| author | wenzelm | 
| Sun, 08 Jun 2008 14:29:09 +0200 | |
| changeset 27090 | 2f45c1b1b05d | 
| parent 26584 | 46f3b89b2445 | 
| child 27105 | 5f139027c365 | 
| permissions | -rw-r--r-- | 
| 24333 | 1 | (* | 
| 2 | ID: $Id$ | |
| 3 | Author: Jeremy Dawson, NICTA | |
| 4 | ||
| 5 | contains theorems to do with integers, expressed using Pls, Min, BIT, | |
| 6 | theorems linking them to lists of booleans, and repeated splitting | |
| 7 | and concatenation. | |
| 8 | *) | |
| 9 | ||
| 10 | header "Bool lists and integers" | |
| 11 | ||
| 26557 | 12 | theory BinBoolList | 
| 13 | imports BinOperations | |
| 14 | begin | |
| 24333 | 15 | |
| 24465 | 16 | subsection "Arithmetic in terms of bool lists" | 
| 17 | ||
| 26557 | 18 | (* arithmetic operations in terms of the reversed bool list, | 
| 24465 | 19 | assuming input list(s) the same length, and don't extend them *) | 
| 20 | ||
| 26557 | 21 | primrec rbl_succ :: "bool list => bool list" where | 
| 24465 | 22 | Nil: "rbl_succ Nil = Nil" | 
| 26557 | 23 | | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" | 
| 24465 | 24 | |
| 26557 | 25 | primrec rbl_pred :: "bool list => bool list" where | 
| 26 | Nil: "rbl_pred Nil = Nil" | |
| 27 | | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" | |
| 24465 | 28 | |
| 26557 | 29 | primrec rbl_add :: "bool list => bool list => bool list" where | 
| 30 | (* result is length of first arg, second arg may be longer *) | |
| 31 | Nil: "rbl_add Nil x = Nil" | |
| 32 | | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in | |
| 24465 | 33 | (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))" | 
| 34 | ||
| 26557 | 35 | primrec rbl_mult :: "bool list => bool list => bool list" where | 
| 36 | (* result is length of first arg, second arg may be longer *) | |
| 37 | Nil: "rbl_mult Nil x = Nil" | |
| 38 | | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in | |
| 24465 | 39 | if y then rbl_add ws x else ws)" | 
| 24333 | 40 | |
| 41 | lemma butlast_power: | |
| 42 | "(butlast ^ n) bl = take (length bl - n) bl" | |
| 43 | by (induct n) (auto simp: butlast_take) | |
| 44 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 45 | lemma bin_to_bl_aux_Pls_minus_simp [simp]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 46 | "0 < n ==> bin_to_bl_aux n Int.Pls bl = | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 47 | bin_to_bl_aux (n - 1) Int.Pls (False # bl)" | 
| 24333 | 48 | by (cases n) auto | 
| 49 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 50 | lemma bin_to_bl_aux_Min_minus_simp [simp]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 51 | "0 < n ==> bin_to_bl_aux n Int.Min bl = | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 52 | bin_to_bl_aux (n - 1) Int.Min (True # bl)" | 
| 24333 | 53 | by (cases n) auto | 
| 54 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 55 | lemma bin_to_bl_aux_Bit_minus_simp [simp]: | 
| 24333 | 56 | "0 < n ==> bin_to_bl_aux n (w BIT b) bl = | 
| 57 | bin_to_bl_aux (n - 1) w ((b = bit.B1) # bl)" | |
| 58 | by (cases n) auto | |
| 59 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 60 | lemma bin_to_bl_aux_Bit0_minus_simp [simp]: | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 61 | "0 < n ==> bin_to_bl_aux n (Int.Bit0 w) bl = | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 62 | bin_to_bl_aux (n - 1) w (False # bl)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 63 | by (cases n) auto | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 64 | |
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 65 | lemma bin_to_bl_aux_Bit1_minus_simp [simp]: | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 66 | "0 < n ==> bin_to_bl_aux n (Int.Bit1 w) bl = | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 67 | bin_to_bl_aux (n - 1) w (True # bl)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 68 | by (cases n) auto | 
| 24333 | 69 | |
| 24465 | 70 | (** link between bin and bool list **) | 
| 71 | ||
| 26557 | 72 | lemma bl_to_bin_aux_append: | 
| 73 | "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)" | |
| 74 | by (induct bs arbitrary: w) auto | |
| 24465 | 75 | |
| 26557 | 76 | lemma bin_to_bl_aux_append: | 
| 77 | "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)" | |
| 78 | by (induct n arbitrary: w bs) auto | |
| 24333 | 79 | |
| 24465 | 80 | lemma bl_to_bin_append: | 
| 26557 | 81 | "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)" | 
| 24465 | 82 | unfolding bl_to_bin_def by (rule bl_to_bin_aux_append) | 
| 83 | ||
| 24333 | 84 | lemma bin_to_bl_aux_alt: | 
| 85 | "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" | |
| 86 | unfolding bin_to_bl_def by (simp add : bin_to_bl_aux_append) | |
| 87 | ||
| 24465 | 88 | lemma bin_to_bl_0: "bin_to_bl 0 bs = []" | 
| 24333 | 89 | unfolding bin_to_bl_def by auto | 
| 90 | ||
| 26557 | 91 | lemma size_bin_to_bl_aux: | 
| 92 | "size (bin_to_bl_aux n w bs) = n + length bs" | |
| 93 | by (induct n arbitrary: w bs) auto | |
| 24333 | 94 | |
| 24465 | 95 | lemma size_bin_to_bl: "size (bin_to_bl n w) = n" | 
| 24333 | 96 | unfolding bin_to_bl_def by (simp add : size_bin_to_bl_aux) | 
| 97 | ||
| 26557 | 98 | lemma bin_bl_bin': | 
| 99 | "bl_to_bin (bin_to_bl_aux n w bs) = | |
| 100 | bl_to_bin_aux bs (bintrunc n w)" | |
| 101 | by (induct n arbitrary: w bs) (auto simp add : bl_to_bin_def) | |
| 24465 | 102 | |
| 103 | lemma bin_bl_bin: "bl_to_bin (bin_to_bl n w) = bintrunc n w" | |
| 104 | unfolding bin_to_bl_def bin_bl_bin' by auto | |
| 105 | ||
| 26557 | 106 | lemma bl_bin_bl': | 
| 107 | "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = | |
| 24465 | 108 | bin_to_bl_aux n w bs" | 
| 26557 | 109 | apply (induct bs arbitrary: w n) | 
| 24465 | 110 | apply auto | 
| 111 | apply (simp_all only : add_Suc [symmetric]) | |
| 112 | apply (auto simp add : bin_to_bl_def) | |
| 113 | done | |
| 114 | ||
| 115 | lemma bl_bin_bl: "bin_to_bl (length bs) (bl_to_bin bs) = bs" | |
| 116 | unfolding bl_to_bin_def | |
| 117 | apply (rule box_equals) | |
| 118 | apply (rule bl_bin_bl') | |
| 119 | prefer 2 | |
| 120 | apply (rule bin_to_bl_aux.Z) | |
| 121 | apply simp | |
| 122 | done | |
| 123 | ||
| 124 | declare | |
| 125 | bin_to_bl_0 [simp] | |
| 126 | size_bin_to_bl [simp] | |
| 127 | bin_bl_bin [simp] | |
| 128 | bl_bin_bl [simp] | |
| 129 | ||
| 130 | lemma bl_to_bin_inj: | |
| 131 | "bl_to_bin bs = bl_to_bin cs ==> length bs = length cs ==> bs = cs" | |
| 132 | apply (rule_tac box_equals) | |
| 133 | defer | |
| 134 | apply (rule bl_bin_bl) | |
| 135 | apply (rule bl_bin_bl) | |
| 136 | apply simp | |
| 137 | done | |
| 138 | ||
| 139 | lemma bl_to_bin_False: "bl_to_bin (False # bl) = bl_to_bin bl" | |
| 140 | unfolding bl_to_bin_def by auto | |
| 141 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 142 | lemma bl_to_bin_Nil: "bl_to_bin [] = Int.Pls" | 
| 24465 | 143 | unfolding bl_to_bin_def by auto | 
| 144 | ||
| 26557 | 145 | lemma bin_to_bl_Pls_aux: | 
| 146 | "bin_to_bl_aux n Int.Pls bl = replicate n False @ bl" | |
| 147 | by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) | |
| 24333 | 148 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 149 | lemma bin_to_bl_Pls: "bin_to_bl n Int.Pls = replicate n False" | 
| 24333 | 150 | unfolding bin_to_bl_def by (simp add : bin_to_bl_Pls_aux) | 
| 151 | ||
| 152 | lemma bin_to_bl_Min_aux [rule_format] : | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 153 | "ALL bl. bin_to_bl_aux n Int.Min bl = replicate n True @ bl" | 
| 24333 | 154 | by (induct n) (auto simp: replicate_app_Cons_same) | 
| 155 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 156 | lemma bin_to_bl_Min: "bin_to_bl n Int.Min = replicate n True" | 
| 24333 | 157 | unfolding bin_to_bl_def by (simp add : bin_to_bl_Min_aux) | 
| 158 | ||
| 24465 | 159 | lemma bl_to_bin_rep_F: | 
| 160 | "bl_to_bin (replicate n False @ bl) = bl_to_bin bl" | |
| 161 | apply (simp add: bin_to_bl_Pls_aux [symmetric] bin_bl_bin') | |
| 162 | apply (simp add: bl_to_bin_def) | |
| 163 | done | |
| 164 | ||
| 165 | lemma bin_to_bl_trunc: | |
| 166 | "n <= m ==> bin_to_bl n (bintrunc m w) = bin_to_bl n w" | |
| 167 | by (auto intro: bl_to_bin_inj) | |
| 168 | ||
| 169 | declare | |
| 170 | bin_to_bl_trunc [simp] | |
| 171 | bl_to_bin_False [simp] | |
| 172 | bl_to_bin_Nil [simp] | |
| 173 | ||
| 24333 | 174 | lemma bin_to_bl_aux_bintr [rule_format] : | 
| 175 | "ALL m bin bl. bin_to_bl_aux n (bintrunc m bin) bl = | |
| 176 | replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl" | |
| 177 | apply (induct_tac "n") | |
| 178 | apply clarsimp | |
| 179 | apply clarsimp | |
| 180 | apply (case_tac "m") | |
| 181 | apply (clarsimp simp: bin_to_bl_Pls_aux) | |
| 182 | apply (erule thin_rl) | |
| 183 | apply (induct_tac n) | |
| 184 | apply auto | |
| 185 | done | |
| 186 | ||
| 187 | lemmas bin_to_bl_bintr = | |
| 188 | bin_to_bl_aux_bintr [where bl = "[]", folded bin_to_bl_def] | |
| 189 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 190 | lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = Int.Pls" | 
| 24465 | 191 | by (induct n) auto | 
| 192 | ||
| 26557 | 193 | lemma len_bin_to_bl_aux: | 
| 194 | "length (bin_to_bl_aux n w bs) = n + length bs" | |
| 195 | by (induct n arbitrary: w bs) auto | |
| 24333 | 196 | |
| 197 | lemma len_bin_to_bl [simp]: "length (bin_to_bl n w) = n" | |
| 198 | unfolding bin_to_bl_def len_bin_to_bl_aux by auto | |
| 199 | ||
| 26557 | 200 | lemma sign_bl_bin': | 
| 201 | "bin_sign (bl_to_bin_aux bs w) = bin_sign w" | |
| 202 | by (induct bs arbitrary: w) auto | |
| 24333 | 203 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 204 | lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = Int.Pls" | 
| 24333 | 205 | unfolding bl_to_bin_def by (simp add : sign_bl_bin') | 
| 206 | ||
| 26557 | 207 | lemma bl_sbin_sign_aux: | 
| 208 | "hd (bin_to_bl_aux (Suc n) w bs) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 209 | (bin_sign (sbintrunc n w) = Int.Min)" | 
| 26557 | 210 | apply (induct n arbitrary: w bs) | 
| 24333 | 211 | apply clarsimp | 
| 26557 | 212 | apply (cases w rule: bin_exhaust) | 
| 24333 | 213 | apply (simp split add : bit.split) | 
| 214 | apply clarsimp | |
| 215 | done | |
| 216 | ||
| 217 | lemma bl_sbin_sign: | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 218 | "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = Int.Min)" | 
| 24333 | 219 | unfolding bin_to_bl_def by (rule bl_sbin_sign_aux) | 
| 220 | ||
| 26557 | 221 | lemma bin_nth_of_bl_aux [rule_format]: | 
| 222 | "\<forall>w. bin_nth (bl_to_bin_aux bl w) n = | |
| 24333 | 223 | (n < size bl & rev bl ! n | n >= length bl & bin_nth w (n - size bl))" | 
| 224 | apply (induct_tac bl) | |
| 225 | apply clarsimp | |
| 226 | apply clarsimp | |
| 227 | apply (cut_tac x=n and y="size list" in linorder_less_linear) | |
| 228 | apply (erule disjE, simp add: nth_append)+ | |
| 26557 | 229 | apply auto | 
| 24333 | 230 | done | 
| 231 | ||
| 232 | lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)"; | |
| 233 | unfolding bl_to_bin_def by (simp add : bin_nth_of_bl_aux) | |
| 234 | ||
| 235 | lemma bin_nth_bl [rule_format] : "ALL m w. n < m --> | |
| 236 | bin_nth w n = nth (rev (bin_to_bl m w)) n" | |
| 237 | apply (induct n) | |
| 238 | apply clarsimp | |
| 239 | apply (case_tac m, clarsimp) | |
| 240 | apply (clarsimp simp: bin_to_bl_def) | |
| 241 | apply (simp add: bin_to_bl_aux_alt) | |
| 242 | apply clarsimp | |
| 243 | apply (case_tac m, clarsimp) | |
| 244 | apply (clarsimp simp: bin_to_bl_def) | |
| 245 | apply (simp add: bin_to_bl_aux_alt) | |
| 246 | done | |
| 247 | ||
| 24465 | 248 | lemma nth_rev [rule_format] : | 
| 249 | "n < length xs --> rev xs ! n = xs ! (length xs - 1 - n)" | |
| 250 | apply (induct_tac "xs") | |
| 251 | apply simp | |
| 252 | apply (clarsimp simp add : nth_append nth.simps split add : nat.split) | |
| 253 | apply (rule_tac f = "%n. list ! n" in arg_cong) | |
| 254 | apply arith | |
| 255 | done | |
| 256 | ||
| 25350 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
25134diff
changeset | 257 | lemmas nth_rev_alt = nth_rev [where xs = "rev ys", simplified, standard] | 
| 24465 | 258 | |
| 24333 | 259 | lemma nth_bin_to_bl_aux [rule_format] : | 
| 260 | "ALL w n bl. n < m + length bl --> (bin_to_bl_aux m w bl) ! n = | |
| 261 | (if n < m then bin_nth w (m - 1 - n) else bl ! (n - m))" | |
| 262 | apply (induct_tac "m") | |
| 263 | apply clarsimp | |
| 264 | apply clarsimp | |
| 265 | apply (case_tac w rule: bin_exhaust) | |
| 266 | apply clarsimp | |
| 267 | apply (case_tac "na - n") | |
| 268 | apply arith | |
| 269 | apply simp | |
| 270 | apply (rule_tac f = "%n. bl ! n" in arg_cong) | |
| 271 | apply arith | |
| 272 | done | |
| 273 | ||
| 274 | lemma nth_bin_to_bl: "n < m ==> (bin_to_bl m w) ! n = bin_nth w (m - Suc n)" | |
| 275 | unfolding bin_to_bl_def by (simp add : nth_bin_to_bl_aux) | |
| 276 | ||
| 26557 | 277 | lemma bl_to_bin_lt2p_aux [rule_format]: | 
| 278 | "\<forall>w. bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)" | |
| 279 | apply (induct bs) | |
| 24333 | 280 | apply clarsimp | 
| 281 | apply clarsimp | |
| 282 | apply safe | |
| 26557 | 283 | apply (erule allE, erule xtr8 [rotated], | 
| 284 | simp add: numeral_simps ring_simps cong add : number_of_False_cong)+ | |
| 24333 | 285 | done | 
| 286 | ||
| 287 | lemma bl_to_bin_lt2p: "bl_to_bin bs < (2 ^ length bs)" | |
| 288 | apply (unfold bl_to_bin_def) | |
| 289 | apply (rule xtr1) | |
| 290 | prefer 2 | |
| 291 | apply (rule bl_to_bin_lt2p_aux) | |
| 292 | apply simp | |
| 293 | done | |
| 294 | ||
| 295 | lemma bl_to_bin_ge2p_aux [rule_format] : | |
| 26557 | 296 | "\<forall>w. bl_to_bin_aux bs w >= w * (2 ^ length bs)" | 
| 24333 | 297 | apply (induct bs) | 
| 298 | apply clarsimp | |
| 299 | apply clarsimp | |
| 300 | apply safe | |
| 301 | apply (erule allE, erule less_eq_less.order_trans [rotated], | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 302 | simp add: numeral_simps ring_simps cong add : number_of_False_cong)+ | 
| 24333 | 303 | done | 
| 304 | ||
| 305 | lemma bl_to_bin_ge0: "bl_to_bin bs >= 0" | |
| 306 | apply (unfold bl_to_bin_def) | |
| 307 | apply (rule xtr4) | |
| 308 | apply (rule bl_to_bin_ge2p_aux) | |
| 309 | apply simp | |
| 310 | done | |
| 311 | ||
| 312 | lemma butlast_rest_bin: | |
| 313 | "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)" | |
| 314 | apply (unfold bin_to_bl_def) | |
| 315 | apply (cases w rule: bin_exhaust) | |
| 316 | apply (cases n, clarsimp) | |
| 317 | apply clarsimp | |
| 318 | apply (auto simp add: bin_to_bl_aux_alt) | |
| 319 | done | |
| 320 | ||
| 321 | lemmas butlast_bin_rest = butlast_rest_bin | |
| 25350 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
25134diff
changeset | 322 | [where w="bl_to_bin bl" and n="length bl", simplified, standard] | 
| 24333 | 323 | |
| 26557 | 324 | lemma butlast_rest_bl2bin_aux: | 
| 325 | "bl ~= [] \<Longrightarrow> | |
| 326 | bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)" | |
| 327 | by (induct bl arbitrary: w) auto | |
| 24333 | 328 | |
| 329 | lemma butlast_rest_bl2bin: | |
| 330 | "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)" | |
| 331 | apply (unfold bl_to_bin_def) | |
| 332 | apply (cases bl) | |
| 333 | apply (auto simp add: butlast_rest_bl2bin_aux) | |
| 334 | done | |
| 335 | ||
| 26557 | 336 | lemma trunc_bl2bin_aux [rule_format]: | 
| 337 | "ALL w. bintrunc m (bl_to_bin_aux bl w) = | |
| 338 | bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)" | |
| 24333 | 339 | apply (induct_tac bl) | 
| 340 | apply clarsimp | |
| 341 | apply clarsimp | |
| 342 | apply safe | |
| 343 | apply (case_tac "m - size list") | |
| 344 | apply (simp add : diff_is_0_eq [THEN iffD1, THEN Suc_diff_le]) | |
| 345 | apply simp | |
| 26557 | 346 | apply (rule_tac f = "%nat. bl_to_bin_aux list (Int.Bit1 (bintrunc nat w))" | 
| 24333 | 347 | in arg_cong) | 
| 348 | apply simp | |
| 349 | apply (case_tac "m - size list") | |
| 350 | apply (simp add: diff_is_0_eq [THEN iffD1, THEN Suc_diff_le]) | |
| 351 | apply simp | |
| 26557 | 352 | apply (rule_tac f = "%nat. bl_to_bin_aux list (Int.Bit0 (bintrunc nat w))" | 
| 24333 | 353 | in arg_cong) | 
| 354 | apply simp | |
| 355 | done | |
| 356 | ||
| 357 | lemma trunc_bl2bin: | |
| 358 | "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)" | |
| 359 | unfolding bl_to_bin_def by (simp add : trunc_bl2bin_aux) | |
| 360 | ||
| 361 | lemmas trunc_bl2bin_len [simp] = | |
| 362 | trunc_bl2bin [of "length bl" bl, simplified, standard] | |
| 363 | ||
| 364 | lemma bl2bin_drop: | |
| 365 | "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)" | |
| 366 | apply (rule trans) | |
| 367 | prefer 2 | |
| 368 | apply (rule trunc_bl2bin [symmetric]) | |
| 369 | apply (cases "k <= length bl") | |
| 370 | apply auto | |
| 371 | done | |
| 372 | ||
| 373 | lemma nth_rest_power_bin [rule_format] : | |
| 374 | "ALL n. bin_nth ((bin_rest ^ k) w) n = bin_nth w (n + k)" | |
| 375 | apply (induct k, clarsimp) | |
| 376 | apply clarsimp | |
| 377 | apply (simp only: bin_nth.Suc [symmetric] add_Suc) | |
| 378 | done | |
| 379 | ||
| 380 | lemma take_rest_power_bin: | |
| 381 | "m <= n ==> take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^ (n - m)) w)" | |
| 382 | apply (rule nth_equalityI) | |
| 383 | apply simp | |
| 384 | apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin) | |
| 385 | done | |
| 386 | ||
| 24465 | 387 | lemma hd_butlast: "size xs > 1 ==> hd (butlast xs) = hd xs" | 
| 388 | by (cases xs) auto | |
| 24333 | 389 | |
| 26557 | 390 | lemma last_bin_last': | 
| 391 | "size xs > 0 \<Longrightarrow> last xs = (bin_last (bl_to_bin_aux xs w) = bit.B1)" | |
| 392 | by (induct xs arbitrary: w) auto | |
| 24333 | 393 | |
| 394 | lemma last_bin_last: | |
| 395 | "size xs > 0 ==> last xs = (bin_last (bl_to_bin xs) = bit.B1)" | |
| 396 | unfolding bl_to_bin_def by (erule last_bin_last') | |
| 397 | ||
| 398 | lemma bin_last_last: | |
| 399 | "bin_last w = (if last (bin_to_bl (Suc n) w) then bit.B1 else bit.B0)" | |
| 400 | apply (unfold bin_to_bl_def) | |
| 401 | apply simp | |
| 402 | apply (auto simp add: bin_to_bl_aux_alt) | |
| 403 | done | |
| 404 | ||
| 24465 | 405 | (** links between bit-wise operations and operations on bool lists **) | 
| 406 | ||
| 26557 | 407 | lemma map2_Nil [simp]: "map2 f [] ys = []" | 
| 408 | unfolding map2_def by auto | |
| 24333 | 409 | |
| 26557 | 410 | lemma map2_Cons [simp]: | 
| 411 | "map2 f (x # xs) (y # ys) = f x y # map2 f xs ys" | |
| 412 | unfolding map2_def by auto | |
| 24333 | 413 | |
| 414 | lemma bl_xor_aux_bin [rule_format] : "ALL v w bs cs. | |
| 26557 | 415 | map2 (%x y. x ~= y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = | 
| 416 | bin_to_bl_aux n (v XOR w) (map2 (%x y. x ~= y) bs cs)" | |
| 24333 | 417 | apply (induct_tac n) | 
| 418 | apply safe | |
| 419 | apply simp | |
| 420 | apply (case_tac v rule: bin_exhaust) | |
| 421 | apply (case_tac w rule: bin_exhaust) | |
| 422 | apply clarsimp | |
| 423 | apply (case_tac b) | |
| 424 | apply (case_tac ba, safe, simp_all)+ | |
| 425 | done | |
| 426 | ||
| 427 | lemma bl_or_aux_bin [rule_format] : "ALL v w bs cs. | |
| 26557 | 428 | map2 (op | ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = | 
| 429 | bin_to_bl_aux n (v OR w) (map2 (op | ) bs cs)" | |
| 24333 | 430 | apply (induct_tac n) | 
| 431 | apply safe | |
| 432 | apply simp | |
| 433 | apply (case_tac v rule: bin_exhaust) | |
| 434 | apply (case_tac w rule: bin_exhaust) | |
| 435 | apply clarsimp | |
| 436 | apply (case_tac b) | |
| 437 | apply (case_tac ba, safe, simp_all)+ | |
| 438 | done | |
| 439 | ||
| 440 | lemma bl_and_aux_bin [rule_format] : "ALL v w bs cs. | |
| 26557 | 441 | map2 (op & ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = | 
| 442 | bin_to_bl_aux n (v AND w) (map2 (op & ) bs cs)" | |
| 24333 | 443 | apply (induct_tac n) | 
| 444 | apply safe | |
| 445 | apply simp | |
| 446 | apply (case_tac v rule: bin_exhaust) | |
| 447 | apply (case_tac w rule: bin_exhaust) | |
| 448 | apply clarsimp | |
| 449 | apply (case_tac b) | |
| 450 | apply (case_tac ba, safe, simp_all)+ | |
| 451 | done | |
| 452 | ||
| 453 | lemma bl_not_aux_bin [rule_format] : | |
| 454 | "ALL w cs. map Not (bin_to_bl_aux n w cs) = | |
| 24353 | 455 | bin_to_bl_aux n (NOT w) (map Not cs)" | 
| 24333 | 456 | apply (induct n) | 
| 457 | apply clarsimp | |
| 458 | apply clarsimp | |
| 459 | apply (case_tac w rule: bin_exhaust) | |
| 460 | apply (case_tac b) | |
| 461 | apply auto | |
| 462 | done | |
| 463 | ||
| 464 | lemmas bl_not_bin = bl_not_aux_bin | |
| 465 | [where cs = "[]", unfolded bin_to_bl_def [symmetric] map.simps] | |
| 466 | ||
| 467 | lemmas bl_and_bin = bl_and_aux_bin [where bs="[]" and cs="[]", | |
| 26557 | 468 | unfolded map2_Nil, folded bin_to_bl_def] | 
| 24333 | 469 | |
| 470 | lemmas bl_or_bin = bl_or_aux_bin [where bs="[]" and cs="[]", | |
| 26557 | 471 | unfolded map2_Nil, folded bin_to_bl_def] | 
| 24333 | 472 | |
| 473 | lemmas bl_xor_bin = bl_xor_aux_bin [where bs="[]" and cs="[]", | |
| 26557 | 474 | unfolded map2_Nil, folded bin_to_bl_def] | 
| 24333 | 475 | |
| 476 | lemma drop_bin2bl_aux [rule_format] : | |
| 477 | "ALL m bin bs. drop m (bin_to_bl_aux n bin bs) = | |
| 478 | bin_to_bl_aux (n - m) bin (drop (m - n) bs)" | |
| 479 | apply (induct n, clarsimp) | |
| 480 | apply clarsimp | |
| 481 | apply (case_tac bin rule: bin_exhaust) | |
| 482 | apply (case_tac "m <= n", simp) | |
| 483 | apply (case_tac "m - n", simp) | |
| 484 | apply simp | |
| 485 | apply (rule_tac f = "%nat. drop nat bs" in arg_cong) | |
| 486 | apply simp | |
| 487 | done | |
| 488 | ||
| 489 | lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin" | |
| 490 | unfolding bin_to_bl_def by (simp add : drop_bin2bl_aux) | |
| 491 | ||
| 492 | lemma take_bin2bl_lem1 [rule_format] : | |
| 493 | "ALL w bs. take m (bin_to_bl_aux m w bs) = bin_to_bl m w" | |
| 494 | apply (induct m, clarsimp) | |
| 495 | apply clarsimp | |
| 496 | apply (simp add: bin_to_bl_aux_alt) | |
| 497 | apply (simp add: bin_to_bl_def) | |
| 498 | apply (simp add: bin_to_bl_aux_alt) | |
| 499 | done | |
| 500 | ||
| 501 | lemma take_bin2bl_lem [rule_format] : | |
| 502 | "ALL w bs. take m (bin_to_bl_aux (m + n) w bs) = | |
| 503 | take m (bin_to_bl (m + n) w)" | |
| 504 | apply (induct n) | |
| 505 | apply clarify | |
| 506 | apply (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1) | |
| 507 | apply simp | |
| 508 | done | |
| 509 | ||
| 510 | lemma bin_split_take [rule_format] : | |
| 511 | "ALL b c. bin_split n c = (a, b) --> | |
| 512 | bin_to_bl m a = take m (bin_to_bl (m + n) c)" | |
| 513 | apply (induct n) | |
| 514 | apply clarsimp | |
| 515 | apply (clarsimp simp: Let_def split: ls_splits) | |
| 516 | apply (simp add: bin_to_bl_def) | |
| 517 | apply (simp add: take_bin2bl_lem) | |
| 518 | done | |
| 519 | ||
| 520 | lemma bin_split_take1: | |
| 521 | "k = m + n ==> bin_split n c = (a, b) ==> | |
| 522 | bin_to_bl m a = take m (bin_to_bl k c)" | |
| 523 | by (auto elim: bin_split_take) | |
| 524 | ||
| 525 | lemma nth_takefill [rule_format] : "ALL m l. m < n --> | |
| 526 | takefill fill n l ! m = (if m < length l then l ! m else fill)" | |
| 527 | apply (induct n, clarsimp) | |
| 528 | apply clarsimp | |
| 529 | apply (case_tac m) | |
| 530 | apply (simp split: list.split) | |
| 531 | apply clarsimp | |
| 532 | apply (erule allE)+ | |
| 533 | apply (erule (1) impE) | |
| 534 | apply (simp split: list.split) | |
| 535 | done | |
| 536 | ||
| 537 | lemma takefill_alt [rule_format] : | |
| 538 | "ALL l. takefill fill n l = take n l @ replicate (n - length l) fill" | |
| 539 | by (induct n) (auto split: list.split) | |
| 540 | ||
| 541 | lemma takefill_replicate [simp]: | |
| 542 | "takefill fill n (replicate m fill) = replicate n fill" | |
| 543 | by (simp add : takefill_alt replicate_add [symmetric]) | |
| 544 | ||
| 545 | lemma takefill_le' [rule_format] : | |
| 546 | "ALL l n. n = m + k --> takefill x m (takefill x n l) = takefill x m l" | |
| 547 | by (induct m) (auto split: list.split) | |
| 548 | ||
| 549 | lemma length_takefill [simp]: "length (takefill fill n l) = n" | |
| 550 | by (simp add : takefill_alt) | |
| 551 | ||
| 552 | lemma take_takefill': | |
| 553 | "!!w n. n = k + m ==> take k (takefill fill n w) = takefill fill k w" | |
| 554 | by (induct k) (auto split add : list.split) | |
| 555 | ||
| 556 | lemma drop_takefill: | |
| 557 | "!!w. drop k (takefill fill (m + k) w) = takefill fill m (drop k w)" | |
| 558 | by (induct k) (auto split add : list.split) | |
| 559 | ||
| 560 | lemma takefill_le [simp]: | |
| 561 | "m \<le> n \<Longrightarrow> takefill x m (takefill x n l) = takefill x m l" | |
| 562 | by (auto simp: le_iff_add takefill_le') | |
| 563 | ||
| 564 | lemma take_takefill [simp]: | |
| 565 | "m \<le> n \<Longrightarrow> take m (takefill fill n w) = takefill fill m w" | |
| 566 | by (auto simp: le_iff_add take_takefill') | |
| 567 | ||
| 568 | lemma takefill_append: | |
| 569 | "takefill fill (m + length xs) (xs @ w) = xs @ (takefill fill m w)" | |
| 570 | by (induct xs) auto | |
| 571 | ||
| 572 | lemma takefill_same': | |
| 573 | "l = length xs ==> takefill fill l xs = xs" | |
| 574 | by clarify (induct xs, auto) | |
| 575 | ||
| 576 | lemmas takefill_same [simp] = takefill_same' [OF refl] | |
| 577 | ||
| 578 | lemma takefill_bintrunc: | |
| 579 | "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))" | |
| 580 | apply (rule nth_equalityI) | |
| 581 | apply simp | |
| 582 | apply (clarsimp simp: nth_takefill nth_rev nth_bin_to_bl bin_nth_of_bl) | |
| 583 | done | |
| 584 | ||
| 585 | lemma bl_bin_bl_rtf: | |
| 586 | "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))" | |
| 587 | by (simp add : takefill_bintrunc) | |
| 588 | ||
| 589 | lemmas bl_bin_bl_rep_drop = | |
| 590 | bl_bin_bl_rtf [simplified takefill_alt, | |
| 591 | simplified, simplified rev_take, simplified] | |
| 592 | ||
| 593 | lemma tf_rev: | |
| 594 | "n + k = m + length bl ==> takefill x m (rev (takefill y n bl)) = | |
| 595 | rev (takefill y m (rev (takefill x k (rev bl))))" | |
| 596 | apply (rule nth_equalityI) | |
| 597 | apply (auto simp add: nth_takefill nth_rev) | |
| 598 | apply (rule_tac f = "%n. bl ! n" in arg_cong) | |
| 599 | apply arith | |
| 600 | done | |
| 601 | ||
| 602 | lemma takefill_minus: | |
| 603 | "0 < n ==> takefill fill (Suc (n - 1)) w = takefill fill n w" | |
| 604 | by auto | |
| 605 | ||
| 606 | lemmas takefill_Suc_cases = | |
| 607 | list.cases [THEN takefill.Suc [THEN trans], standard] | |
| 608 | ||
| 609 | lemmas takefill_Suc_Nil = takefill_Suc_cases (1) | |
| 610 | lemmas takefill_Suc_Cons = takefill_Suc_cases (2) | |
| 611 | ||
| 612 | lemmas takefill_minus_simps = takefill_Suc_cases [THEN [2] | |
| 613 | takefill_minus [symmetric, THEN trans], standard] | |
| 614 | ||
| 615 | lemmas takefill_pred_simps [simp] = | |
| 616 | takefill_minus_simps [where n="number_of bin", simplified nobm1, standard] | |
| 617 | ||
| 618 | (* links with function bl_to_bin *) | |
| 619 | ||
| 620 | lemma bl_to_bin_aux_cat: | |
| 26557 | 621 | "!!nv v. bl_to_bin_aux bs (bin_cat w nv v) = | 
| 622 | bin_cat w (nv + length bs) (bl_to_bin_aux bs v)" | |
| 24333 | 623 | apply (induct bs) | 
| 624 | apply simp | |
| 625 | apply (simp add: bin_cat_Suc_Bit [symmetric] del: bin_cat.simps) | |
| 626 | done | |
| 627 | ||
| 628 | lemma bin_to_bl_aux_cat: | |
| 629 | "!!w bs. bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = | |
| 630 | bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)" | |
| 631 | by (induct nw) auto | |
| 632 | ||
| 633 | lemmas bl_to_bin_aux_alt = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 634 | bl_to_bin_aux_cat [where nv = "0" and v = "Int.Pls", | 
| 24333 | 635 | simplified bl_to_bin_def [symmetric], simplified] | 
| 636 | ||
| 637 | lemmas bin_to_bl_cat = | |
| 638 | bin_to_bl_aux_cat [where bs = "[]", folded bin_to_bl_def] | |
| 639 | ||
| 640 | lemmas bl_to_bin_aux_app_cat = | |
| 641 | trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt] | |
| 642 | ||
| 643 | lemmas bin_to_bl_aux_cat_app = | |
| 644 | trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt] | |
| 645 | ||
| 646 | lemmas bl_to_bin_app_cat = bl_to_bin_aux_app_cat | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 647 | [where w = "Int.Pls", folded bl_to_bin_def] | 
| 24333 | 648 | |
| 649 | lemmas bin_to_bl_cat_app = bin_to_bl_aux_cat_app | |
| 650 | [where bs = "[]", folded bin_to_bl_def] | |
| 651 | ||
| 652 | (* bl_to_bin_app_cat_alt and bl_to_bin_app_cat are easily interderivable *) | |
| 653 | lemma bl_to_bin_app_cat_alt: | |
| 654 | "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)" | |
| 655 | by (simp add : bl_to_bin_app_cat) | |
| 656 | ||
| 657 | lemma mask_lem: "(bl_to_bin (True # replicate n False)) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 658 | Int.succ (bl_to_bin (replicate n True))" | 
| 24333 | 659 | apply (unfold bl_to_bin_def) | 
| 660 | apply (induct n) | |
| 661 | apply simp | |
| 662 | apply (simp only: Suc_eq_add_numeral_1 replicate_add | |
| 663 | append_Cons [symmetric] bl_to_bin_aux_append) | |
| 664 | apply simp | |
| 665 | done | |
| 666 | ||
| 24465 | 667 | (* function bl_of_nth *) | 
| 24333 | 668 | lemma length_bl_of_nth [simp]: "length (bl_of_nth n f) = n" | 
| 669 | by (induct n) auto | |
| 670 | ||
| 671 | lemma nth_bl_of_nth [simp]: | |
| 672 | "m < n \<Longrightarrow> rev (bl_of_nth n f) ! m = f m" | |
| 673 | apply (induct n) | |
| 674 | apply simp | |
| 675 | apply (clarsimp simp add : nth_append) | |
| 676 | apply (rule_tac f = "f" in arg_cong) | |
| 677 | apply simp | |
| 678 | done | |
| 679 | ||
| 680 | lemma bl_of_nth_inj: | |
| 681 | "(!!k. k < n ==> f k = g k) ==> bl_of_nth n f = bl_of_nth n g" | |
| 682 | by (induct n) auto | |
| 683 | ||
| 684 | lemma bl_of_nth_nth_le [rule_format] : "ALL xs. | |
| 685 | length xs >= n --> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs"; | |
| 686 | apply (induct n, clarsimp) | |
| 687 | apply clarsimp | |
| 688 | apply (rule trans [OF _ hd_Cons_tl]) | |
| 689 | apply (frule Suc_le_lessD) | |
| 690 | apply (simp add: nth_rev trans [OF drop_Suc drop_tl, symmetric]) | |
| 691 | apply (subst hd_drop_conv_nth) | |
| 692 | apply force | |
| 693 | apply simp_all | |
| 694 | apply (rule_tac f = "%n. drop n xs" in arg_cong) | |
| 695 | apply simp | |
| 696 | done | |
| 697 | ||
| 698 | lemmas bl_of_nth_nth [simp] = order_refl [THEN bl_of_nth_nth_le, simplified] | |
| 699 | ||
| 700 | lemma size_rbl_pred: "length (rbl_pred bl) = length bl" | |
| 701 | by (induct bl) auto | |
| 702 | ||
| 703 | lemma size_rbl_succ: "length (rbl_succ bl) = length bl" | |
| 704 | by (induct bl) auto | |
| 705 | ||
| 706 | lemma size_rbl_add: | |
| 707 | "!!cl. length (rbl_add bl cl) = length bl" | |
| 708 | by (induct bl) (auto simp: Let_def size_rbl_succ) | |
| 709 | ||
| 710 | lemma size_rbl_mult: | |
| 711 | "!!cl. length (rbl_mult bl cl) = length bl" | |
| 712 | by (induct bl) (auto simp add : Let_def size_rbl_add) | |
| 713 | ||
| 714 | lemmas rbl_sizes [simp] = | |
| 715 | size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult | |
| 716 | ||
| 717 | lemmas rbl_Nils = | |
| 718 | rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil | |
| 719 | ||
| 720 | lemma rbl_pred: | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 721 | "!!bin. rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Int.pred bin))" | 
| 24333 | 722 | apply (induct n, simp) | 
| 723 | apply (unfold bin_to_bl_def) | |
| 724 | apply clarsimp | |
| 725 | apply (case_tac bin rule: bin_exhaust) | |
| 726 | apply (case_tac b) | |
| 727 | apply (clarsimp simp: bin_to_bl_aux_alt)+ | |
| 728 | done | |
| 729 | ||
| 730 | lemma rbl_succ: | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 731 | "!!bin. rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Int.succ bin))" | 
| 24333 | 732 | apply (induct n, simp) | 
| 733 | apply (unfold bin_to_bl_def) | |
| 734 | apply clarsimp | |
| 735 | apply (case_tac bin rule: bin_exhaust) | |
| 736 | apply (case_tac b) | |
| 737 | apply (clarsimp simp: bin_to_bl_aux_alt)+ | |
| 738 | done | |
| 739 | ||
| 740 | lemma rbl_add: | |
| 741 | "!!bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = | |
| 742 | rev (bin_to_bl n (bina + binb))" | |
| 743 | apply (induct n, simp) | |
| 744 | apply (unfold bin_to_bl_def) | |
| 745 | apply clarsimp | |
| 746 | apply (case_tac bina rule: bin_exhaust) | |
| 747 | apply (case_tac binb rule: bin_exhaust) | |
| 748 | apply (case_tac b) | |
| 749 | apply (case_tac [!] "ba") | |
| 750 | apply (auto simp: rbl_succ succ_def bin_to_bl_aux_alt Let_def add_ac) | |
| 751 | done | |
| 752 | ||
| 753 | lemma rbl_add_app2: | |
| 754 | "!!blb. length blb >= length bla ==> | |
| 755 | rbl_add bla (blb @ blc) = rbl_add bla blb" | |
| 756 | apply (induct bla, simp) | |
| 757 | apply clarsimp | |
| 758 | apply (case_tac blb, clarsimp) | |
| 759 | apply (clarsimp simp: Let_def) | |
| 760 | done | |
| 761 | ||
| 762 | lemma rbl_add_take2: | |
| 763 | "!!blb. length blb >= length bla ==> | |
| 764 | rbl_add bla (take (length bla) blb) = rbl_add bla blb" | |
| 765 | apply (induct bla, simp) | |
| 766 | apply clarsimp | |
| 767 | apply (case_tac blb, clarsimp) | |
| 768 | apply (clarsimp simp: Let_def) | |
| 769 | done | |
| 770 | ||
| 771 | lemma rbl_add_long: | |
| 772 | "m >= n ==> rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = | |
| 773 | rev (bin_to_bl n (bina + binb))" | |
| 774 | apply (rule box_equals [OF _ rbl_add_take2 rbl_add]) | |
| 775 | apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) | |
| 776 | apply (rule rev_swap [THEN iffD1]) | |
| 777 | apply (simp add: rev_take drop_bin2bl) | |
| 778 | apply simp | |
| 779 | done | |
| 780 | ||
| 781 | lemma rbl_mult_app2: | |
| 782 | "!!blb. length blb >= length bla ==> | |
| 783 | rbl_mult bla (blb @ blc) = rbl_mult bla blb" | |
| 784 | apply (induct bla, simp) | |
| 785 | apply clarsimp | |
| 786 | apply (case_tac blb, clarsimp) | |
| 787 | apply (clarsimp simp: Let_def rbl_add_app2) | |
| 788 | done | |
| 789 | ||
| 790 | lemma rbl_mult_take2: | |
| 791 | "length blb >= length bla ==> | |
| 792 | rbl_mult bla (take (length bla) blb) = rbl_mult bla blb" | |
| 793 | apply (rule trans) | |
| 794 | apply (rule rbl_mult_app2 [symmetric]) | |
| 795 | apply simp | |
| 796 | apply (rule_tac f = "rbl_mult bla" in arg_cong) | |
| 797 | apply (rule append_take_drop_id) | |
| 798 | done | |
| 799 | ||
| 800 | lemma rbl_mult_gt1: | |
| 801 | "m >= length bl ==> rbl_mult bl (rev (bin_to_bl m binb)) = | |
| 802 | rbl_mult bl (rev (bin_to_bl (length bl) binb))" | |
| 803 | apply (rule trans) | |
| 804 | apply (rule rbl_mult_take2 [symmetric]) | |
| 805 | apply simp_all | |
| 806 | apply (rule_tac f = "rbl_mult bl" in arg_cong) | |
| 807 | apply (rule rev_swap [THEN iffD1]) | |
| 808 | apply (simp add: rev_take drop_bin2bl) | |
| 809 | done | |
| 810 | ||
| 811 | lemma rbl_mult_gt: | |
| 812 | "m > n ==> rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = | |
| 813 | rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))" | |
| 814 | by (auto intro: trans [OF rbl_mult_gt1]) | |
| 815 | ||
| 816 | lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] | |
| 817 | ||
| 818 | lemma rbbl_Cons: | |
| 819 | "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT If b bit.B1 bit.B0))" | |
| 820 | apply (unfold bin_to_bl_def) | |
| 821 | apply simp | |
| 822 | apply (simp add: bin_to_bl_aux_alt) | |
| 823 | done | |
| 824 | ||
| 825 | lemma rbl_mult: "!!bina binb. | |
| 826 | rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = | |
| 827 | rev (bin_to_bl n (bina * binb))" | |
| 828 | apply (induct n) | |
| 829 | apply simp | |
| 830 | apply (unfold bin_to_bl_def) | |
| 831 | apply clarsimp | |
| 832 | apply (case_tac bina rule: bin_exhaust) | |
| 833 | apply (case_tac binb rule: bin_exhaust) | |
| 834 | apply (case_tac b) | |
| 835 | apply (case_tac [!] "ba") | |
| 836 | apply (auto simp: bin_to_bl_aux_alt Let_def) | |
| 837 | apply (auto simp: rbbl_Cons rbl_mult_Suc rbl_add) | |
| 838 | done | |
| 839 | ||
| 840 | lemma rbl_add_split: | |
| 841 | "P (rbl_add (y # ys) (x # xs)) = | |
| 842 | (ALL ws. length ws = length ys --> ws = rbl_add ys xs --> | |
| 26008 | 843 | (y --> ((x --> P (False # rbl_succ ws)) & (~ x --> P (True # ws)))) & | 
| 24333 | 844 | (~ y --> P (x # ws)))" | 
| 845 | apply (auto simp add: Let_def) | |
| 846 | apply (case_tac [!] "y") | |
| 847 | apply auto | |
| 848 | done | |
| 849 | ||
| 850 | lemma rbl_mult_split: | |
| 851 | "P (rbl_mult (y # ys) xs) = | |
| 852 | (ALL ws. length ws = Suc (length ys) --> ws = False # rbl_mult ys xs --> | |
| 853 | (y --> P (rbl_add ws xs)) & (~ y --> P ws))" | |
| 854 | by (clarsimp simp add : Let_def) | |
| 855 | ||
| 856 | lemma and_len: "xs = ys ==> xs = ys & length xs = length ys" | |
| 857 | by auto | |
| 858 | ||
| 859 | lemma size_if: "size (if p then xs else ys) = (if p then size xs else size ys)" | |
| 860 | by auto | |
| 861 | ||
| 862 | lemma tl_if: "tl (if p then xs else ys) = (if p then tl xs else tl ys)" | |
| 863 | by auto | |
| 864 | ||
| 865 | lemma hd_if: "hd (if p then xs else ys) = (if p then hd xs else hd ys)" | |
| 866 | by auto | |
| 867 | ||
| 24465 | 868 | lemma if_Not_x: "(if p then ~ x else x) = (p = (~ x))" | 
| 869 | by auto | |
| 870 | ||
| 871 | lemma if_x_Not: "(if p then x else ~ x) = (p = x)" | |
| 872 | by auto | |
| 873 | ||
| 24333 | 874 | lemma if_same_and: "(If p x y & If p u v) = (if p then x & u else y & v)" | 
| 875 | by auto | |
| 876 | ||
| 877 | lemma if_same_eq: "(If p x y = (If p u v)) = (if p then x = (u) else y = (v))" | |
| 878 | by auto | |
| 879 | ||
| 880 | lemma if_same_eq_not: | |
| 881 | "(If p x y = (~ If p u v)) = (if p then x = (~u) else y = (~v))" | |
| 882 | by auto | |
| 883 | ||
| 884 | (* note - if_Cons can cause blowup in the size, if p is complex, | |
| 885 | so make a simproc *) | |
| 886 | lemma if_Cons: "(if p then x # xs else y # ys) = If p x y # If p xs ys" | |
| 887 | by auto | |
| 888 | ||
| 889 | lemma if_single: | |
| 890 | "(if xc then [xab] else [an]) = [if xc then xab else an]" | |
| 891 | by auto | |
| 892 | ||
| 24465 | 893 | lemma if_bool_simps: | 
| 894 | "If p True y = (p | y) & If p False y = (~p & y) & | |
| 895 | If p y True = (p --> y) & If p y False = (p & y)" | |
| 896 | by auto | |
| 897 | ||
| 898 | lemmas if_simps = if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps | |
| 899 | ||
| 25350 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
25134diff
changeset | 900 | lemmas seqr = eq_reflection [where x = "size w", standard] | 
| 24333 | 901 | |
| 902 | lemmas tl_Nil = tl.simps (1) | |
| 903 | lemmas tl_Cons = tl.simps (2) | |
| 904 | ||
| 905 | ||
| 24350 | 906 | subsection "Repeated splitting or concatenation" | 
| 24333 | 907 | |
| 908 | lemma sclem: | |
| 909 | "size (concat (map (bin_to_bl n) xs)) = length xs * n" | |
| 910 | by (induct xs) auto | |
| 911 | ||
| 912 | lemma bin_cat_foldl_lem [rule_format] : | |
| 913 | "ALL x. foldl (%u. bin_cat u n) x xs = | |
| 914 | bin_cat x (size xs * n) (foldl (%u. bin_cat u n) y xs)" | |
| 915 | apply (induct xs) | |
| 916 | apply simp | |
| 917 | apply clarify | |
| 918 | apply (simp (no_asm)) | |
| 919 | apply (frule asm_rl) | |
| 920 | apply (drule spec) | |
| 921 | apply (erule trans) | |
| 922 | apply (drule_tac x = "bin_cat y n a" in spec) | |
| 923 | apply (simp add : bin_cat_assoc_sym min_def) | |
| 924 | done | |
| 925 | ||
| 926 | lemma bin_rcat_bl: | |
| 927 | "(bin_rcat n wl) = bl_to_bin (concat (map (bin_to_bl n) wl))" | |
| 928 | apply (unfold bin_rcat_def) | |
| 929 | apply (rule sym) | |
| 930 | apply (induct wl) | |
| 931 | apply (auto simp add : bl_to_bin_append) | |
| 932 | apply (simp add : bl_to_bin_aux_alt sclem) | |
| 933 | apply (simp add : bin_cat_foldl_lem [symmetric]) | |
| 934 | done | |
| 935 | ||
| 936 | lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps | |
| 937 | lemmas rsplit_aux_simps = bin_rsplit_aux_simps | |
| 938 | ||
| 25350 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
25134diff
changeset | 939 | lemmas th_if_simp1 = split_if [where P = "op = l", | 
| 24333 | 940 | THEN iffD1, THEN conjunct1, THEN mp, standard] | 
| 25350 
a5fcf6d12a53
eliminated illegal schematic variables in where/of;
 wenzelm parents: 
25134diff
changeset | 941 | lemmas th_if_simp2 = split_if [where P = "op = l", | 
| 24333 | 942 | THEN iffD1, THEN conjunct2, THEN mp, standard] | 
| 943 | ||
| 944 | lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1] | |
| 945 | ||
| 946 | lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2] | |
| 947 | (* these safe to [simp add] as require calculating m - n *) | |
| 948 | lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def] | |
| 949 | lemmas rbscl = bin_rsplit_aux_simp2s (2) | |
| 950 | ||
| 951 | lemmas rsplit_aux_0_simps [simp] = | |
| 952 | rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2] | |
| 953 | ||
| 954 | lemma bin_rsplit_aux_append: | |
| 26557 | 955 | "bin_rsplit_aux n m c (bs @ cs) = bin_rsplit_aux n m c bs @ cs" | 
| 956 | apply (induct n m c bs rule: bin_rsplit_aux.induct) | |
| 24333 | 957 | apply (subst bin_rsplit_aux.simps) | 
| 958 | apply (subst bin_rsplit_aux.simps) | |
| 959 | apply (clarsimp split: ls_splits) | |
| 26557 | 960 | apply auto | 
| 24333 | 961 | done | 
| 962 | ||
| 963 | lemma bin_rsplitl_aux_append: | |
| 26557 | 964 | "bin_rsplitl_aux n m c (bs @ cs) = bin_rsplitl_aux n m c bs @ cs" | 
| 965 | apply (induct n m c bs rule: bin_rsplitl_aux.induct) | |
| 24333 | 966 | apply (subst bin_rsplitl_aux.simps) | 
| 967 | apply (subst bin_rsplitl_aux.simps) | |
| 968 | apply (clarsimp split: ls_splits) | |
| 26557 | 969 | apply auto | 
| 24333 | 970 | done | 
| 971 | ||
| 972 | lemmas rsplit_aux_apps [where bs = "[]"] = | |
| 973 | bin_rsplit_aux_append bin_rsplitl_aux_append | |
| 974 | ||
| 975 | lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def | |
| 976 | ||
| 977 | lemmas rsplit_aux_alts = rsplit_aux_apps | |
| 978 | [unfolded append_Nil rsplit_def_auxs [symmetric]] | |
| 979 | ||
| 980 | lemma bin_split_minus: "0 < n ==> bin_split (Suc (n - 1)) w = bin_split n w" | |
| 981 | by auto | |
| 982 | ||
| 983 | lemmas bin_split_minus_simp = | |
| 984 | bin_split.Suc [THEN [2] bin_split_minus [symmetric, THEN trans], standard] | |
| 985 | ||
| 986 | lemma bin_split_pred_simp [simp]: | |
| 987 | "(0::nat) < number_of bin \<Longrightarrow> | |
| 988 | bin_split (number_of bin) w = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25350diff
changeset | 989 | (let (w1, w2) = bin_split (number_of (Int.pred bin)) (bin_rest w) | 
| 24333 | 990 | in (w1, w2 BIT bin_last w))" | 
| 991 | by (simp only: nobm1 bin_split_minus_simp) | |
| 992 | ||
| 24465 | 993 | declare bin_split_pred_simp [simp] | 
| 994 | ||
| 24333 | 995 | lemma bin_rsplit_aux_simp_alt: | 
| 26557 | 996 | "bin_rsplit_aux n m c bs = | 
| 24333 | 997 | (if m = 0 \<or> n = 0 | 
| 998 | then bs | |
| 999 | else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)" | |
| 26557 | 1000 | unfolding bin_rsplit_aux.simps [of n m c bs] | 
| 1001 | apply simp | |
| 1002 | apply (subst rsplit_aux_alts) | |
| 1003 | apply (simp add: bin_rsplit_def) | |
| 24333 | 1004 | done | 
| 1005 | ||
| 1006 | lemmas bin_rsplit_simp_alt = | |
| 26557 | 1007 | trans [OF bin_rsplit_def | 
| 24333 | 1008 | bin_rsplit_aux_simp_alt, standard] | 
| 1009 | ||
| 1010 | lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans] | |
| 1011 | ||
| 1012 | lemma bin_rsplit_size_sign' [rule_format] : | |
| 1013 | "n > 0 ==> (ALL nw w. rev sw = bin_rsplit n (nw, w) --> | |
| 1014 | (ALL v: set sw. bintrunc n v = v))" | |
| 1015 | apply (induct sw) | |
| 1016 | apply clarsimp | |
| 1017 | apply clarsimp | |
| 1018 | apply (drule bthrs) | |
| 1019 | apply (simp (no_asm_use) add: Let_def split: ls_splits) | |
| 1020 | apply clarify | |
| 1021 | apply (erule impE, rule exI, erule exI) | |
| 1022 | apply (drule split_bintrunc) | |
| 1023 | apply simp | |
| 1024 | done | |
| 1025 | ||
| 1026 | lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl | |
| 1027 | rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]], | |
| 1028 | standard] | |
| 1029 | ||
| 1030 | lemma bin_nth_rsplit [rule_format] : | |
| 1031 | "n > 0 ==> m < n ==> (ALL w k nw. rev sw = bin_rsplit n (nw, w) --> | |
| 1032 | k < size sw --> bin_nth (sw ! k) m = bin_nth w (k * n + m))" | |
| 1033 | apply (induct sw) | |
| 1034 | apply clarsimp | |
| 1035 | apply clarsimp | |
| 1036 | apply (drule bthrs) | |
| 1037 | apply (simp (no_asm_use) add: Let_def split: ls_splits) | |
| 1038 | apply clarify | |
| 1039 | apply (erule allE, erule impE, erule exI) | |
| 1040 | apply (case_tac k) | |
| 1041 | apply clarsimp | |
| 1042 | prefer 2 | |
| 1043 | apply clarsimp | |
| 1044 | apply (erule allE) | |
| 1045 | apply (erule (1) impE) | |
| 1046 | apply (drule bin_nth_split, erule conjE, erule allE, | |
| 1047 | erule trans, simp add : add_ac)+ | |
| 1048 | done | |
| 1049 | ||
| 1050 | lemma bin_rsplit_all: | |
| 1051 | "0 < nw ==> nw <= n ==> bin_rsplit n (nw, w) = [bintrunc n w]" | |
| 1052 | unfolding bin_rsplit_def | |
| 1053 | by (clarsimp dest!: split_bintrunc simp: rsplit_aux_simp2ls split: ls_splits) | |
| 1054 | ||
| 1055 | lemma bin_rsplit_l [rule_format] : | |
| 1056 | "ALL bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, bintrunc m bin)" | |
| 1057 | apply (rule_tac a = "m" in wf_less_than [THEN wf_induct]) | |
| 1058 | apply (simp (no_asm) add : bin_rsplitl_def bin_rsplit_def) | |
| 1059 | apply (rule allI) | |
| 1060 | apply (subst bin_rsplitl_aux.simps) | |
| 1061 | apply (subst bin_rsplit_aux.simps) | |
| 26557 | 1062 | apply (clarsimp simp: Let_def split: ls_splits) | 
| 24333 | 1063 | apply (drule bin_split_trunc) | 
| 1064 | apply (drule sym [THEN trans], assumption) | |
| 26557 | 1065 | apply (subst rsplit_aux_alts(1)) | 
| 1066 | apply (subst rsplit_aux_alts(2)) | |
| 1067 | apply clarsimp | |
| 1068 | unfolding bin_rsplit_def bin_rsplitl_def | |
| 1069 | apply simp | |
| 24333 | 1070 | done | 
| 26557 | 1071 | |
| 24333 | 1072 | lemma bin_rsplit_rcat [rule_format] : | 
| 1073 | "n > 0 --> bin_rsplit n (n * size ws, bin_rcat n ws) = map (bintrunc n) ws" | |
| 1074 | apply (unfold bin_rsplit_def bin_rcat_def) | |
| 1075 | apply (rule_tac xs = "ws" in rev_induct) | |
| 1076 | apply clarsimp | |
| 1077 | apply clarsimp | |
| 26557 | 1078 | apply (subst rsplit_aux_alts) | 
| 1079 | unfolding bin_split_cat | |
| 1080 | apply simp | |
| 24333 | 1081 | done | 
| 1082 | ||
| 1083 | lemma bin_rsplit_aux_len_le [rule_format] : | |
| 26557 | 1084 | "\<forall>ws m. n \<noteq> 0 \<longrightarrow> ws = bin_rsplit_aux n nw w bs \<longrightarrow> | 
| 1085 | length ws \<le> m \<longleftrightarrow> nw + length bs * n \<le> m * n" | |
| 1086 | apply (induct n nw w bs rule: bin_rsplit_aux.induct) | |
| 24333 | 1087 | apply (subst bin_rsplit_aux.simps) | 
| 26557 | 1088 | apply (simp add: lrlem Let_def split: ls_splits) | 
| 24333 | 1089 | done | 
| 1090 | ||
| 1091 | lemma bin_rsplit_len_le: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1092 | "n \<noteq> 0 --> ws = bin_rsplit n (nw, w) --> (length ws <= m) = (nw <= m * n)" | 
| 24333 | 1093 | unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len_le) | 
| 1094 | ||
| 1095 | lemma bin_rsplit_aux_len [rule_format] : | |
| 26557 | 1096 | "n\<noteq>0 --> length (bin_rsplit_aux n nw w cs) = | 
| 24333 | 1097 | (nw + n - 1) div n + length cs" | 
| 26557 | 1098 | apply (induct n nw w cs rule: bin_rsplit_aux.induct) | 
| 24333 | 1099 | apply (subst bin_rsplit_aux.simps) | 
| 1100 | apply (clarsimp simp: Let_def split: ls_splits) | |
| 1101 | apply (erule thin_rl) | |
| 1102 | apply (case_tac "m <= n") | |
| 1103 | prefer 2 | |
| 1104 | apply (simp add: div_add_self2 [symmetric]) | |
| 1105 | apply (case_tac m, clarsimp) | |
| 1106 | apply (simp add: div_add_self2) | |
| 1107 | done | |
| 1108 | ||
| 1109 | lemma bin_rsplit_len: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1110 | "n\<noteq>0 ==> length (bin_rsplit n (nw, w)) = (nw + n - 1) div n" | 
| 24333 | 1111 | unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len) | 
| 1112 | ||
| 26557 | 1113 | lemma bin_rsplit_aux_len_indep: | 
| 1114 | "n \<noteq> 0 \<Longrightarrow> length bs = length cs \<Longrightarrow> | |
| 1115 | length (bin_rsplit_aux n nw v bs) = | |
| 1116 | length (bin_rsplit_aux n nw w cs)" | |
| 1117 | proof (induct n nw w cs arbitrary: v bs rule: bin_rsplit_aux.induct) | |
| 1118 | case (1 n m w cs v bs) show ?case | |
| 1119 | proof (cases "m = 0") | |
| 1120 | case True then show ?thesis by simp | |
| 1121 | next | |
| 1122 | case False | |
| 1123 | from "1.hyps" `m \<noteq> 0` `n \<noteq> 0` have hyp: "\<And>v bs. length bs = Suc (length cs) \<Longrightarrow> | |
| 1124 | length (bin_rsplit_aux n (m - n) v bs) = | |
| 1125 | length (bin_rsplit_aux n (m - n) (fst (bin_split n w)) (snd (bin_split n w) # cs))" | |
| 1126 | by auto | |
| 1127 | show ?thesis using `length bs = length cs` `n \<noteq> 0` | |
| 1128 | by (auto simp add: bin_rsplit_aux_simp_alt Let_def bin_rsplit_len | |
| 1129 | split: ls_splits) | |
| 1130 | qed | |
| 1131 | qed | |
| 24333 | 1132 | |
| 1133 | lemma bin_rsplit_len_indep: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1134 | "n\<noteq>0 ==> length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))" | 
| 24333 | 1135 | apply (unfold bin_rsplit_def) | 
| 26557 | 1136 | apply (simp (no_asm)) | 
| 24333 | 1137 | apply (erule bin_rsplit_aux_len_indep) | 
| 1138 | apply (rule refl) | |
| 1139 | done | |
| 1140 | ||
| 1141 | end | |
| 1142 |