| author | wenzelm |
| Sun, 16 Jul 2000 20:50:15 +0200 | |
| changeset 9356 | 30c3d3e308ee |
| parent 9311 | ab5b24cbaa16 |
| permissions | -rw-r--r-- |
| 923 | 1 |
(* Title: HOL/Sum.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
The disjoint sum of two types. |
|
7 |
*) |
|
8 |
||
| 1515 | 9 |
Sum = mono + Prod + |
| 923 | 10 |
|
11 |
(* type definition *) |
|
12 |
||
| 1558 | 13 |
constdefs |
|
1370
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
14 |
Inl_Rep :: ['a, 'a, 'b, bool] => bool |
| 1558 | 15 |
"Inl_Rep == (%a. %x y p. x=a & p)" |
| 923 | 16 |
|
| 1558 | 17 |
Inr_Rep :: ['b, 'a, 'b, bool] => bool |
18 |
"Inr_Rep == (%b. %x y p. y=b & ~p)" |
|
| 923 | 19 |
|
| 3947 | 20 |
global |
21 |
||
| 1475 | 22 |
typedef (Sum) |
| 923 | 23 |
('a, 'b) "+" (infixr 10)
|
24 |
= "{f. (? a. f = Inl_Rep(a::'a)) | (? b. f = Inr_Rep(b::'b))}"
|
|
25 |
||
26 |
||
27 |
(* abstract constants and syntax *) |
|
28 |
||
29 |
consts |
|
|
7254
fc7f95f293da
Renamed sum_case to basic_sum_case and removed translations for sum_case
berghofe
parents:
3947
diff
changeset
|
30 |
Inl :: "'a => 'a + 'b" |
|
fc7f95f293da
Renamed sum_case to basic_sum_case and removed translations for sum_case
berghofe
parents:
3947
diff
changeset
|
31 |
Inr :: "'b => 'a + 'b" |
| 923 | 32 |
|
33 |
(*disjoint sum for sets; the operator + is overloaded with wrong type!*) |
|
| 9311 | 34 |
Plus :: "['a set, 'b set] => ('a + 'b) set" (infixr "<+>" 65)
|
|
1370
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
35 |
Part :: ['a set, 'b => 'a] => 'a set |
| 923 | 36 |
|
| 3947 | 37 |
local |
38 |
||
| 923 | 39 |
defs |
40 |
Inl_def "Inl == (%a. Abs_Sum(Inl_Rep(a)))" |
|
41 |
Inr_def "Inr == (%b. Abs_Sum(Inr_Rep(b)))" |
|
42 |
||
| 9311 | 43 |
sum_def "A <+> B == (Inl``A) Un (Inr``B)" |
| 923 | 44 |
|
45 |
(*for selecting out the components of a mutually recursive definition*) |
|
46 |
Part_def "Part A h == A Int {x. ? z. x = h(z)}"
|
|
47 |
||
48 |
end |