32556
|
1 |
|
|
2 |
header {* Various examples for transfer procedure *}
|
|
3 |
|
|
4 |
theory Transfer_Ex
|
|
5 |
imports Complex_Main
|
|
6 |
begin
|
|
7 |
|
|
8 |
(* nat to int *)
|
|
9 |
|
|
10 |
lemma ex1: "(x::nat) + y = y + x"
|
|
11 |
by auto
|
|
12 |
|
|
13 |
thm ex1 [transferred]
|
|
14 |
|
|
15 |
lemma ex2: "(a::nat) div b * b + a mod b = a"
|
|
16 |
by (rule mod_div_equality)
|
|
17 |
|
|
18 |
thm ex2 [transferred]
|
|
19 |
|
|
20 |
lemma ex3: "ALL (x::nat). ALL y. EX z. z >= x + y"
|
|
21 |
by auto
|
|
22 |
|
|
23 |
thm ex3 [transferred natint]
|
|
24 |
|
|
25 |
lemma ex4: "(x::nat) >= y \<Longrightarrow> (x - y) + y = x"
|
|
26 |
by auto
|
|
27 |
|
|
28 |
thm ex4 [transferred]
|
|
29 |
|
|
30 |
lemma ex5: "(2::nat) * (SUM i <= n. i) = n * (n + 1)"
|
|
31 |
by (induct n rule: nat_induct, auto)
|
|
32 |
|
|
33 |
thm ex5 [transferred]
|
|
34 |
|
|
35 |
theorem ex6: "0 <= (n::int) \<Longrightarrow> 2 * \<Sum>{0..n} = n * (n + 1)"
|
|
36 |
by (rule ex5 [transferred])
|
|
37 |
|
|
38 |
thm ex6 [transferred]
|
|
39 |
|
|
40 |
thm ex5 [transferred, transferred]
|
|
41 |
|
|
42 |
end |