b; | |
| 274 | val exP = ex_tr [idts, P]; | |
| 17784 | 275 | in Syntax.const "Collect" $ Term.absdummy (dummyT, exP) end; | 
| 11979 | 276 | |
| 277 |   in [("@SetCompr", setcompr_tr)] end;
 | |
| 278 | *} | |
| 923 | 279 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 280 | (* To avoid eta-contraction of body: *) | 
| 11979 | 281 | print_translation {*
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 282 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 283 | fun btr' syn [A,Abs abs] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 284 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 285 | in Syntax.const syn $ x $ A $ t end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 286 | in | 
| 13858 | 287 | [("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
 | 
| 288 |  ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 289 | end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 290 | *} | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 291 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 292 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 293 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 294 |   val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 295 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 296 | fun setcompr_tr' [Abs (abs as (_, _, P))] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 297 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 298 |       fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 299 |         | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 300 | n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 301 | ((0 upto (n - 1)) subset add_loose_bnos (e, 0, [])) | 
| 13764 | 302 | | check _ = false | 
| 923 | 303 | |
| 11979 | 304 | fun tr' (_ $ abs) = | 
| 305 | let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] | |
| 306 | in Syntax.const "@SetCompr" $ e $ idts $ Q end; | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 307 | in if check (P, 0) then tr' P | 
| 15535 | 308 | else let val (x as _ $ Free(xN,_), t) = atomic_abs_tr' abs | 
| 309 | val M = Syntax.const "@Coll" $ x $ t | |
| 310 | in case t of | |
| 311 |                  Const("op &",_)
 | |
| 312 |                    $ (Const("op :",_) $ (Const("_bound",_) $ Free(yN,_)) $ A)
 | |
| 313 | $ P => | |
| 314 | if xN=yN then Syntax.const "@Collect" $ x $ A $ P else M | |
| 315 | | _ => M | |
| 316 | end | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 317 | end; | 
| 11979 | 318 |   in [("Collect", setcompr_tr')] end;
 | 
| 319 | *} | |
| 320 | ||
| 321 | ||
| 322 | subsection {* Rules and definitions *}
 | |
| 323 | ||
| 324 | text {* Isomorphisms between predicates and sets. *}
 | |
| 923 | 325 | |
| 26800 | 326 | defs | 
| 327 | mem_def: "x : S == S x" | |
| 328 | Collect_def: "Collect P == P" | |
| 11979 | 329 | |
| 330 | defs | |
| 331 | Ball_def: "Ball A P == ALL x. x:A --> P(x)" | |
| 332 | Bex_def: "Bex A P == EX x. x:A & P(x)" | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 333 | Bex1_def: "Bex1 A P == EX! x. x:A & P(x)" | 
| 11979 | 334 | |
| 26800 | 335 | instantiation "fun" :: (type, minus) minus | 
| 25510 | 336 | begin | 
| 337 | ||
| 338 | definition | |
| 26800 | 339 | fun_diff_def: "A - B = (%x. A x - B x)" | 
| 25762 | 340 | |
| 341 | instance .. | |
| 342 | ||
| 343 | end | |
| 344 | ||
| 26800 | 345 | instantiation bool :: minus | 
| 25762 | 346 | begin | 
| 25510 | 347 | |
| 348 | definition | |
| 26800 | 349 | bool_diff_def: "A - B = (A & ~ B)" | 
| 350 | ||
| 351 | instance .. | |
| 352 | ||
| 353 | end | |
| 354 | ||
| 355 | instantiation "fun" :: (type, uminus) uminus | |
| 356 | begin | |
| 357 | ||
| 358 | definition | |
| 359 | fun_Compl_def: "- A = (%x. - A x)" | |
| 360 | ||
| 361 | instance .. | |
| 362 | ||
| 363 | end | |
| 364 | ||
| 365 | instantiation bool :: uminus | |
| 366 | begin | |
| 367 | ||
| 368 | definition | |
| 369 | bool_Compl_def: "- A = (~ A)" | |
| 25510 | 370 | |
| 371 | instance .. | |
| 372 | ||
| 373 | end | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22478diff
changeset | 374 | |
| 923 | 375 | defs | 
| 11979 | 376 |   Un_def:       "A Un B         == {x. x:A | x:B}"
 | 
| 377 |   Int_def:      "A Int B        == {x. x:A & x:B}"
 | |
| 378 |   INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
 | |
| 379 |   UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
 | |
| 380 | Inter_def: "Inter S == (INT x:S. x)" | |
| 381 | Union_def: "Union S == (UN x:S. x)" | |
| 382 |   Pow_def:      "Pow A          == {B. B <= A}"
 | |
| 383 |   empty_def:    "{}             == {x. False}"
 | |
| 384 |   UNIV_def:     "UNIV           == {x. True}"
 | |
| 385 |   insert_def:   "insert a B     == {x. x=a} Un B"
 | |
| 386 |   image_def:    "f`A            == {y. EX x:A. y = f(x)}"
 | |
| 387 | ||
| 388 | ||
| 389 | subsection {* Lemmas and proof tool setup *}
 | |
| 390 | ||
| 391 | subsubsection {* Relating predicates and sets *}
 | |
| 392 | ||
| 26800 | 393 | lemma mem_Collect_eq [iff]: "(a : {x. P(x)}) = P(a)"
 | 
| 394 | by (simp add: Collect_def mem_def) | |
| 395 | ||
| 396 | lemma Collect_mem_eq [simp]: "{x. x:A} = A"
 | |
| 397 | by (simp add: Collect_def mem_def) | |
| 17085 | 398 | |
| 12257 | 399 | lemma CollectI: "P(a) ==> a : {x. P(x)}"
 | 
| 11979 | 400 | by simp | 
| 401 | ||
| 402 | lemma CollectD: "a : {x. P(x)} ==> P(a)"
 | |
| 403 | by simp | |
| 404 | ||
| 405 | lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
 | |
| 406 | by simp | |
| 407 | ||
| 12257 | 408 | lemmas CollectE = CollectD [elim_format] | 
| 11979 | 409 | |
| 410 | ||
| 411 | subsubsection {* Bounded quantifiers *}
 | |
| 412 | ||
| 413 | lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" | |
| 414 | by (simp add: Ball_def) | |
| 415 | ||
| 416 | lemmas strip = impI allI ballI | |
| 417 | ||
| 418 | lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" | |
| 419 | by (simp add: Ball_def) | |
| 420 | ||
| 421 | lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" | |
| 422 | by (unfold Ball_def) blast | |
| 22139 | 423 | |
| 424 | ML {* bind_thm ("rev_ballE", permute_prems 1 1 @{thm ballE}) *}
 | |
| 11979 | 425 | |
| 426 | text {*
 | |
| 427 |   \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
 | |
| 428 |   @{prop "a:A"}; creates assumption @{prop "P a"}.
 | |
| 429 | *} | |
| 430 | ||
| 431 | ML {*
 | |
| 22139 | 432 |   fun ball_tac i = etac @{thm ballE} i THEN contr_tac (i + 1)
 | 
| 11979 | 433 | *} | 
| 434 | ||
| 435 | text {*
 | |
| 436 | Gives better instantiation for bound: | |
| 437 | *} | |
| 438 | ||
| 26339 | 439 | declaration {* fn _ =>
 | 
| 440 |   Classical.map_cs (fn cs => cs addbefore ("bspec", datac @{thm bspec} 1))
 | |
| 11979 | 441 | *} | 
| 442 | ||
| 443 | lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" | |
| 444 |   -- {* Normally the best argument order: @{prop "P x"} constrains the
 | |
| 445 |     choice of @{prop "x:A"}. *}
 | |
| 446 | by (unfold Bex_def) blast | |
| 447 | ||
| 13113 | 448 | lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" | 
| 11979 | 449 |   -- {* The best argument order when there is only one @{prop "x:A"}. *}
 | 
| 450 | by (unfold Bex_def) blast | |
| 451 | ||
| 452 | lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" | |
| 453 | by (unfold Bex_def) blast | |
| 454 | ||
| 455 | lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" | |
| 456 | by (unfold Bex_def) blast | |
| 457 | ||
| 458 | lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" | |
| 459 |   -- {* Trival rewrite rule. *}
 | |
| 460 | by (simp add: Ball_def) | |
| 461 | ||
| 462 | lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" | |
| 463 |   -- {* Dual form for existentials. *}
 | |
| 464 | by (simp add: Bex_def) | |
| 465 | ||
| 466 | lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" | |
| 467 | by blast | |
| 468 | ||
| 469 | lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" | |
| 470 | by blast | |
| 471 | ||
| 472 | lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" | |
| 473 | by blast | |
| 474 | ||
| 475 | lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" | |
| 476 | by blast | |
| 477 | ||
| 478 | lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" | |
| 479 | by blast | |
| 480 | ||
| 481 | lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" | |
| 482 | by blast | |
| 483 | ||
| 26480 | 484 | ML {*
 | 
| 13462 | 485 | local | 
| 22139 | 486 |     val unfold_bex_tac = unfold_tac @{thms "Bex_def"};
 | 
| 18328 | 487 | fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac; | 
| 11979 | 488 | val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac; | 
| 489 | ||
| 22139 | 490 |     val unfold_ball_tac = unfold_tac @{thms "Ball_def"};
 | 
| 18328 | 491 | fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac; | 
| 11979 | 492 | val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac; | 
| 493 | in | |
| 18328 | 494 | val defBEX_regroup = Simplifier.simproc (the_context ()) | 
| 13462 | 495 | "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex; | 
| 18328 | 496 | val defBALL_regroup = Simplifier.simproc (the_context ()) | 
| 13462 | 497 | "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball; | 
| 11979 | 498 | end; | 
| 13462 | 499 | |
| 500 | Addsimprocs [defBALL_regroup, defBEX_regroup]; | |
| 11979 | 501 | *} | 
| 502 | ||
| 503 | ||
| 504 | subsubsection {* Congruence rules *}
 | |
| 505 | ||
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 506 | lemma ball_cong: | 
| 11979 | 507 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 508 | (ALL x:A. P x) = (ALL x:B. Q x)" | |
| 509 | by (simp add: Ball_def) | |
| 510 | ||
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 511 | lemma strong_ball_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 512 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 513 | (ALL x:A. P x) = (ALL x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 514 | by (simp add: simp_implies_def Ball_def) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 515 | |
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 516 | lemma bex_cong: | 
| 11979 | 517 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 518 | (EX x:A. P x) = (EX x:B. Q x)" | |
| 519 | by (simp add: Bex_def cong: conj_cong) | |
| 1273 | 520 | |
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 521 | lemma strong_bex_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 522 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 523 | (EX x:A. P x) = (EX x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 524 | by (simp add: simp_implies_def Bex_def cong: conj_cong) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 525 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 526 | |
| 11979 | 527 | subsubsection {* Subsets *}
 | 
| 528 | ||
| 19295 | 529 | lemma subsetI [atp,intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B" | 
| 26800 | 530 | by (auto simp add: mem_def intro: predicate1I) | 
| 11979 | 531 | |
| 532 | text {*
 | |
| 533 |   \medskip Map the type @{text "'a set => anything"} to just @{typ
 | |
| 534 |   'a}; for overloading constants whose first argument has type @{typ
 | |
| 535 | "'a set"}. | |
| 536 | *} | |
| 537 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 538 | lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" | 
| 11979 | 539 |   -- {* Rule in Modus Ponens style. *}
 | 
| 26800 | 540 | by (unfold mem_def) blast | 
| 11979 | 541 | |
| 542 | declare subsetD [intro?] -- FIXME | |
| 543 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 544 | lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" | 
| 11979 | 545 |   -- {* The same, with reversed premises for use with @{text erule} --
 | 
| 546 |       cf @{text rev_mp}. *}
 | |
| 547 | by (rule subsetD) | |
| 548 | ||
| 549 | declare rev_subsetD [intro?] -- FIXME | |
| 550 | ||
| 551 | text {*
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 552 |   \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
 | 
| 11979 | 553 | *} | 
| 554 | ||
| 555 | ML {*
 | |
| 22139 | 556 |   fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 11979 | 557 | *} | 
| 558 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 559 | lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" | 
| 11979 | 560 |   -- {* Classical elimination rule. *}
 | 
| 26800 | 561 | by (unfold mem_def) blast | 
| 562 | ||
| 563 | lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast | |
| 11979 | 564 | |
| 565 | text {*
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 566 |   \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 567 |   creates the assumption @{prop "c \<in> B"}.
 | 
| 11979 | 568 | *} | 
| 569 | ||
| 570 | ML {*
 | |
| 22139 | 571 |   fun set_mp_tac i = etac @{thm subsetCE} i THEN mp_tac i
 | 
| 11979 | 572 | *} | 
| 573 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 574 | lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" | 
| 11979 | 575 | by blast | 
| 576 | ||
| 19175 | 577 | lemma subset_refl [simp,atp]: "A \<subseteq> A" | 
| 11979 | 578 | by fast | 
| 579 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 580 | lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" | 
| 11979 | 581 | by blast | 
| 923 | 582 | |
| 2261 | 583 | |
| 11979 | 584 | subsubsection {* Equality *}
 | 
| 585 | ||
| 13865 | 586 | lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B" | 
| 587 | apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals]) | |
| 588 | apply (rule Collect_mem_eq) | |
| 589 | apply (rule Collect_mem_eq) | |
| 590 | done | |
| 591 | ||
| 15554 | 592 | (* Due to Brian Huffman *) | 
| 593 | lemma expand_set_eq: "(A = B) = (ALL x. (x:A) = (x:B))" | |
| 594 | by(auto intro:set_ext) | |
| 595 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 596 | lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" | 
| 11979 | 597 |   -- {* Anti-symmetry of the subset relation. *}
 | 
| 17589 | 598 | by (iprover intro: set_ext subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 599 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 600 | lemmas equalityI [intro!] = subset_antisym | 
| 11979 | 601 | |
| 602 | text {*
 | |
| 603 | \medskip Equality rules from ZF set theory -- are they appropriate | |
| 604 | here? | |
| 605 | *} | |
| 606 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 607 | lemma equalityD1: "A = B ==> A \<subseteq> B" | 
| 11979 | 608 | by (simp add: subset_refl) | 
| 609 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 610 | lemma equalityD2: "A = B ==> B \<subseteq> A" | 
| 11979 | 611 | by (simp add: subset_refl) | 
| 612 | ||
| 613 | text {*
 | |
| 614 |   \medskip Be careful when adding this to the claset as @{text
 | |
| 615 |   subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 616 |   \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
 | 
| 11979 | 617 | *} | 
| 618 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 619 | lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" | 
| 11979 | 620 | by (simp add: subset_refl) | 
| 923 | 621 | |
| 11979 | 622 | lemma equalityCE [elim]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 623 | "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" | 
| 11979 | 624 | by blast | 
| 625 | ||
| 626 | lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" | |
| 627 | by simp | |
| 628 | ||
| 13865 | 629 | lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" | 
| 630 | by simp | |
| 631 | ||
| 11979 | 632 | |
| 633 | subsubsection {* The universal set -- UNIV *}
 | |
| 634 | ||
| 635 | lemma UNIV_I [simp]: "x : UNIV" | |
| 636 | by (simp add: UNIV_def) | |
| 637 | ||
| 638 | declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
 | |
| 639 | ||
| 640 | lemma UNIV_witness [intro?]: "EX x. x : UNIV" | |
| 641 | by simp | |
| 642 | ||
| 18144 
4edcb5fdc3b0
duplicate axioms in ATP linkup, and general fixes
 paulson parents: 
17875diff
changeset | 643 | lemma subset_UNIV [simp]: "A \<subseteq> UNIV" | 
| 11979 | 644 | by (rule subsetI) (rule UNIV_I) | 
| 2388 | 645 | |
| 11979 | 646 | text {*
 | 
| 647 |   \medskip Eta-contracting these two rules (to remove @{text P})
 | |
| 648 | causes them to be ignored because of their interaction with | |
| 649 | congruence rules. | |
| 650 | *} | |
| 651 | ||
| 652 | lemma ball_UNIV [simp]: "Ball UNIV P = All P" | |
| 653 | by (simp add: Ball_def) | |
| 654 | ||
| 655 | lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" | |
| 656 | by (simp add: Bex_def) | |
| 657 | ||
| 26150 | 658 | lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A" | 
| 659 | by auto | |
| 660 | ||
| 11979 | 661 | |
| 662 | subsubsection {* The empty set *}
 | |
| 663 | ||
| 664 | lemma empty_iff [simp]: "(c : {}) = False"
 | |
| 665 | by (simp add: empty_def) | |
| 666 | ||
| 667 | lemma emptyE [elim!]: "a : {} ==> P"
 | |
| 668 | by simp | |
| 669 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 670 | lemma empty_subsetI [iff]: "{} \<subseteq> A"
 | 
| 11979 | 671 |     -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
 | 
| 672 | by blast | |
| 673 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 674 | lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
 | 
| 11979 | 675 | by blast | 
| 2388 | 676 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 677 | lemma equals0D: "A = {} ==> a \<notin> A"
 | 
| 11979 | 678 |     -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
 | 
| 679 | by blast | |
| 680 | ||
| 681 | lemma ball_empty [simp]: "Ball {} P = True"
 | |
| 682 | by (simp add: Ball_def) | |
| 683 | ||
| 684 | lemma bex_empty [simp]: "Bex {} P = False"
 | |
| 685 | by (simp add: Bex_def) | |
| 686 | ||
| 687 | lemma UNIV_not_empty [iff]: "UNIV ~= {}"
 | |
| 688 | by (blast elim: equalityE) | |
| 689 | ||
| 690 | ||
| 12023 | 691 | subsubsection {* The Powerset operator -- Pow *}
 | 
| 11979 | 692 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 693 | lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" | 
| 11979 | 694 | by (simp add: Pow_def) | 
| 695 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 696 | lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" | 
| 11979 | 697 | by (simp add: Pow_def) | 
| 698 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 699 | lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" | 
| 11979 | 700 | by (simp add: Pow_def) | 
| 701 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 702 | lemma Pow_bottom: "{} \<in> Pow B"
 | 
| 11979 | 703 | by simp | 
| 704 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 705 | lemma Pow_top: "A \<in> Pow A" | 
| 11979 | 706 | by (simp add: subset_refl) | 
| 2684 | 707 | |
| 2388 | 708 | |
| 11979 | 709 | subsubsection {* Set complement *}
 | 
| 710 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 711 | lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" | 
| 26800 | 712 | by (simp add: mem_def fun_Compl_def bool_Compl_def) | 
| 11979 | 713 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 714 | lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" | 
| 26800 | 715 | by (unfold mem_def fun_Compl_def bool_Compl_def) blast | 
| 11979 | 716 | |
| 717 | text {*
 | |
| 718 | \medskip This form, with negated conclusion, works well with the | |
| 719 | Classical prover. Negated assumptions behave like formulae on the | |
| 720 | right side of the notional turnstile ... *} | |
| 721 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 722 | lemma ComplD [dest!]: "c : -A ==> c~:A" | 
| 26800 | 723 | by (simp add: mem_def fun_Compl_def bool_Compl_def) | 
| 11979 | 724 | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 725 | lemmas ComplE = ComplD [elim_format] | 
| 11979 | 726 | |
| 26800 | 727 | lemma Compl_eq: "- A = {x. ~ x : A}" by blast
 | 
| 728 | ||
| 11979 | 729 | |
| 730 | subsubsection {* Binary union -- Un *}
 | |
| 923 | 731 | |
| 11979 | 732 | lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" | 
| 733 | by (unfold Un_def) blast | |
| 734 | ||
| 735 | lemma UnI1 [elim?]: "c:A ==> c : A Un B" | |
| 736 | by simp | |
| 737 | ||
| 738 | lemma UnI2 [elim?]: "c:B ==> c : A Un B" | |
| 739 | by simp | |
| 923 | 740 | |
| 11979 | 741 | text {*
 | 
| 742 |   \medskip Classical introduction rule: no commitment to @{prop A} vs
 | |
| 743 |   @{prop B}.
 | |
| 744 | *} | |
| 745 | ||
| 746 | lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" | |
| 747 | by auto | |
| 748 | ||
| 749 | lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" | |
| 750 | by (unfold Un_def) blast | |
| 751 | ||
| 752 | ||
| 12023 | 753 | subsubsection {* Binary intersection -- Int *}
 | 
| 923 | 754 | |
| 11979 | 755 | lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" | 
| 756 | by (unfold Int_def) blast | |
| 757 | ||
| 758 | lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" | |
| 759 | by simp | |
| 760 | ||
| 761 | lemma IntD1: "c : A Int B ==> c:A" | |
| 762 | by simp | |
| 763 | ||
| 764 | lemma IntD2: "c : A Int B ==> c:B" | |
| 765 | by simp | |
| 766 | ||
| 767 | lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" | |
| 768 | by simp | |
| 769 | ||
| 770 | ||
| 12023 | 771 | subsubsection {* Set difference *}
 | 
| 11979 | 772 | |
| 773 | lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" | |
| 26800 | 774 | by (simp add: mem_def fun_diff_def bool_diff_def) | 
| 923 | 775 | |
| 11979 | 776 | lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" | 
| 777 | by simp | |
| 778 | ||
| 779 | lemma DiffD1: "c : A - B ==> c : A" | |
| 780 | by simp | |
| 781 | ||
| 782 | lemma DiffD2: "c : A - B ==> c : B ==> P" | |
| 783 | by simp | |
| 784 | ||
| 785 | lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" | |
| 786 | by simp | |
| 787 | ||
| 26800 | 788 | lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
 | 
| 789 | ||
| 11979 | 790 | |
| 791 | subsubsection {* Augmenting a set -- insert *}
 | |
| 792 | ||
| 793 | lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" | |
| 794 | by (unfold insert_def) blast | |
| 795 | ||
| 796 | lemma insertI1: "a : insert a B" | |
| 797 | by simp | |
| 798 | ||
| 799 | lemma insertI2: "a : B ==> a : insert b B" | |
| 800 | by simp | |
| 923 | 801 | |
| 11979 | 802 | lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" | 
| 803 | by (unfold insert_def) blast | |
| 804 | ||
| 805 | lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" | |
| 806 |   -- {* Classical introduction rule. *}
 | |
| 807 | by auto | |
| 808 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 809 | lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
 | 
| 11979 | 810 | by auto | 
| 811 | ||
| 24730 | 812 | lemma set_insert: | 
| 813 | assumes "x \<in> A" | |
| 814 | obtains B where "A = insert x B" and "x \<notin> B" | |
| 815 | proof | |
| 816 |   from assms show "A = insert x (A - {x})" by blast
 | |
| 817 | next | |
| 818 |   show "x \<notin> A - {x}" by blast
 | |
| 819 | qed | |
| 820 | ||
| 25287 | 821 | lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)" | 
| 822 | by auto | |
| 11979 | 823 | |
| 824 | subsubsection {* Singletons, using insert *}
 | |
| 825 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 826 | lemma singletonI [intro!,noatp]: "a : {a}"
 | 
| 11979 | 827 |     -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
 | 
| 828 | by (rule insertI1) | |
| 829 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 830 | lemma singletonD [dest!,noatp]: "b : {a} ==> b = a"
 | 
| 11979 | 831 | by blast | 
| 832 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 833 | lemmas singletonE = singletonD [elim_format] | 
| 11979 | 834 | |
| 835 | lemma singleton_iff: "(b : {a}) = (b = a)"
 | |
| 836 | by blast | |
| 837 | ||
| 838 | lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
 | |
| 839 | by blast | |
| 840 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 841 | lemma singleton_insert_inj_eq [iff,noatp]: | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 842 |      "({b} = insert a A) = (a = b & A \<subseteq> {b})"
 | 
| 11979 | 843 | by blast | 
| 844 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 845 | lemma singleton_insert_inj_eq' [iff,noatp]: | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 846 |      "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
 | 
| 11979 | 847 | by blast | 
| 848 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 849 | lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
 | 
| 11979 | 850 | by fast | 
| 851 | ||
| 852 | lemma singleton_conv [simp]: "{x. x = a} = {a}"
 | |
| 853 | by blast | |
| 854 | ||
| 855 | lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
 | |
| 856 | by blast | |
| 923 | 857 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 858 | lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
 | 
| 11979 | 859 | by blast | 
| 860 | ||
| 19870 | 861 | lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
 | 
| 862 | by (blast elim: equalityE) | |
| 863 | ||
| 11979 | 864 | |
| 865 | subsubsection {* Unions of families *}
 | |
| 866 | ||
| 867 | text {*
 | |
| 868 |   @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
 | |
| 869 | *} | |
| 870 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 871 | declare UNION_def [noatp] | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 872 | |
| 11979 | 873 | lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)" | 
| 874 | by (unfold UNION_def) blast | |
| 875 | ||
| 876 | lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)" | |
| 877 |   -- {* The order of the premises presupposes that @{term A} is rigid;
 | |
| 878 |     @{term b} may be flexible. *}
 | |
| 879 | by auto | |
| 880 | ||
| 881 | lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R" | |
| 882 | by (unfold UNION_def) blast | |
| 923 | 883 | |
| 11979 | 884 | lemma UN_cong [cong]: | 
| 885 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)" | |
| 886 | by (simp add: UNION_def) | |
| 887 | ||
| 888 | ||
| 889 | subsubsection {* Intersections of families *}
 | |
| 890 | ||
| 891 | text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
 | |
| 892 | ||
| 893 | lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)" | |
| 894 | by (unfold INTER_def) blast | |
| 923 | 895 | |
| 11979 | 896 | lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)" | 
| 897 | by (unfold INTER_def) blast | |
| 898 | ||
| 899 | lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a" | |
| 900 | by auto | |
| 901 | ||
| 902 | lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R" | |
| 903 |   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
 | |
| 904 | by (unfold INTER_def) blast | |
| 905 | ||
| 906 | lemma INT_cong [cong]: | |
| 907 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)" | |
| 908 | by (simp add: INTER_def) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 909 | |
| 923 | 910 | |
| 11979 | 911 | subsubsection {* Union *}
 | 
| 912 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 913 | lemma Union_iff [simp,noatp]: "(A : Union C) = (EX X:C. A:X)" | 
| 11979 | 914 | by (unfold Union_def) blast | 
| 915 | ||
| 916 | lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C" | |
| 917 |   -- {* The order of the premises presupposes that @{term C} is rigid;
 | |
| 918 |     @{term A} may be flexible. *}
 | |
| 919 | by auto | |
| 920 | ||
| 921 | lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R" | |
| 922 | by (unfold Union_def) blast | |
| 923 | ||
| 924 | ||
| 925 | subsubsection {* Inter *}
 | |
| 926 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 927 | lemma Inter_iff [simp,noatp]: "(A : Inter C) = (ALL X:C. A:X)" | 
| 11979 | 928 | by (unfold Inter_def) blast | 
| 929 | ||
| 930 | lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C" | |
| 931 | by (simp add: Inter_def) | |
| 932 | ||
| 933 | text {*
 | |
| 934 |   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
 | |
| 935 |   contains @{term A} as an element, but @{prop "A:X"} can hold when
 | |
| 936 |   @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
 | |
| 937 | *} | |
| 938 | ||
| 939 | lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X" | |
| 940 | by auto | |
| 941 | ||
| 942 | lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R" | |
| 943 |   -- {* ``Classical'' elimination rule -- does not require proving
 | |
| 944 |     @{prop "X:C"}. *}
 | |
| 945 | by (unfold Inter_def) blast | |
| 946 | ||
| 947 | text {*
 | |
| 948 |   \medskip Image of a set under a function.  Frequently @{term b} does
 | |
| 949 |   not have the syntactic form of @{term "f x"}.
 | |
| 950 | *} | |
| 951 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 952 | declare image_def [noatp] | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 953 | |
| 11979 | 954 | lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" | 
| 955 | by (unfold image_def) blast | |
| 956 | ||
| 957 | lemma imageI: "x : A ==> f x : f ` A" | |
| 958 | by (rule image_eqI) (rule refl) | |
| 959 | ||
| 960 | lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" | |
| 961 |   -- {* This version's more effective when we already have the
 | |
| 962 |     required @{term x}. *}
 | |
| 963 | by (unfold image_def) blast | |
| 964 | ||
| 965 | lemma imageE [elim!]: | |
| 966 | "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" | |
| 967 |   -- {* The eta-expansion gives variable-name preservation. *}
 | |
| 968 | by (unfold image_def) blast | |
| 969 | ||
| 970 | lemma image_Un: "f`(A Un B) = f`A Un f`B" | |
| 971 | by blast | |
| 972 | ||
| 26150 | 973 | lemma image_eq_UN: "f`A = (UN x:A. {f x})"
 | 
| 974 | by blast | |
| 975 | ||
| 11979 | 976 | lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" | 
| 977 | by blast | |
| 978 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 979 | lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" | 
| 11979 | 980 |   -- {* This rewrite rule would confuse users if made default. *}
 | 
| 981 | by blast | |
| 982 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 983 | lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" | 
| 11979 | 984 | apply safe | 
| 985 | prefer 2 apply fast | |
| 14208 | 986 |   apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
 | 
| 11979 | 987 | done | 
| 988 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 989 | lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" | 
| 11979 | 990 |   -- {* Replaces the three steps @{text subsetI}, @{text imageE},
 | 
| 991 |     @{text hypsubst}, but breaks too many existing proofs. *}
 | |
| 992 | by blast | |
| 993 | ||
| 994 | text {*
 | |
| 995 | \medskip Range of a function -- just a translation for image! | |
| 996 | *} | |
| 997 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 998 | lemma range_eqI: "b = f x ==> b \<in> range f" | 
| 11979 | 999 | by simp | 
| 1000 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1001 | lemma rangeI: "f x \<in> range f" | 
| 11979 | 1002 | by simp | 
| 1003 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1004 | lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" | 
| 11979 | 1005 | by blast | 
| 1006 | ||
| 1007 | ||
| 1008 | subsubsection {* Set reasoning tools *}
 | |
| 1009 | ||
| 1010 | text {*
 | |
| 1011 |   Rewrite rules for boolean case-splitting: faster than @{text
 | |
| 1012 | "split_if [split]"}. | |
| 1013 | *} | |
| 1014 | ||
| 1015 | lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" | |
| 1016 | by (rule split_if) | |
| 1017 | ||
| 1018 | lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" | |
| 1019 | by (rule split_if) | |
| 1020 | ||
| 1021 | text {*
 | |
| 1022 |   Split ifs on either side of the membership relation.  Not for @{text
 | |
| 1023 | "[simp]"} -- can cause goals to blow up! | |
| 1024 | *} | |
| 1025 | ||
| 1026 | lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" | |
| 1027 | by (rule split_if) | |
| 1028 | ||
| 1029 | lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" | |
| 26800 | 1030 | by (rule split_if [where P="%S. a : S"]) | 
| 11979 | 1031 | |
| 1032 | lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 | |
| 1033 | ||
| 1034 | lemmas mem_simps = | |
| 1035 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 1036 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 1037 |   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
 | |
| 1038 | ||
| 1039 | (*Would like to add these, but the existing code only searches for the | |
| 1040 | outer-level constant, which in this case is just "op :"; we instead need | |
| 1041 | to use term-nets to associate patterns with rules. Also, if a rule fails to | |
| 1042 | apply, then the formula should be kept. | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
19175diff
changeset | 1043 |   [("HOL.uminus", Compl_iff RS iffD1), ("HOL.minus", [Diff_iff RS iffD1]),
 | 
| 11979 | 1044 |    ("op Int", [IntD1,IntD2]),
 | 
| 1045 |    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
 | |
| 1046 | *) | |
| 1047 | ||
| 26339 | 1048 | ML {*
 | 
| 22139 | 1049 |   val mksimps_pairs = [("Ball", @{thms bspec})] @ mksimps_pairs;
 | 
| 26339 | 1050 | *} | 
| 1051 | declaration {* fn _ =>
 | |
| 1052 | Simplifier.map_ss (fn ss => ss setmksimps (mksimps mksimps_pairs)) | |
| 11979 | 1053 | *} | 
| 1054 | ||
| 1055 | ||
| 1056 | subsubsection {* The ``proper subset'' relation *}
 | |
| 1057 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1058 | lemma psubsetI [intro!,noatp]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" | 
| 26800 | 1059 | by (unfold less_le) blast | 
| 11979 | 1060 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1061 | lemma psubsetE [elim!,noatp]: | 
| 13624 | 1062 | "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" | 
| 26800 | 1063 | by (unfold less_le) blast | 
| 13624 | 1064 | |
| 11979 | 1065 | lemma psubset_insert_iff: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1066 |   "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
 | 
| 26800 | 1067 | by (auto simp add: less_le subset_insert_iff) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1068 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1069 | lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" | 
| 26800 | 1070 | by (simp only: less_le) | 
| 11979 | 1071 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1072 | lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" | 
| 11979 | 1073 | by (simp add: psubset_eq) | 
| 1074 | ||
| 14335 | 1075 | lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C" | 
| 26800 | 1076 | apply (unfold less_le) | 
| 14335 | 1077 | apply (auto dest: subset_antisym) | 
| 1078 | done | |
| 1079 | ||
| 1080 | lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B" | |
| 26800 | 1081 | apply (unfold less_le) | 
| 14335 | 1082 | apply (auto dest: subsetD) | 
| 1083 | done | |
| 1084 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1085 | lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" | 
| 11979 | 1086 | by (auto simp add: psubset_eq) | 
| 1087 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1088 | lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" | 
| 11979 | 1089 | by (auto simp add: psubset_eq) | 
| 1090 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1091 | lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" | 
| 26800 | 1092 | by (unfold less_le) blast | 
| 11979 | 1093 | |
| 1094 | lemma atomize_ball: | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1095 | "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" | 
| 11979 | 1096 | by (simp only: Ball_def atomize_all atomize_imp) | 
| 1097 | ||
| 18832 | 1098 | lemmas [symmetric, rulify] = atomize_ball | 
| 1099 | and [symmetric, defn] = atomize_ball | |
| 11979 | 1100 | |
| 1101 | ||
| 22455 | 1102 | subsection {* Further set-theory lemmas *}
 | 
| 1103 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1104 | subsubsection {* Derived rules involving subsets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1105 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1106 | text {* @{text insert}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1107 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1108 | lemma subset_insertI: "B \<subseteq> insert a B" | 
| 23878 | 1109 | by (rule subsetI) (erule insertI2) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1110 | |
| 14302 | 1111 | lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" | 
| 23878 | 1112 | by blast | 
| 14302 | 1113 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1114 | lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1115 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1116 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1117 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1118 | text {* \medskip Big Union -- least upper bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1119 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1120 | lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A" | 
| 17589 | 1121 | by (iprover intro: subsetI UnionI) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1122 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1123 | lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C" | 
| 17589 | 1124 | by (iprover intro: subsetI elim: UnionE dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1125 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1126 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1127 | text {* \medskip General union. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1128 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1129 | lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1130 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1131 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1132 | lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 17589 | 1133 | by (iprover intro: subsetI elim: UN_E dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1134 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1135 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1136 | text {* \medskip Big Intersection -- greatest lower bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1137 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1138 | lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1139 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1140 | |
| 14551 | 1141 | lemma Inter_subset: | 
| 1142 |   "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
 | |
| 1143 | by blast | |
| 1144 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1145 | lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A" | 
| 17589 | 1146 | by (iprover intro: InterI subsetI dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1147 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1148 | lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1149 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1150 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1151 | lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 17589 | 1152 | by (iprover intro: INT_I subsetI dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1153 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1154 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1155 | text {* \medskip Finite Union -- the least upper bound of two sets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1156 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1157 | lemma Un_upper1: "A \<subseteq> A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1158 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1159 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1160 | lemma Un_upper2: "B \<subseteq> A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1161 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1162 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1163 | lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1164 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1165 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1166 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1167 | text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1168 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1169 | lemma Int_lower1: "A \<inter> B \<subseteq> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1170 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1171 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1172 | lemma Int_lower2: "A \<inter> B \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1173 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1174 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1175 | lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1176 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1177 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1178 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1179 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1180 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1181 | lemma Diff_subset: "A - B \<subseteq> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1182 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1183 | |
| 14302 | 1184 | lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)" | 
| 1185 | by blast | |
| 1186 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1187 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1188 | subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1189 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1190 | text {* @{text "{}"}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1191 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1192 | lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1193 |   -- {* supersedes @{text "Collect_False_empty"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1194 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1195 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1196 | lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1197 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1198 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1199 | lemma not_psubset_empty [iff]: "\<not> (A < {})"
 | 
| 26800 | 1200 | by (unfold less_le) blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1201 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1202 | lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
 | 
| 18423 | 1203 | by blast | 
| 1204 | ||
| 1205 | lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
 | |
| 1206 | by blast | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1207 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1208 | lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1209 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1210 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1211 | lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1212 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1213 | |
| 14812 | 1214 | lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
 | 
| 1215 | by blast | |
| 1216 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1217 | lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1218 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1219 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1220 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1221 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1222 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1223 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1224 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1225 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1226 | lemma Collect_ex_eq [noatp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1227 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1228 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1229 | lemma Collect_bex_eq [noatp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1230 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1231 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1232 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1233 | text {* \medskip @{text insert}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1234 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1235 | lemma insert_is_Un: "insert a A = {a} Un A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1236 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1237 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1238 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1239 | lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1240 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1241 | |
| 17715 | 1242 | lemmas empty_not_insert = insert_not_empty [symmetric, standard] | 
| 1243 | declare empty_not_insert [simp] | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1244 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1245 | lemma insert_absorb: "a \<in> A ==> insert a A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1246 |   -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1247 |   -- {* with \emph{quadratic} running time *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1248 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1249 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1250 | lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1251 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1252 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1253 | lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1254 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1255 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1256 | lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1257 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1258 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1259 | lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1260 |   -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
 | 
| 14208 | 1261 |   apply (rule_tac x = "A - {a}" in exI, blast)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1262 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1263 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1264 | lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1265 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1266 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1267 | lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1268 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1269 | |
| 14302 | 1270 | lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" | 
| 14742 | 1271 | by blast | 
| 14302 | 1272 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1273 | lemma insert_disjoint [simp,noatp]: | 
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1274 |  "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
 | 
| 14742 | 1275 |  "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
 | 
| 16773 | 1276 | by auto | 
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1277 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1278 | lemma disjoint_insert [simp,noatp]: | 
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1279 |  "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
 | 
| 14742 | 1280 |  "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
 | 
| 16773 | 1281 | by auto | 
| 14742 | 1282 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1283 | text {* \medskip @{text image}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1284 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1285 | lemma image_empty [simp]: "f`{} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1286 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1287 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1288 | lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1289 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1290 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1291 | lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
 | 
| 16773 | 1292 | by auto | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1293 | |
| 21316 | 1294 | lemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})"
 | 
| 21312 | 1295 | by auto | 
| 1296 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1297 | lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1298 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1299 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1300 | lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1301 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1302 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1303 | lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1304 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1305 | |
| 16773 | 1306 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1307 | lemma image_Collect [noatp]: "f ` {x. P x} = {f x | x. P x}"
 | 
| 16773 | 1308 |   -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
 | 
| 1309 | with its implicit quantifier and conjunction. Also image enjoys better | |
| 1310 | equational properties than does the RHS. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1311 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1312 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1313 | lemma if_image_distrib [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1314 | "(\<lambda>x. if P x then f x else g x) ` S | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1315 |     = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1316 | by (auto simp add: image_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1317 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1318 | lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1319 | by (simp add: image_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1320 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1321 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1322 | text {* \medskip @{text range}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1323 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1324 | lemma full_SetCompr_eq [noatp]: "{u. \<exists>x. u = f x} = range f"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1325 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1326 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1327 | lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g" | 
| 14208 | 1328 | by (subst image_image, simp) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1329 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1330 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1331 | text {* \medskip @{text Int} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1332 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1333 | lemma Int_absorb [simp]: "A \<inter> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1334 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1335 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1336 | lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1337 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1338 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1339 | lemma Int_commute: "A \<inter> B = B \<inter> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1340 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1341 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1342 | lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1343 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1344 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1345 | lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1346 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1347 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1348 | lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1349 |   -- {* Intersection is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1350 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1351 | lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1352 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1353 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1354 | lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1355 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1356 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1357 | lemma Int_empty_left [simp]: "{} \<inter> B = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1358 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1359 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1360 | lemma Int_empty_right [simp]: "A \<inter> {} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1361 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1362 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1363 | lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1364 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1365 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1366 | lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1367 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1368 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1369 | lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1370 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1371 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1372 | lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1373 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1374 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1375 | lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1376 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1377 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1378 | lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1379 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1380 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1381 | lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1382 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1383 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1384 | lemma Int_UNIV [simp,noatp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1385 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1386 | |
| 15102 | 1387 | lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1388 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1389 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1390 | lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1391 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1392 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1393 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1394 | text {* \medskip @{text Un}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1395 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1396 | lemma Un_absorb [simp]: "A \<union> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1397 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1398 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1399 | lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1400 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1401 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1402 | lemma Un_commute: "A \<union> B = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1403 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1404 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1405 | lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1406 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1407 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1408 | lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1409 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1410 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1411 | lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1412 |   -- {* Union is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1413 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1414 | lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1415 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1416 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1417 | lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1418 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1419 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1420 | lemma Un_empty_left [simp]: "{} \<union> B = B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1421 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1422 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1423 | lemma Un_empty_right [simp]: "A \<union> {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1424 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1425 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1426 | lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1427 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1428 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1429 | lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1430 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1431 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1432 | lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1433 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1434 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1435 | lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1436 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1437 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1438 | lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1439 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1440 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1441 | lemma Int_insert_left: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1442 | "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1443 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1444 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1445 | lemma Int_insert_right: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1446 | "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1447 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1448 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1449 | lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1450 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1451 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1452 | lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1453 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1454 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1455 | lemma Un_Int_crazy: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1456 | "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1457 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1458 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1459 | lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1460 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1461 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1462 | lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1463 | by blast | 
| 15102 | 1464 | |
| 1465 | lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1466 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1467 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1468 | lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1469 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1470 | |
| 22172 | 1471 | lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B" | 
| 1472 | by blast | |
| 1473 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1474 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1475 | text {* \medskip Set complement *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1476 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1477 | lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1478 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1479 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1480 | lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1481 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1482 | |
| 13818 | 1483 | lemma Compl_partition: "A \<union> -A = UNIV" | 
| 1484 | by blast | |
| 1485 | ||
| 1486 | lemma Compl_partition2: "-A \<union> A = UNIV" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1487 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1488 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1489 | lemma double_complement [simp]: "- (-A) = (A::'a set)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1490 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1491 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1492 | lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1493 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1494 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1495 | lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1496 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1497 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1498 | lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1499 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1500 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1501 | lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1502 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1503 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1504 | lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1505 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1506 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1507 | lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1508 |   -- {* Halmos, Naive Set Theory, page 16. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1509 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1510 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1511 | lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1512 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1513 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1514 | lemma Compl_empty_eq [simp]: "-{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1515 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1516 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1517 | lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1518 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1519 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1520 | lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1521 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1522 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1523 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1524 | text {* \medskip @{text Union}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1525 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1526 | lemma Union_empty [simp]: "Union({}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1527 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1528 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1529 | lemma Union_UNIV [simp]: "Union UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1530 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1531 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1532 | lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1533 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1534 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1535 | lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1536 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1537 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1538 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1539 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1540 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1541 | lemma Union_empty_conv [simp,noatp]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1542 | by blast | 
| 1543 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1544 | lemma empty_Union_conv [simp,noatp]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1545 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1546 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1547 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1548 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1549 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1550 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1551 | text {* \medskip @{text Inter}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1552 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1553 | lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1554 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1555 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1556 | lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1557 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1558 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1559 | lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1560 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1561 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1562 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1563 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1564 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1565 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1566 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1567 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1568 | lemma Inter_UNIV_conv [simp,noatp]: | 
| 13653 | 1569 | "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)" | 
| 1570 | "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)" | |
| 14208 | 1571 | by blast+ | 
| 13653 | 1572 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1573 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1574 | text {*
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1575 |   \medskip @{text UN} and @{text INT}.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1576 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1577 | Basic identities: *} | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1578 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1579 | lemma UN_empty [simp,noatp]: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1580 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1581 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1582 | lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1583 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1584 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1585 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1586 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1587 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1588 | lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 15102 | 1589 | by auto | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1590 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1591 | lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1592 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1593 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1594 | lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1595 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1596 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1597 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1598 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1599 | |
| 24331 | 1600 | lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1601 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1602 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1603 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1604 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1605 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1606 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1607 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1608 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1609 | lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1610 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1611 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1612 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1613 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1614 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1615 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1616 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1617 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1618 | lemma INT_insert_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1619 | "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1620 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1621 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1622 | lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1623 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1624 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1625 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1626 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1627 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1628 | lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1629 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1630 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1631 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1632 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1633 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1634 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1635 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1636 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1637 | lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1638 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1639 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1640 | lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1641 |   -- {* Look: it has an \emph{existential} quantifier *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1642 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1643 | |
| 18447 | 1644 | lemma UNION_empty_conv[simp]: | 
| 13653 | 1645 |   "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
 | 
| 1646 |   "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
 | |
| 1647 | by blast+ | |
| 1648 | ||
| 18447 | 1649 | lemma INTER_UNIV_conv[simp]: | 
| 13653 | 1650 | "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 1651 | "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 1652 | by blast+ | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1653 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1654 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1655 | text {* \medskip Distributive laws: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1656 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1657 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1658 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1659 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1660 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1661 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1662 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1663 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1664 |   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1665 |   -- {* Union of a family of unions *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1666 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1667 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1668 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1669 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1670 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1671 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1672 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1673 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1674 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1675 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1676 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1677 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1678 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1679 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1680 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1681 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1682 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1683 |   -- {* Halmos, Naive Set Theory, page 35. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1684 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1685 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1686 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1687 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1688 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1689 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1690 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1691 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1692 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1693 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1694 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1695 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1696 | text {* \medskip Bounded quantifiers.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1697 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1698 | The following are not added to the default simpset because | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1699 |   (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1700 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1701 | lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1702 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1703 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1704 | lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1705 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1706 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1707 | lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1708 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1709 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1710 | lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1711 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1712 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1713 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1714 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1715 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1716 | lemma Diff_eq: "A - B = A \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1717 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1718 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1719 | lemma Diff_eq_empty_iff [simp,noatp]: "(A - B = {}) = (A \<subseteq> B)"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1720 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1721 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1722 | lemma Diff_cancel [simp]: "A - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1723 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1724 | |
| 14302 | 1725 | lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)" | 
| 1726 | by blast | |
| 1727 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1728 | lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1729 | by (blast elim: equalityE) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1730 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1731 | lemma empty_Diff [simp]: "{} - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1732 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1733 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1734 | lemma Diff_empty [simp]: "A - {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1735 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1736 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1737 | lemma Diff_UNIV [simp]: "A - UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1738 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1739 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1740 | lemma Diff_insert0 [simp,noatp]: "x \<notin> A ==> A - insert x B = A - B" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1741 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1742 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1743 | lemma Diff_insert: "A - insert a B = A - B - {a}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1744 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1745 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1746 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1747 | lemma Diff_insert2: "A - insert a B = A - {a} - B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1748 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1749 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1750 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1751 | lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1752 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1753 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1754 | lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1755 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1756 | |
| 14302 | 1757 | lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
 | 
| 1758 | by blast | |
| 1759 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1760 | lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1761 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1762 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1763 | lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1764 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1765 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1766 | lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1767 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1768 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1769 | lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1770 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1771 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1772 | lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1773 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1774 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1775 | lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1776 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1777 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1778 | lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1779 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1780 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1781 | lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1782 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1783 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1784 | lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1785 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1786 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1787 | lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1788 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1789 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1790 | lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1791 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1792 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1793 | lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1794 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1795 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1796 | lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1797 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1798 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1799 | lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1800 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1801 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1802 | lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1803 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1804 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1805 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1806 | text {* \medskip Quantification over type @{typ bool}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1807 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1808 | lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" | 
| 21549 | 1809 | by (cases x) auto | 
| 1810 | ||
| 1811 | lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False" | |
| 1812 | by (auto intro: bool_induct) | |
| 1813 | ||
| 1814 | lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True" | |
| 1815 | by (cases x) auto | |
| 1816 | ||
| 1817 | lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False" | |
| 1818 | by (auto intro: bool_contrapos) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1819 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1820 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1821 | by (auto simp add: split_if_mem2) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1822 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1823 | lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)" | 
| 21549 | 1824 | by (auto intro: bool_contrapos) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1825 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1826 | lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)" | 
| 21549 | 1827 | by (auto intro: bool_induct) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1828 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1829 | text {* \medskip @{text Pow} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1830 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1831 | lemma Pow_empty [simp]: "Pow {} = {{}}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1832 | by (auto simp add: Pow_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1833 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1834 | lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1835 |   by (blast intro: image_eqI [where ?x = "u - {a}", standard])
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1836 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1837 | lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1838 | by (blast intro: exI [where ?x = "- u", standard]) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1839 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1840 | lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1841 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1842 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1843 | lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1844 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1845 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1846 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1847 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1848 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1849 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1850 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1851 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1852 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1853 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1854 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1855 | lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1856 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1857 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1858 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1859 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1860 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1861 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1862 | text {* \medskip Miscellany. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1863 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1864 | lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1865 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1866 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1867 | lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1868 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1869 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1870 | lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" | 
| 26800 | 1871 | by (unfold less_le) blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1872 | |
| 18447 | 1873 | lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1874 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1875 | |
| 13831 | 1876 | lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
 | 
| 1877 | by blast | |
| 1878 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1879 | lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y" | 
| 17589 | 1880 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1881 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1882 | |
| 13860 | 1883 | text {* \medskip Miniscoping: pushing in quantifiers and big Unions
 | 
| 1884 | and Intersections. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1885 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1886 | lemma UN_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1887 |   "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1888 |   "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1889 |   "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1890 | "!!A B C. (UN x:C. A x Int B) = ((UN x:C. A x) Int B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1891 | "!!A B C. (UN x:C. A Int B x) = (A Int (UN x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1892 | "!!A B C. (UN x:C. A x - B) = ((UN x:C. A x) - B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1893 | "!!A B C. (UN x:C. A - B x) = (A - (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1894 | "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1895 | "!!A B C. (UN z: UNION A B. C z) = (UN x:A. UN z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1896 | "!!A B f. (UN x:f`A. B x) = (UN a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1897 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1898 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1899 | lemma INT_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1900 |   "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1901 |   "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1902 |   "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1903 |   "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1904 | "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1905 | "!!A B C. (INT x:C. A x Un B) = ((INT x:C. A x) Un B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1906 | "!!A B C. (INT x:C. A Un B x) = (A Un (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1907 | "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1908 | "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1909 | "!!A B f. (INT x:f`A. B x) = (INT a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1910 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1911 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1912 | lemma ball_simps [simp,noatp]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1913 | "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1914 | "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1915 | "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1916 | "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1917 |   "!!P. (ALL x:{}. P x) = True"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1918 | "!!P. (ALL x:UNIV. P x) = (ALL x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1919 | "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1920 | "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1921 | "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1922 | "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1923 | "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1924 | "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1925 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1926 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1927 | lemma bex_simps [simp,noatp]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1928 | "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1929 | "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1930 |   "!!P. (EX x:{}. P x) = False"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1931 | "!!P. (EX x:UNIV. P x) = (EX x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1932 | "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1933 | "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1934 | "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1935 | "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1936 | "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1937 | "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1938 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1939 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1940 | lemma ball_conj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1941 | "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1942 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1943 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1944 | lemma bex_disj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1945 | "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1946 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1947 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1948 | |
| 13860 | 1949 | text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
 | 
| 1950 | ||
| 1951 | lemma UN_extend_simps: | |
| 1952 |   "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
 | |
| 1953 |   "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
 | |
| 1954 |   "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
 | |
| 1955 | "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)" | |
| 1956 | "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)" | |
| 1957 | "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)" | |
| 1958 | "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)" | |
| 1959 | "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)" | |
| 1960 | "!!A B C. (UN x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)" | |
| 1961 | "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)" | |
| 1962 | by auto | |
| 1963 | ||
| 1964 | lemma INT_extend_simps: | |
| 1965 |   "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
 | |
| 1966 |   "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
 | |
| 1967 |   "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
 | |
| 1968 |   "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
 | |
| 1969 | "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))" | |
| 1970 | "!!A B C. ((INT x:C. A x) Un B) = (INT x:C. A x Un B)" | |
| 1971 | "!!A B C. A Un (INT x:C. B x) = (INT x:C. A Un B x)" | |
| 1972 | "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)" | |
| 1973 | "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)" | |
| 1974 | "!!A B f. (INT a:A. B (f a)) = (INT x:f`A. B x)" | |
| 1975 | by auto | |
| 1976 | ||
| 1977 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1978 | subsubsection {* Monotonicity of various operations *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1979 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1980 | lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1981 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1982 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1983 | lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1984 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1985 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1986 | lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1987 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1988 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1989 | lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1990 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1991 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1992 | lemma UN_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1993 | "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1994 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1995 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1996 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1997 | lemma INT_anti_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1998 | "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1999 | (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2000 |   -- {* The last inclusion is POSITIVE! *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2001 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2002 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2003 | lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2004 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2005 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2006 | lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2007 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2008 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2009 | lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2010 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2011 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2012 | lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2013 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2014 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2015 | lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2016 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2017 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2018 | text {* \medskip Monotonicity of implications. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2019 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2020 | lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2021 | apply (rule impI) | 
| 14208 | 2022 | apply (erule subsetD, assumption) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2023 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2024 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2025 | lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" | 
| 17589 | 2026 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2027 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2028 | lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" | 
| 17589 | 2029 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2030 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2031 | lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" | 
| 17589 | 2032 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2033 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2034 | lemma imp_refl: "P --> P" .. | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2035 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2036 | lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" | 
| 17589 | 2037 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2038 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2039 | lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" | 
| 17589 | 2040 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2041 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2042 | lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2043 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2044 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2045 | lemma Int_Collect_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2046 | "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2047 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2048 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2049 | lemmas basic_monos = | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2050 | subset_refl imp_refl disj_mono conj_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2051 | ex_mono Collect_mono in_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2052 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2053 | lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" | 
| 17589 | 2054 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2055 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2056 | lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c" | 
| 17589 | 2057 | by iprover | 
| 11979 | 2058 | |
| 12020 | 2059 | |
| 12257 | 2060 | subsection {* Inverse image of a function *}
 | 
| 2061 | ||
| 2062 | constdefs | |
| 2063 |   vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
 | |
| 2064 |   "f -` B == {x. f x : B}"
 | |
| 2065 | ||
| 2066 | ||
| 2067 | subsubsection {* Basic rules *}
 | |
| 2068 | ||
| 2069 | lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" | |
| 2070 | by (unfold vimage_def) blast | |
| 2071 | ||
| 2072 | lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
 | |
| 2073 | by simp | |
| 2074 | ||
| 2075 | lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" | |
| 2076 | by (unfold vimage_def) blast | |
| 2077 | ||
| 2078 | lemma vimageI2: "f a : A ==> a : f -` A" | |
| 2079 | by (unfold vimage_def) fast | |
| 2080 | ||
| 2081 | lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" | |
| 2082 | by (unfold vimage_def) blast | |
| 2083 | ||
| 2084 | lemma vimageD: "a : f -` A ==> f a : A" | |
| 2085 | by (unfold vimage_def) fast | |
| 2086 | ||
| 2087 | ||
| 2088 | subsubsection {* Equations *}
 | |
| 2089 | ||
| 2090 | lemma vimage_empty [simp]: "f -` {} = {}"
 | |
| 2091 | by blast | |
| 2092 | ||
| 2093 | lemma vimage_Compl: "f -` (-A) = -(f -` A)" | |
| 2094 | by blast | |
| 2095 | ||
| 2096 | lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" | |
| 2097 | by blast | |
| 2098 | ||
| 2099 | lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" | |
| 2100 | by fast | |
| 2101 | ||
| 2102 | lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)" | |
| 2103 | by blast | |
| 2104 | ||
| 2105 | lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)" | |
| 2106 | by blast | |
| 2107 | ||
| 2108 | lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)" | |
| 2109 | by blast | |
| 2110 | ||
| 2111 | lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
 | |
| 2112 | by blast | |
| 2113 | ||
| 2114 | lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" | |
| 2115 | by blast | |
| 2116 | ||
| 2117 | lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
 | |
| 2118 |   -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
 | |
| 2119 | by blast | |
| 2120 | ||
| 2121 | lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" | |
| 2122 | by blast | |
| 2123 | ||
| 2124 | lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" | |
| 2125 | by blast | |
| 2126 | ||
| 2127 | lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
 | |
| 2128 |   -- {* NOT suitable for rewriting *}
 | |
| 2129 | by blast | |
| 2130 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2131 | lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" | 
| 12257 | 2132 |   -- {* monotonicity *}
 | 
| 2133 | by blast | |
| 2134 | ||
| 26150 | 2135 | lemma vimage_image_eq [noatp]: "f -` (f ` A) = {y. EX x:A. f x = f y}"
 | 
| 2136 | by (blast intro: sym) | |
| 2137 | ||
| 2138 | lemma image_vimage_subset: "f ` (f -` A) <= A" | |
| 2139 | by blast | |
| 2140 | ||
| 2141 | lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" | |
| 2142 | by blast | |
| 2143 | ||
| 2144 | lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B" | |
| 2145 | by blast | |
| 2146 | ||
| 2147 | lemma image_diff_subset: "f`A - f`B <= f`(A - B)" | |
| 2148 | by blast | |
| 2149 | ||
| 2150 | lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))" | |
| 2151 | by blast | |
| 2152 | ||
| 12257 | 2153 | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2154 | subsection {* Getting the Contents of a Singleton Set *}
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2155 | |
| 24658 | 2156 | definition | 
| 2157 | contents :: "'a set \<Rightarrow> 'a" | |
| 2158 | where | |
| 26800 | 2159 |   "contents X = (THE x. X = {x})"
 | 
| 24658 | 2160 | |
| 2161 | lemma contents_eq [simp]: "contents {x} = x"
 | |
| 2162 | by (simp add: contents_def) | |
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2163 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2164 | |
| 12023 | 2165 | subsection {* Transitivity rules for calculational reasoning *}
 | 
| 12020 | 2166 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2167 | lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" | 
| 12020 | 2168 | by (rule subsetD) | 
| 2169 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2170 | lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" | 
| 12020 | 2171 | by (rule subsetD) | 
| 2172 | ||
| 26800 | 2173 | lemmas basic_trans_rules [trans] = | 
| 2174 | order_trans_rules set_rev_mp set_mp | |
| 2175 | ||
| 2176 | ||
| 2177 | subsection {* Dense orders *}
 | |
| 2178 | ||
| 2179 | class dense_linear_order = linorder + | |
| 2180 | assumes gt_ex: "\<exists>y. x < y" | |
| 2181 | and lt_ex: "\<exists>y. y < x" | |
| 2182 | and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | |
| 2183 | (*see further theory Dense_Linear_Order*) | |
| 26513 | 2184 | begin | 
| 2185 | ||
| 26800 | 2186 | lemma interval_empty_iff: | 
| 2187 |   "{y. x < y \<and> y < z} = {} \<longleftrightarrow> \<not> x < z"
 | |
| 2188 | by (auto dest: dense) | |
| 26513 | 2189 | |
| 2190 | end | |
| 2191 | ||
| 24420 | 2192 | |
| 26800 | 2193 | subsection {* Least value operator *}
 | 
| 2194 | ||
| 2195 | lemma Least_mono: | |
| 2196 | "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y | |
| 2197 | ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" | |
| 2198 |     -- {* Courtesy of Stephan Merz *}
 | |
| 2199 | apply clarify | |
| 2200 | apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) | |
| 2201 | apply (rule LeastI2_order) | |
| 2202 | apply (auto elim: monoD intro!: order_antisym) | |
| 2203 | done | |
| 2204 | ||
| 2205 | lemma Least_equality: | |
| 2206 | "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" | |
| 2207 | apply (simp add: Least_def) | |
| 2208 | apply (rule the_equality) | |
| 2209 | apply (auto intro!: order_antisym) | |
| 2210 | done | |
| 2211 | ||
| 24420 | 2212 | |
| 21669 | 2213 | subsection {* Basic ML bindings *}
 | 
| 2214 | ||
| 2215 | ML {*
 | |
| 22139 | 2216 | val Ball_def = @{thm Ball_def}
 | 
| 2217 | val Bex_def = @{thm Bex_def}
 | |
| 2218 | val CollectD = @{thm CollectD}
 | |
| 2219 | val CollectE = @{thm CollectE}
 | |
| 2220 | val CollectI = @{thm CollectI}
 | |
| 2221 | val Collect_conj_eq = @{thm Collect_conj_eq}
 | |
| 2222 | val Collect_mem_eq = @{thm Collect_mem_eq}
 | |
| 2223 | val IntD1 = @{thm IntD1}
 | |
| 2224 | val IntD2 = @{thm IntD2}
 | |
| 2225 | val IntE = @{thm IntE}
 | |
| 2226 | val IntI = @{thm IntI}
 | |
| 2227 | val Int_Collect = @{thm Int_Collect}
 | |
| 2228 | val UNIV_I = @{thm UNIV_I}
 | |
| 2229 | val UNIV_witness = @{thm UNIV_witness}
 | |
| 2230 | val UnE = @{thm UnE}
 | |
| 2231 | val UnI1 = @{thm UnI1}
 | |
| 2232 | val UnI2 = @{thm UnI2}
 | |
| 2233 | val ballE = @{thm ballE}
 | |
| 2234 | val ballI = @{thm ballI}
 | |
| 2235 | val bexCI = @{thm bexCI}
 | |
| 2236 | val bexE = @{thm bexE}
 | |
| 2237 | val bexI = @{thm bexI}
 | |
| 2238 | val bex_triv = @{thm bex_triv}
 | |
| 2239 | val bspec = @{thm bspec}
 | |
| 2240 | val contra_subsetD = @{thm contra_subsetD}
 | |
| 2241 | val distinct_lemma = @{thm distinct_lemma}
 | |
| 2242 | val eq_to_mono = @{thm eq_to_mono}
 | |
| 2243 | val eq_to_mono2 = @{thm eq_to_mono2}
 | |
| 2244 | val equalityCE = @{thm equalityCE}
 | |
| 2245 | val equalityD1 = @{thm equalityD1}
 | |
| 2246 | val equalityD2 = @{thm equalityD2}
 | |
| 2247 | val equalityE = @{thm equalityE}
 | |
| 2248 | val equalityI = @{thm equalityI}
 | |
| 2249 | val imageE = @{thm imageE}
 | |
| 2250 | val imageI = @{thm imageI}
 | |
| 2251 | val image_Un = @{thm image_Un}
 | |
| 2252 | val image_insert = @{thm image_insert}
 | |
| 2253 | val insert_commute = @{thm insert_commute}
 | |
| 2254 | val insert_iff = @{thm insert_iff}
 | |
| 2255 | val mem_Collect_eq = @{thm mem_Collect_eq}
 | |
| 2256 | val rangeE = @{thm rangeE}
 | |
| 2257 | val rangeI = @{thm rangeI}
 | |
| 2258 | val range_eqI = @{thm range_eqI}
 | |
| 2259 | val subsetCE = @{thm subsetCE}
 | |
| 2260 | val subsetD = @{thm subsetD}
 | |
| 2261 | val subsetI = @{thm subsetI}
 | |
| 2262 | val subset_refl = @{thm subset_refl}
 | |
| 2263 | val subset_trans = @{thm subset_trans}
 | |
| 2264 | val vimageD = @{thm vimageD}
 | |
| 2265 | val vimageE = @{thm vimageE}
 | |
| 2266 | val vimageI = @{thm vimageI}
 | |
| 2267 | val vimageI2 = @{thm vimageI2}
 | |
| 2268 | val vimage_Collect = @{thm vimage_Collect}
 | |
| 2269 | val vimage_Int = @{thm vimage_Int}
 | |
| 2270 | val vimage_Un = @{thm vimage_Un}
 | |
| 21669 | 2271 | *} | 
| 2272 | ||
| 11979 | 2273 | end |