| author | wenzelm | 
| Fri, 14 Dec 2012 16:02:31 +0100 | |
| changeset 50527 | 2f9b5b0e388d | 
| parent 46577 | e5438c5797ae | 
| child 56248 | 67dc9549fa15 | 
| permissions | -rw-r--r-- | 
| 5252 | 1  | 
(* Title: HOL/UNITY/Union.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1998 University of Cambridge  | 
|
4  | 
||
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
5  | 
Partly from Misra's Chapter 5: Asynchronous Compositions of Programs.  | 
| 5252 | 6  | 
*)  | 
7  | 
||
| 13798 | 8  | 
header{*Unions of Programs*}
 | 
9  | 
||
| 16417 | 10  | 
theory Union imports SubstAx FP begin  | 
| 5252 | 11  | 
|
| 13805 | 12  | 
  (*FIXME: conjoin Init F \<inter> Init G \<noteq> {} *) 
 | 
| 36866 | 13  | 
definition  | 
| 13792 | 14  | 
ok :: "['a program, 'a program] => bool" (infixl "ok" 65)  | 
| 36866 | 15  | 
where "F ok G == Acts F \<subseteq> AllowedActs G &  | 
| 13805 | 16  | 
Acts G \<subseteq> AllowedActs F"  | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
17  | 
|
| 13805 | 18  | 
  (*FIXME: conjoin (\<Inter>i \<in> I. Init (F i)) \<noteq> {} *) 
 | 
| 36866 | 19  | 
definition  | 
| 13792 | 20  | 
OK :: "['a set, 'a => 'b program] => bool"  | 
| 36866 | 21  | 
  where "OK I F = (\<forall>i \<in> I. \<forall>j \<in> I-{i}. Acts (F i) \<subseteq> AllowedActs (F j))"
 | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
22  | 
|
| 36866 | 23  | 
definition  | 
| 13792 | 24  | 
JOIN :: "['a set, 'a => 'b program] => 'b program"  | 
| 36866 | 25  | 
where "JOIN I F = mk_program (\<Inter>i \<in> I. Init (F i), \<Union>i \<in> I. Acts (F i),  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
26  | 
\<Inter>i \<in> I. AllowedActs (F i))"  | 
| 5252 | 27  | 
|
| 36866 | 28  | 
definition  | 
| 13792 | 29  | 
Join :: "['a program, 'a program] => 'a program" (infixl "Join" 65)  | 
| 36866 | 30  | 
where "F Join G = mk_program (Init F \<inter> Init G, Acts F \<union> Acts G,  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
31  | 
AllowedActs F \<inter> AllowedActs G)"  | 
| 5252 | 32  | 
|
| 36866 | 33  | 
definition  | 
| 13792 | 34  | 
SKIP :: "'a program"  | 
| 36866 | 35  | 
  where "SKIP = mk_program (UNIV, {}, UNIV)"
 | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
36  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
37  | 
(*Characterizes safety properties. Used with specifying Allowed*)  | 
| 36866 | 38  | 
definition  | 
| 
10064
 
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
 
paulson 
parents: 
9685 
diff
changeset
 | 
39  | 
safety_prop :: "'a program set => bool"  | 
| 36866 | 40  | 
where "safety_prop X <-> SKIP: X & (\<forall>G. Acts G \<subseteq> UNION X Acts --> G \<in> X)"  | 
| 5259 | 41  | 
|
| 35434 | 42  | 
notation (xsymbols)  | 
| 35427 | 43  | 
  SKIP  ("\<bottom>") and
 | 
44  | 
Join (infixl "\<squnion>" 65)  | 
|
45  | 
||
| 
5313
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
46  | 
syntax  | 
| 35054 | 47  | 
  "_JOIN1"     :: "[pttrns, 'b set] => 'b set"         ("(3JN _./ _)" 10)
 | 
48  | 
  "_JOIN"      :: "[pttrn, 'a set, 'b set] => 'b set"  ("(3JN _:_./ _)" 10)
 | 
|
| 35427 | 49  | 
syntax (xsymbols)  | 
50  | 
  "_JOIN1" :: "[pttrns, 'b set] => 'b set"              ("(3\<Squnion> _./ _)" 10)
 | 
|
51  | 
  "_JOIN"  :: "[pttrn, 'a set, 'b set] => 'b set"       ("(3\<Squnion> _\<in>_./ _)" 10)
 | 
|
| 
5313
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
52  | 
|
| 
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
53  | 
translations  | 
| 35054 | 54  | 
"JN x: A. B" == "CONST JOIN A (%x. B)"  | 
55  | 
"JN x y. B" == "JN x. JN y. B"  | 
|
| 35068 | 56  | 
"JN x. B" == "CONST JOIN (CONST UNIV) (%x. B)"  | 
| 
5313
 
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
 
paulson 
parents: 
5259 
diff
changeset
 | 
57  | 
|
| 13792 | 58  | 
|
| 13798 | 59  | 
subsection{*SKIP*}
 | 
| 13792 | 60  | 
|
61  | 
lemma Init_SKIP [simp]: "Init SKIP = UNIV"  | 
|
62  | 
by (simp add: SKIP_def)  | 
|
63  | 
||
64  | 
lemma Acts_SKIP [simp]: "Acts SKIP = {Id}"
 | 
|
65  | 
by (simp add: SKIP_def)  | 
|
66  | 
||
67  | 
lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV"  | 
|
68  | 
by (auto simp add: SKIP_def)  | 
|
69  | 
||
70  | 
lemma reachable_SKIP [simp]: "reachable SKIP = UNIV"  | 
|
71  | 
by (force elim: reachable.induct intro: reachable.intros)  | 
|
72  | 
||
| 13798 | 73  | 
subsection{*SKIP and safety properties*}
 | 
| 13792 | 74  | 
|
| 13805 | 75  | 
lemma SKIP_in_constrains_iff [iff]: "(SKIP \<in> A co B) = (A \<subseteq> B)"  | 
| 13792 | 76  | 
by (unfold constrains_def, auto)  | 
77  | 
||
| 13805 | 78  | 
lemma SKIP_in_Constrains_iff [iff]: "(SKIP \<in> A Co B) = (A \<subseteq> B)"  | 
| 13792 | 79  | 
by (unfold Constrains_def, auto)  | 
80  | 
||
| 13805 | 81  | 
lemma SKIP_in_stable [iff]: "SKIP \<in> stable A"  | 
| 13792 | 82  | 
by (unfold stable_def, auto)  | 
83  | 
||
84  | 
declare SKIP_in_stable [THEN stable_imp_Stable, iff]  | 
|
85  | 
||
86  | 
||
| 13798 | 87  | 
subsection{*Join*}
 | 
| 13792 | 88  | 
|
| 13819 | 89  | 
lemma Init_Join [simp]: "Init (F\<squnion>G) = Init F \<inter> Init G"  | 
| 13792 | 90  | 
by (simp add: Join_def)  | 
91  | 
||
| 13819 | 92  | 
lemma Acts_Join [simp]: "Acts (F\<squnion>G) = Acts F \<union> Acts G"  | 
| 13792 | 93  | 
by (auto simp add: Join_def)  | 
94  | 
||
95  | 
lemma AllowedActs_Join [simp]:  | 
|
| 13819 | 96  | 
"AllowedActs (F\<squnion>G) = AllowedActs F \<inter> AllowedActs G"  | 
| 13792 | 97  | 
by (auto simp add: Join_def)  | 
98  | 
||
99  | 
||
| 13798 | 100  | 
subsection{*JN*}
 | 
| 13792 | 101  | 
|
| 13805 | 102  | 
lemma JN_empty [simp]: "(\<Squnion>i\<in>{}. F i) = SKIP"
 | 
| 13792 | 103  | 
by (unfold JOIN_def SKIP_def, auto)  | 
104  | 
||
| 13819 | 105  | 
lemma JN_insert [simp]: "(\<Squnion>i \<in> insert a I. F i) = (F a)\<squnion>(\<Squnion>i \<in> I. F i)"  | 
| 13792 | 106  | 
apply (rule program_equalityI)  | 
107  | 
apply (auto simp add: JOIN_def Join_def)  | 
|
108  | 
done  | 
|
109  | 
||
| 13805 | 110  | 
lemma Init_JN [simp]: "Init (\<Squnion>i \<in> I. F i) = (\<Inter>i \<in> I. Init (F i))"  | 
| 13792 | 111  | 
by (simp add: JOIN_def)  | 
112  | 
||
| 13805 | 113  | 
lemma Acts_JN [simp]: "Acts (\<Squnion>i \<in> I. F i) = insert Id (\<Union>i \<in> I. Acts (F i))"  | 
| 13792 | 114  | 
by (auto simp add: JOIN_def)  | 
115  | 
||
116  | 
lemma AllowedActs_JN [simp]:  | 
|
| 13805 | 117  | 
"AllowedActs (\<Squnion>i \<in> I. F i) = (\<Inter>i \<in> I. AllowedActs (F i))"  | 
| 13792 | 118  | 
by (auto simp add: JOIN_def)  | 
119  | 
||
120  | 
||
121  | 
lemma JN_cong [cong]:  | 
|
| 13805 | 122  | 
"[| I=J; !!i. i \<in> J ==> F i = G i |] ==> (\<Squnion>i \<in> I. F i) = (\<Squnion>i \<in> J. G i)"  | 
| 13792 | 123  | 
by (simp add: JOIN_def)  | 
124  | 
||
125  | 
||
| 13798 | 126  | 
subsection{*Algebraic laws*}
 | 
| 13792 | 127  | 
|
| 13819 | 128  | 
lemma Join_commute: "F\<squnion>G = G\<squnion>F"  | 
| 13792 | 129  | 
by (simp add: Join_def Un_commute Int_commute)  | 
130  | 
||
| 13819 | 131  | 
lemma Join_assoc: "(F\<squnion>G)\<squnion>H = F\<squnion>(G\<squnion>H)"  | 
| 13792 | 132  | 
by (simp add: Un_ac Join_def Int_assoc insert_absorb)  | 
133  | 
||
| 13819 | 134  | 
lemma Join_left_commute: "A\<squnion>(B\<squnion>C) = B\<squnion>(A\<squnion>C)"  | 
| 13792 | 135  | 
by (simp add: Un_ac Int_ac Join_def insert_absorb)  | 
136  | 
||
| 13819 | 137  | 
lemma Join_SKIP_left [simp]: "SKIP\<squnion>F = F"  | 
| 13792 | 138  | 
apply (unfold Join_def SKIP_def)  | 
139  | 
apply (rule program_equalityI)  | 
|
140  | 
apply (simp_all (no_asm) add: insert_absorb)  | 
|
141  | 
done  | 
|
142  | 
||
| 13819 | 143  | 
lemma Join_SKIP_right [simp]: "F\<squnion>SKIP = F"  | 
| 13792 | 144  | 
apply (unfold Join_def SKIP_def)  | 
145  | 
apply (rule program_equalityI)  | 
|
146  | 
apply (simp_all (no_asm) add: insert_absorb)  | 
|
147  | 
done  | 
|
148  | 
||
| 13819 | 149  | 
lemma Join_absorb [simp]: "F\<squnion>F = F"  | 
| 13792 | 150  | 
apply (unfold Join_def)  | 
151  | 
apply (rule program_equalityI, auto)  | 
|
152  | 
done  | 
|
153  | 
||
| 13819 | 154  | 
lemma Join_left_absorb: "F\<squnion>(F\<squnion>G) = F\<squnion>G"  | 
| 13792 | 155  | 
apply (unfold Join_def)  | 
156  | 
apply (rule program_equalityI, auto)  | 
|
157  | 
done  | 
|
158  | 
||
159  | 
(*Join is an AC-operator*)  | 
|
160  | 
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute  | 
|
161  | 
||
162  | 
||
| 14150 | 163  | 
subsection{*Laws Governing @{text "\<Squnion>"}*}
 | 
| 13792 | 164  | 
|
165  | 
(*Also follows by JN_insert and insert_absorb, but the proof is longer*)  | 
|
| 13819 | 166  | 
lemma JN_absorb: "k \<in> I ==> F k\<squnion>(\<Squnion>i \<in> I. F i) = (\<Squnion>i \<in> I. F i)"  | 
| 13792 | 167  | 
by (auto intro!: program_equalityI)  | 
168  | 
||
| 13819 | 169  | 
lemma JN_Un: "(\<Squnion>i \<in> I \<union> J. F i) = ((\<Squnion>i \<in> I. F i)\<squnion>(\<Squnion>i \<in> J. F i))"  | 
| 13792 | 170  | 
by (auto intro!: program_equalityI)  | 
171  | 
||
| 13805 | 172  | 
lemma JN_constant: "(\<Squnion>i \<in> I. c) = (if I={} then SKIP else c)"
 | 
| 13792 | 173  | 
by (rule program_equalityI, auto)  | 
174  | 
||
175  | 
lemma JN_Join_distrib:  | 
|
| 13819 | 176  | 
"(\<Squnion>i \<in> I. F i\<squnion>G i) = (\<Squnion>i \<in> I. F i) \<squnion> (\<Squnion>i \<in> I. G i)"  | 
| 13792 | 177  | 
by (auto intro!: program_equalityI)  | 
178  | 
||
179  | 
lemma JN_Join_miniscope:  | 
|
| 13819 | 180  | 
"i \<in> I ==> (\<Squnion>i \<in> I. F i\<squnion>G) = ((\<Squnion>i \<in> I. F i)\<squnion>G)"  | 
| 13792 | 181  | 
by (auto simp add: JN_Join_distrib JN_constant)  | 
182  | 
||
183  | 
(*Used to prove guarantees_JN_I*)  | 
|
| 13819 | 184  | 
lemma JN_Join_diff: "i \<in> I ==> F i\<squnion>JOIN (I - {i}) F = JOIN I F"
 | 
| 13792 | 185  | 
apply (unfold JOIN_def Join_def)  | 
186  | 
apply (rule program_equalityI, auto)  | 
|
187  | 
done  | 
|
188  | 
||
189  | 
||
| 13798 | 190  | 
subsection{*Safety: co, stable, FP*}
 | 
| 13792 | 191  | 
|
| 13805 | 192  | 
(*Fails if I={} because it collapses to SKIP \<in> A co B, i.e. to A \<subseteq> B.  So an
 | 
193  | 
alternative precondition is A \<subseteq> B, but most proofs using this rule require  | 
|
| 13792 | 194  | 
I to be nonempty for other reasons anyway.*)  | 
195  | 
lemma JN_constrains:  | 
|
| 13805 | 196  | 
"i \<in> I ==> (\<Squnion>i \<in> I. F i) \<in> A co B = (\<forall>i \<in> I. F i \<in> A co B)"  | 
| 13792 | 197  | 
by (simp add: constrains_def JOIN_def, blast)  | 
198  | 
||
199  | 
lemma Join_constrains [simp]:  | 
|
| 13819 | 200  | 
"(F\<squnion>G \<in> A co B) = (F \<in> A co B & G \<in> A co B)"  | 
| 13792 | 201  | 
by (auto simp add: constrains_def Join_def)  | 
202  | 
||
203  | 
lemma Join_unless [simp]:  | 
|
| 13819 | 204  | 
"(F\<squnion>G \<in> A unless B) = (F \<in> A unless B & G \<in> A unless B)"  | 
| 46577 | 205  | 
by (simp add: unless_def)  | 
| 13792 | 206  | 
|
207  | 
(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.  | 
|
| 13819 | 208  | 
reachable (F\<squnion>G) could be much bigger than reachable F, reachable G  | 
| 13792 | 209  | 
*)  | 
210  | 
||
211  | 
||
212  | 
lemma Join_constrains_weaken:  | 
|
| 13805 | 213  | 
"[| F \<in> A co A'; G \<in> B co B' |]  | 
| 13819 | 214  | 
==> F\<squnion>G \<in> (A \<inter> B) co (A' \<union> B')"  | 
| 13792 | 215  | 
by (simp, blast intro: constrains_weaken)  | 
216  | 
||
| 13805 | 217  | 
(*If I={}, it degenerates to SKIP \<in> UNIV co {}, which is false.*)
 | 
| 13792 | 218  | 
lemma JN_constrains_weaken:  | 
| 13805 | 219  | 
"[| \<forall>i \<in> I. F i \<in> A i co A' i; i \<in> I |]  | 
220  | 
==> (\<Squnion>i \<in> I. F i) \<in> (\<Inter>i \<in> I. A i) co (\<Union>i \<in> I. A' i)"  | 
|
| 13792 | 221  | 
apply (simp (no_asm_simp) add: JN_constrains)  | 
222  | 
apply (blast intro: constrains_weaken)  | 
|
223  | 
done  | 
|
224  | 
||
| 13805 | 225  | 
lemma JN_stable: "(\<Squnion>i \<in> I. F i) \<in> stable A = (\<forall>i \<in> I. F i \<in> stable A)"  | 
| 13792 | 226  | 
by (simp add: stable_def constrains_def JOIN_def)  | 
227  | 
||
228  | 
lemma invariant_JN_I:  | 
|
| 13805 | 229  | 
"[| !!i. i \<in> I ==> F i \<in> invariant A; i \<in> I |]  | 
230  | 
==> (\<Squnion>i \<in> I. F i) \<in> invariant A"  | 
|
| 13792 | 231  | 
by (simp add: invariant_def JN_stable, blast)  | 
232  | 
||
233  | 
lemma Join_stable [simp]:  | 
|
| 13819 | 234  | 
"(F\<squnion>G \<in> stable A) =  | 
| 13805 | 235  | 
(F \<in> stable A & G \<in> stable A)"  | 
| 13792 | 236  | 
by (simp add: stable_def)  | 
237  | 
||
238  | 
lemma Join_increasing [simp]:  | 
|
| 13819 | 239  | 
"(F\<squnion>G \<in> increasing f) =  | 
| 13805 | 240  | 
(F \<in> increasing f & G \<in> increasing f)"  | 
| 46577 | 241  | 
by (auto simp add: increasing_def)  | 
| 13792 | 242  | 
|
243  | 
lemma invariant_JoinI:  | 
|
| 13805 | 244  | 
"[| F \<in> invariant A; G \<in> invariant A |]  | 
| 13819 | 245  | 
==> F\<squnion>G \<in> invariant A"  | 
| 46577 | 246  | 
by (auto simp add: invariant_def)  | 
| 13792 | 247  | 
|
| 13805 | 248  | 
lemma FP_JN: "FP (\<Squnion>i \<in> I. F i) = (\<Inter>i \<in> I. FP (F i))"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
36866 
diff
changeset
 | 
249  | 
by (simp add: FP_def JN_stable INTER_eq)  | 
| 13792 | 250  | 
|
251  | 
||
| 13798 | 252  | 
subsection{*Progress: transient, ensures*}
 | 
| 13792 | 253  | 
|
254  | 
lemma JN_transient:  | 
|
| 13805 | 255  | 
"i \<in> I ==>  | 
256  | 
(\<Squnion>i \<in> I. F i) \<in> transient A = (\<exists>i \<in> I. F i \<in> transient A)"  | 
|
| 13792 | 257  | 
by (auto simp add: transient_def JOIN_def)  | 
258  | 
||
259  | 
lemma Join_transient [simp]:  | 
|
| 13819 | 260  | 
"F\<squnion>G \<in> transient A =  | 
| 13805 | 261  | 
(F \<in> transient A | G \<in> transient A)"  | 
| 13792 | 262  | 
by (auto simp add: bex_Un transient_def Join_def)  | 
263  | 
||
| 13819 | 264  | 
lemma Join_transient_I1: "F \<in> transient A ==> F\<squnion>G \<in> transient A"  | 
| 46577 | 265  | 
by simp  | 
| 13792 | 266  | 
|
| 13819 | 267  | 
lemma Join_transient_I2: "G \<in> transient A ==> F\<squnion>G \<in> transient A"  | 
| 46577 | 268  | 
by simp  | 
| 13792 | 269  | 
|
| 13805 | 270  | 
(*If I={} it degenerates to (SKIP \<in> A ensures B) = False, i.e. to ~(A \<subseteq> B) *)
 | 
| 13792 | 271  | 
lemma JN_ensures:  | 
| 13805 | 272  | 
"i \<in> I ==>  | 
273  | 
(\<Squnion>i \<in> I. F i) \<in> A ensures B =  | 
|
274  | 
((\<forall>i \<in> I. F i \<in> (A-B) co (A \<union> B)) & (\<exists>i \<in> I. F i \<in> A ensures B))"  | 
|
| 13792 | 275  | 
by (auto simp add: ensures_def JN_constrains JN_transient)  | 
276  | 
||
277  | 
lemma Join_ensures:  | 
|
| 13819 | 278  | 
"F\<squnion>G \<in> A ensures B =  | 
| 13805 | 279  | 
(F \<in> (A-B) co (A \<union> B) & G \<in> (A-B) co (A \<union> B) &  | 
280  | 
(F \<in> transient (A-B) | G \<in> transient (A-B)))"  | 
|
| 46577 | 281  | 
by (auto simp add: ensures_def)  | 
| 13792 | 282  | 
|
283  | 
lemma stable_Join_constrains:  | 
|
| 13805 | 284  | 
"[| F \<in> stable A; G \<in> A co A' |]  | 
| 13819 | 285  | 
==> F\<squnion>G \<in> A co A'"  | 
| 13792 | 286  | 
apply (unfold stable_def constrains_def Join_def)  | 
287  | 
apply (simp add: ball_Un, blast)  | 
|
288  | 
done  | 
|
289  | 
||
| 13805 | 290  | 
(*Premise for G cannot use Always because F \<in> Stable A is weaker than  | 
291  | 
G \<in> stable A *)  | 
|
| 13792 | 292  | 
lemma stable_Join_Always1:  | 
| 13819 | 293  | 
"[| F \<in> stable A; G \<in> invariant A |] ==> F\<squnion>G \<in> Always A"  | 
| 13792 | 294  | 
apply (simp (no_asm_use) add: Always_def invariant_def Stable_eq_stable)  | 
295  | 
apply (force intro: stable_Int)  | 
|
296  | 
done  | 
|
297  | 
||
298  | 
(*As above, but exchanging the roles of F and G*)  | 
|
299  | 
lemma stable_Join_Always2:  | 
|
| 13819 | 300  | 
"[| F \<in> invariant A; G \<in> stable A |] ==> F\<squnion>G \<in> Always A"  | 
| 13792 | 301  | 
apply (subst Join_commute)  | 
302  | 
apply (blast intro: stable_Join_Always1)  | 
|
303  | 
done  | 
|
304  | 
||
305  | 
lemma stable_Join_ensures1:  | 
|
| 13819 | 306  | 
"[| F \<in> stable A; G \<in> A ensures B |] ==> F\<squnion>G \<in> A ensures B"  | 
| 13792 | 307  | 
apply (simp (no_asm_simp) add: Join_ensures)  | 
308  | 
apply (simp add: stable_def ensures_def)  | 
|
309  | 
apply (erule constrains_weaken, auto)  | 
|
310  | 
done  | 
|
311  | 
||
312  | 
(*As above, but exchanging the roles of F and G*)  | 
|
313  | 
lemma stable_Join_ensures2:  | 
|
| 13819 | 314  | 
"[| F \<in> A ensures B; G \<in> stable A |] ==> F\<squnion>G \<in> A ensures B"  | 
| 13792 | 315  | 
apply (subst Join_commute)  | 
316  | 
apply (blast intro: stable_Join_ensures1)  | 
|
317  | 
done  | 
|
318  | 
||
319  | 
||
| 13798 | 320  | 
subsection{*the ok and OK relations*}
 | 
| 13792 | 321  | 
|
322  | 
lemma ok_SKIP1 [iff]: "SKIP ok F"  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
323  | 
by (simp add: ok_def)  | 
| 13792 | 324  | 
|
325  | 
lemma ok_SKIP2 [iff]: "F ok SKIP"  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
326  | 
by (simp add: ok_def)  | 
| 13792 | 327  | 
|
328  | 
lemma ok_Join_commute:  | 
|
| 13819 | 329  | 
"(F ok G & (F\<squnion>G) ok H) = (G ok H & F ok (G\<squnion>H))"  | 
| 13792 | 330  | 
by (auto simp add: ok_def)  | 
331  | 
||
332  | 
lemma ok_commute: "(F ok G) = (G ok F)"  | 
|
333  | 
by (auto simp add: ok_def)  | 
|
334  | 
||
| 45605 | 335  | 
lemmas ok_sym = ok_commute [THEN iffD1]  | 
| 13792 | 336  | 
|
337  | 
lemma ok_iff_OK:  | 
|
| 13819 | 338  | 
     "OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (F\<squnion>G) ok H)"
 | 
| 16977 | 339  | 
apply (simp add: Ball_def conj_disj_distribR ok_def Join_def OK_def insert_absorb  | 
340  | 
all_conj_distrib)  | 
|
341  | 
apply blast  | 
|
342  | 
done  | 
|
| 13792 | 343  | 
|
| 13819 | 344  | 
lemma ok_Join_iff1 [iff]: "F ok (G\<squnion>H) = (F ok G & F ok H)"  | 
| 13792 | 345  | 
by (auto simp add: ok_def)  | 
346  | 
||
| 13819 | 347  | 
lemma ok_Join_iff2 [iff]: "(G\<squnion>H) ok F = (G ok F & H ok F)"  | 
| 13792 | 348  | 
by (auto simp add: ok_def)  | 
349  | 
||
350  | 
(*useful? Not with the previous two around*)  | 
|
| 13819 | 351  | 
lemma ok_Join_commute_I: "[| F ok G; (F\<squnion>G) ok H |] ==> F ok (G\<squnion>H)"  | 
| 13792 | 352  | 
by (auto simp add: ok_def)  | 
353  | 
||
| 13805 | 354  | 
lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (\<forall>i \<in> I. F ok G i)"  | 
| 13792 | 355  | 
by (auto simp add: ok_def)  | 
356  | 
||
| 13805 | 357  | 
lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (\<forall>i \<in> I. G i ok F)"  | 
| 13792 | 358  | 
by (auto simp add: ok_def)  | 
359  | 
||
| 13805 | 360  | 
lemma OK_iff_ok: "OK I F = (\<forall>i \<in> I. \<forall>j \<in> I-{i}. (F i) ok (F j))"
 | 
| 13792 | 361  | 
by (auto simp add: ok_def OK_def)  | 
362  | 
||
| 13805 | 363  | 
lemma OK_imp_ok: "[| OK I F; i \<in> I; j \<in> I; i \<noteq> j|] ==> (F i) ok (F j)"  | 
| 13792 | 364  | 
by (auto simp add: OK_iff_ok)  | 
365  | 
||
366  | 
||
| 13798 | 367  | 
subsection{*Allowed*}
 | 
| 13792 | 368  | 
|
369  | 
lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV"  | 
|
370  | 
by (auto simp add: Allowed_def)  | 
|
371  | 
||
| 13819 | 372  | 
lemma Allowed_Join [simp]: "Allowed (F\<squnion>G) = Allowed F \<inter> Allowed G"  | 
| 13792 | 373  | 
by (auto simp add: Allowed_def)  | 
374  | 
||
| 13805 | 375  | 
lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (\<Inter>i \<in> I. Allowed (F i))"  | 
| 13792 | 376  | 
by (auto simp add: Allowed_def)  | 
377  | 
||
| 13805 | 378  | 
lemma ok_iff_Allowed: "F ok G = (F \<in> Allowed G & G \<in> Allowed F)"  | 
| 13792 | 379  | 
by (simp add: ok_def Allowed_def)  | 
380  | 
||
| 13805 | 381  | 
lemma OK_iff_Allowed: "OK I F = (\<forall>i \<in> I. \<forall>j \<in> I-{i}. F i \<in> Allowed(F j))"
 | 
| 13792 | 382  | 
by (auto simp add: OK_iff_ok ok_iff_Allowed)  | 
383  | 
||
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
384  | 
subsection{*@{term safety_prop}, for reasoning about
 | 
| 13798 | 385  | 
given instances of "ok"*}  | 
| 13792 | 386  | 
|
387  | 
lemma safety_prop_Acts_iff:  | 
|
| 13805 | 388  | 
"safety_prop X ==> (Acts G \<subseteq> insert Id (UNION X Acts)) = (G \<in> X)"  | 
| 13792 | 389  | 
by (auto simp add: safety_prop_def)  | 
390  | 
||
391  | 
lemma safety_prop_AllowedActs_iff_Allowed:  | 
|
| 13805 | 392  | 
"safety_prop X ==> (UNION X Acts \<subseteq> AllowedActs F) = (X \<subseteq> Allowed F)"  | 
| 13792 | 393  | 
by (auto simp add: Allowed_def safety_prop_Acts_iff [symmetric])  | 
394  | 
||
395  | 
lemma Allowed_eq:  | 
|
396  | 
"safety_prop X ==> Allowed (mk_program (init, acts, UNION X Acts)) = X"  | 
|
397  | 
by (simp add: Allowed_def safety_prop_Acts_iff)  | 
|
398  | 
||
399  | 
(*For safety_prop to hold, the property must be satisfiable!*)  | 
|
| 13805 | 400  | 
lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A \<subseteq> B)"  | 
| 13792 | 401  | 
by (simp add: safety_prop_def constrains_def, blast)  | 
402  | 
||
403  | 
lemma safety_prop_stable [iff]: "safety_prop (stable A)"  | 
|
404  | 
by (simp add: stable_def)  | 
|
405  | 
||
406  | 
lemma safety_prop_Int [simp]:  | 
|
| 13805 | 407  | 
"[| safety_prop X; safety_prop Y |] ==> safety_prop (X \<inter> Y)"  | 
| 13792 | 408  | 
by (simp add: safety_prop_def, blast)  | 
409  | 
||
410  | 
lemma safety_prop_INTER1 [simp]:  | 
|
| 13805 | 411  | 
"(!!i. safety_prop (X i)) ==> safety_prop (\<Inter>i. X i)"  | 
| 13792 | 412  | 
by (auto simp add: safety_prop_def, blast)  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30304 
diff
changeset
 | 
413  | 
|
| 13792 | 414  | 
lemma safety_prop_INTER [simp]:  | 
| 13805 | 415  | 
"(!!i. i \<in> I ==> safety_prop (X i)) ==> safety_prop (\<Inter>i \<in> I. X i)"  | 
| 13792 | 416  | 
by (auto simp add: safety_prop_def, blast)  | 
417  | 
||
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
418  | 
lemma def_prg_Allowed:  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
419  | 
"[| F == mk_program (init, acts, UNION X Acts) ; safety_prop X |]  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
420  | 
==> Allowed F = X"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
421  | 
by (simp add: Allowed_eq)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
422  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
423  | 
lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
424  | 
by (simp add: Allowed_def)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
425  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
426  | 
lemma def_total_prg_Allowed:  | 
| 36866 | 427  | 
"[| F = mk_total_program (init, acts, UNION X Acts) ; safety_prop X |]  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
428  | 
==> Allowed F = X"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
429  | 
by (simp add: mk_total_program_def def_prg_Allowed)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
430  | 
|
| 13792 | 431  | 
lemma def_UNION_ok_iff:  | 
| 36866 | 432  | 
"[| F = mk_program(init,acts,UNION X Acts); safety_prop X |]  | 
| 13805 | 433  | 
==> F ok G = (G \<in> X & acts \<subseteq> AllowedActs G)"  | 
| 13792 | 434  | 
by (auto simp add: ok_def safety_prop_Acts_iff)  | 
| 9685 | 435  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
436  | 
text{*The union of two total programs is total.*}
 | 
| 13819 | 437  | 
lemma totalize_Join: "totalize F\<squnion>totalize G = totalize (F\<squnion>G)"  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
438  | 
by (simp add: program_equalityI totalize_def Join_def image_Un)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
439  | 
|
| 13819 | 440  | 
lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (F\<squnion>G)"  | 
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
441  | 
by (simp add: all_total_def, blast)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
442  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
443  | 
lemma totalize_JN: "(\<Squnion>i \<in> I. totalize (F i)) = totalize(\<Squnion>i \<in> I. F i)"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
444  | 
by (simp add: program_equalityI totalize_def JOIN_def image_UN)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
445  | 
|
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
446  | 
lemma all_total_JN: "(!!i. i\<in>I ==> all_total (F i)) ==> all_total(\<Squnion>i\<in>I. F i)"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
447  | 
by (simp add: all_total_iff_totalize totalize_JN [symmetric])  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
448  | 
|
| 5252 | 449  | 
end  |