| 62479 |      1 | (*  Title:      HOL/Nonstandard_Analysis/NatStar.thy
 | 
|  |      2 |     Author:     Jacques D. Fleuriot
 | 
|  |      3 |     Copyright:  1998  University of Cambridge
 | 
| 27468 |      4 | 
 | 
|  |      5 | Converted to Isar and polished by lcp
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
| 64435 |      8 | section \<open>Star-transforms for the Hypernaturals\<close>
 | 
| 27468 |      9 | 
 | 
|  |     10 | theory NatStar
 | 
| 64435 |     11 |   imports Star
 | 
| 27468 |     12 | begin
 | 
|  |     13 | 
 | 
|  |     14 | lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn"
 | 
| 64435 |     15 |   by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n)
 | 
| 27468 |     16 | 
 | 
| 64435 |     17 | lemma starset_n_Un: "*sn* (\<lambda>n. (A n) \<union> (B n)) = *sn* A \<union> *sn* B"
 | 
| 70219 |     18 | proof -
 | 
|  |     19 |   have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<in> A n \<or> x \<in> B n})) N) =
 | 
|  |     20 |     {x. x \<in> Iset ((*f* A) N) \<or> x \<in> Iset ((*f* B) N)}"
 | 
|  |     21 |     by transfer simp
 | 
|  |     22 |   then show ?thesis
 | 
|  |     23 |     by (simp add: starset_n_def star_n_eq_starfun_whn Un_def)
 | 
|  |     24 | qed
 | 
| 27468 |     25 | 
 | 
| 64435 |     26 | lemma InternalSets_Un: "X \<in> InternalSets \<Longrightarrow> Y \<in> InternalSets \<Longrightarrow> X \<union> Y \<in> InternalSets"
 | 
|  |     27 |   by (auto simp add: InternalSets_def starset_n_Un [symmetric])
 | 
| 27468 |     28 | 
 | 
| 64435 |     29 | lemma starset_n_Int: "*sn* (\<lambda>n. A n \<inter> B n) = *sn* A \<inter> *sn* B"
 | 
| 70219 |     30 | proof -
 | 
|  |     31 |   have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<in> A n \<and> x \<in> B n})) N) =
 | 
|  |     32 |     {x. x \<in> Iset ((*f* A) N) \<and> x \<in> Iset ((*f* B) N)}"
 | 
|  |     33 |     by transfer simp
 | 
|  |     34 |   then show ?thesis
 | 
|  |     35 |     by (simp add: starset_n_def star_n_eq_starfun_whn Int_def)
 | 
|  |     36 | qed
 | 
| 27468 |     37 | 
 | 
| 64435 |     38 | lemma InternalSets_Int: "X \<in> InternalSets \<Longrightarrow> Y \<in> InternalSets \<Longrightarrow> X \<inter> Y \<in> InternalSets"
 | 
|  |     39 |   by (auto simp add: InternalSets_def starset_n_Int [symmetric])
 | 
| 27468 |     40 | 
 | 
| 64435 |     41 | lemma starset_n_Compl: "*sn* ((\<lambda>n. - A n)) = - ( *sn* A)"
 | 
| 70219 |     42 | proof -
 | 
|  |     43 |   have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<notin> A n})) N) =
 | 
|  |     44 |     {x. x \<notin> Iset ((*f* A) N)}"
 | 
|  |     45 |     by transfer simp
 | 
|  |     46 |   then show ?thesis
 | 
|  |     47 |     by (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq)
 | 
|  |     48 | qed
 | 
| 27468 |     49 | 
 | 
| 64435 |     50 | lemma InternalSets_Compl: "X \<in> InternalSets \<Longrightarrow> - X \<in> InternalSets"
 | 
|  |     51 |   by (auto simp add: InternalSets_def starset_n_Compl [symmetric])
 | 
| 27468 |     52 | 
 | 
| 64435 |     53 | lemma starset_n_diff: "*sn* (\<lambda>n. (A n) - (B n)) = *sn* A - *sn* B"
 | 
| 70219 |     54 | proof -
 | 
|  |     55 |   have "\<And>N. Iset ((*f* (\<lambda>n. {x. x \<in> A n \<and> x \<notin> B n})) N) =
 | 
|  |     56 |     {x. x \<in> Iset ((*f* A) N) \<and> x \<notin> Iset ((*f* B) N)}"
 | 
|  |     57 |     by transfer simp
 | 
|  |     58 |   then show ?thesis
 | 
|  |     59 |     by (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq)
 | 
|  |     60 | qed
 | 
| 27468 |     61 | 
 | 
| 64435 |     62 | lemma InternalSets_diff: "X \<in> InternalSets \<Longrightarrow> Y \<in> InternalSets \<Longrightarrow> X - Y \<in> InternalSets"
 | 
|  |     63 |   by (auto simp add: InternalSets_def starset_n_diff [symmetric])
 | 
| 27468 |     64 | 
 | 
|  |     65 | lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)"
 | 
| 64435 |     66 |   by simp
 | 
| 27468 |     67 | 
 | 
| 64435 |     68 | lemma NatStar_hypreal_of_real_Int: "*s* X Int Nats = hypnat_of_nat ` X"
 | 
|  |     69 |   by (auto simp add: SHNat_eq)
 | 
| 27468 |     70 | 
 | 
| 64435 |     71 | lemma starset_starset_n_eq: "*s* X = *sn* (\<lambda>n. X)"
 | 
|  |     72 |   by (simp add: starset_n_starset)
 | 
| 27468 |     73 | 
 | 
|  |     74 | lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets"
 | 
| 64435 |     75 |   by (auto simp add: InternalSets_def starset_starset_n_eq)
 | 
| 27468 |     76 | 
 | 
| 64435 |     77 | lemma InternalSets_UNIV_diff: "X \<in> InternalSets \<Longrightarrow> UNIV - X \<in> InternalSets"
 | 
| 70219 |     78 |   by (simp add: InternalSets_Compl diff_eq)
 | 
| 27468 |     79 | 
 | 
|  |     80 | 
 | 
| 64435 |     81 | subsection \<open>Nonstandard Extensions of Functions\<close>
 | 
| 27468 |     82 | 
 | 
| 64435 |     83 | text \<open>Example of transfer of a property from reals to hyperreals
 | 
|  |     84 |   --- used for limit comparison of sequences.\<close>
 | 
|  |     85 | 
 | 
|  |     86 | lemma starfun_le_mono: "\<forall>n. N \<le> n \<longrightarrow> f n \<le> g n \<Longrightarrow>
 | 
|  |     87 |   \<forall>n. hypnat_of_nat N \<le> n \<longrightarrow> ( *f* f) n \<le> ( *f* g) n"
 | 
|  |     88 |   by transfer
 | 
| 27468 |     89 | 
 | 
| 64435 |     90 | text \<open>And another:\<close>
 | 
| 27468 |     91 | lemma starfun_less_mono:
 | 
| 64435 |     92 |   "\<forall>n. N \<le> n \<longrightarrow> f n < g n \<Longrightarrow> \<forall>n. hypnat_of_nat N \<le> n \<longrightarrow> ( *f* f) n < ( *f* g) n"
 | 
|  |     93 |   by transfer
 | 
| 27468 |     94 | 
 | 
| 64435 |     95 | text \<open>Nonstandard extension when we increment the argument by one.\<close>
 | 
| 27468 |     96 | 
 | 
| 64435 |     97 | lemma starfun_shift_one: "\<And>N. ( *f* (\<lambda>n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))"
 | 
|  |     98 |   by transfer simp
 | 
| 27468 |     99 | 
 | 
| 64435 |    100 | text \<open>Nonstandard extension with absolute value.\<close>
 | 
|  |    101 | lemma starfun_abs: "\<And>N. ( *f* (\<lambda>n. \<bar>f n\<bar>)) N = \<bar>( *f* f) N\<bar>"
 | 
|  |    102 |   by transfer (rule refl)
 | 
| 27468 |    103 | 
 | 
| 64435 |    104 | text \<open>The \<open>hyperpow\<close> function as a nonstandard extension of \<open>realpow\<close>.\<close>
 | 
|  |    105 | lemma starfun_pow: "\<And>N. ( *f* (\<lambda>n. r ^ n)) N = hypreal_of_real r pow N"
 | 
|  |    106 |   by transfer (rule refl)
 | 
| 27468 |    107 | 
 | 
| 64435 |    108 | lemma starfun_pow2: "\<And>N. ( *f* (\<lambda>n. X n ^ m)) N = ( *f* X) N pow hypnat_of_nat m"
 | 
|  |    109 |   by transfer (rule refl)
 | 
| 27468 |    110 | 
 | 
| 64435 |    111 | lemma starfun_pow3: "\<And>R. ( *f* (\<lambda>r. r ^ n)) R = R pow hypnat_of_nat n"
 | 
|  |    112 |   by transfer (rule refl)
 | 
| 27468 |    113 | 
 | 
| 69597 |    114 | text \<open>The \<^term>\<open>hypreal_of_hypnat\<close> function as a nonstandard extension of
 | 
|  |    115 |   \<^term>\<open>real_of_nat\<close>.\<close>
 | 
| 27468 |    116 | lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"
 | 
| 64435 |    117 |   by transfer (simp add: fun_eq_iff)
 | 
| 27468 |    118 | 
 | 
|  |    119 | lemma starfun_inverse_real_of_nat_eq:
 | 
| 64435 |    120 |   "N \<in> HNatInfinite \<Longrightarrow> ( *f* (\<lambda>x::nat. inverse (real x))) N = inverse (hypreal_of_hypnat N)"
 | 
| 70219 |    121 |   by (metis of_hypnat_def starfun_inverse2)
 | 
| 27468 |    122 | 
 | 
| 64435 |    123 | text \<open>Internal functions -- some redundancy with \<open>*f*\<close> now.\<close>
 | 
| 27468 |    124 | 
 | 
| 64435 |    125 | lemma starfun_n: "( *fn* f) (star_n X) = star_n (\<lambda>n. f n (X n))"
 | 
|  |    126 |   by (simp add: starfun_n_def Ifun_star_n)
 | 
| 27468 |    127 | 
 | 
| 64435 |    128 | text \<open>Multiplication: \<open>( *fn) x ( *gn) = *(fn x gn)\<close>\<close>
 | 
| 27468 |    129 | 
 | 
| 64435 |    130 | lemma starfun_n_mult: "( *fn* f) z * ( *fn* g) z = ( *fn* (\<lambda>i x. f i x * g i x)) z"
 | 
|  |    131 |   by (cases z) (simp add: starfun_n star_n_mult)
 | 
| 27468 |    132 | 
 | 
| 64435 |    133 | text \<open>Addition: \<open>( *fn) + ( *gn) = *(fn + gn)\<close>\<close>
 | 
|  |    134 | lemma starfun_n_add: "( *fn* f) z + ( *fn* g) z = ( *fn* (\<lambda>i x. f i x + g i x)) z"
 | 
|  |    135 |   by (cases z) (simp add: starfun_n star_n_add)
 | 
| 27468 |    136 | 
 | 
| 64435 |    137 | text \<open>Subtraction: \<open>( *fn) - ( *gn) = *(fn + - gn)\<close>\<close>
 | 
|  |    138 | lemma starfun_n_add_minus: "( *fn* f) z + -( *fn* g) z = ( *fn* (\<lambda>i x. f i x + -g i x)) z"
 | 
|  |    139 |   by (cases z) (simp add: starfun_n star_n_minus star_n_add)
 | 
| 27468 |    140 | 
 | 
|  |    141 | 
 | 
| 64435 |    142 | text \<open>Composition: \<open>( *fn) \<circ> ( *gn) = *(fn \<circ> gn)\<close>\<close>
 | 
| 27468 |    143 | 
 | 
| 64435 |    144 | lemma starfun_n_const_fun [simp]: "( *fn* (\<lambda>i x. k)) z = star_of k"
 | 
|  |    145 |   by (cases z) (simp add: starfun_n star_of_def)
 | 
| 27468 |    146 | 
 | 
| 64435 |    147 | lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (\<lambda>i x. - (f i) x)) x"
 | 
|  |    148 |   by (cases x) (simp add: starfun_n star_n_minus)
 | 
| 27468 |    149 | 
 | 
| 64435 |    150 | lemma starfun_n_eq [simp]: "( *fn* f) (star_of n) = star_n (\<lambda>i. f i n)"
 | 
|  |    151 |   by (simp add: starfun_n star_of_def)
 | 
| 27468 |    152 | 
 | 
| 64435 |    153 | lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) \<longleftrightarrow> f = g"
 | 
|  |    154 |   by transfer (rule refl)
 | 
| 27468 |    155 | 
 | 
|  |    156 | lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]:
 | 
| 67091 |    157 |   "N \<in> HNatInfinite \<Longrightarrow> ( *f* (\<lambda>x. inverse (real x))) N \<in> Infinitesimal"
 | 
| 70219 |    158 |   using starfun_inverse_real_of_nat_eq by auto
 | 
| 27468 |    159 | 
 | 
|  |    160 | 
 | 
| 64435 |    161 | subsection \<open>Nonstandard Characterization of Induction\<close>
 | 
| 27468 |    162 | 
 | 
|  |    163 | lemma hypnat_induct_obj:
 | 
| 64435 |    164 |   "\<And>n. (( *p* P) (0::hypnat) \<and> (\<forall>n. ( *p* P) n \<longrightarrow> ( *p* P) (n + 1))) \<longrightarrow> ( *p* P) n"
 | 
|  |    165 |   by transfer (induct_tac n, auto)
 | 
| 27468 |    166 | 
 | 
|  |    167 | lemma hypnat_induct:
 | 
| 64435 |    168 |   "\<And>n. ( *p* P) (0::hypnat) \<Longrightarrow> (\<And>n. ( *p* P) n \<Longrightarrow> ( *p* P) (n + 1)) \<Longrightarrow> ( *p* P) n"
 | 
|  |    169 |   by transfer (induct_tac n, auto)
 | 
| 27468 |    170 | 
 | 
| 67399 |    171 | lemma starP2_eq_iff: "( *p2* (=)) = (=)"
 | 
| 64435 |    172 |   by transfer (rule refl)
 | 
| 27468 |    173 | 
 | 
| 64435 |    174 | lemma starP2_eq_iff2: "( *p2* (\<lambda>x y. x = y)) X Y \<longleftrightarrow> X = Y"
 | 
|  |    175 |   by (simp add: starP2_eq_iff)
 | 
| 27468 |    176 | 
 | 
| 70219 |    177 | lemma nonempty_set_star_has_least_lemma:
 | 
|  |    178 |   "\<exists>n\<in>S. \<forall>m\<in>S. n \<le> m" if "S \<noteq> {}" for S :: "nat set"
 | 
|  |    179 | proof
 | 
|  |    180 |   show "\<forall>m\<in>S. (LEAST n. n \<in> S) \<le> m"
 | 
|  |    181 |     by (simp add: Least_le)
 | 
|  |    182 |   show "(LEAST n. n \<in> S) \<in> S"
 | 
|  |    183 |     by (meson that LeastI_ex equals0I)
 | 
|  |    184 | qed
 | 
| 27468 |    185 | 
 | 
|  |    186 | lemma nonempty_set_star_has_least:
 | 
| 64435 |    187 |   "\<And>S::nat set star. Iset S \<noteq> {} \<Longrightarrow> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m"
 | 
| 70219 |    188 |   using nonempty_set_star_has_least_lemma by (transfer empty_def)
 | 
| 27468 |    189 | 
 | 
| 64435 |    190 | lemma nonempty_InternalNatSet_has_least: "S \<in> InternalSets \<Longrightarrow> S \<noteq> {} \<Longrightarrow> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m"
 | 
|  |    191 |   for S :: "hypnat set"
 | 
| 70219 |    192 |   by (force simp add: InternalSets_def starset_n_def dest!: nonempty_set_star_has_least)
 | 
| 27468 |    193 | 
 | 
| 64435 |    194 | text \<open>Goldblatt, page 129 Thm 11.3.2.\<close>
 | 
| 27468 |    195 | lemma internal_induct_lemma:
 | 
| 64435 |    196 |   "\<And>X::nat set star.
 | 
|  |    197 |     (0::hypnat) \<in> Iset X \<Longrightarrow> \<forall>n. n \<in> Iset X \<longrightarrow> n + 1 \<in> Iset X \<Longrightarrow> Iset X = (UNIV:: hypnat set)"
 | 
|  |    198 |   apply (transfer UNIV_def)
 | 
|  |    199 |   apply (rule equalityI [OF subset_UNIV subsetI])
 | 
|  |    200 |   apply (induct_tac x, auto)
 | 
|  |    201 |   done
 | 
| 27468 |    202 | 
 | 
|  |    203 | lemma internal_induct:
 | 
| 64435 |    204 |   "X \<in> InternalSets \<Longrightarrow> (0::hypnat) \<in> X \<Longrightarrow> \<forall>n. n \<in> X \<longrightarrow> n + 1 \<in> X \<Longrightarrow> X = (UNIV:: hypnat set)"
 | 
|  |    205 |   apply (clarsimp simp add: InternalSets_def starset_n_def)
 | 
|  |    206 |   apply (erule (1) internal_induct_lemma)
 | 
|  |    207 |   done
 | 
| 27468 |    208 | 
 | 
|  |    209 | end
 |