merged
authorhaftmann
Fri, 25 Sep 2009 09:50:31 +0200
changeset 32705 04ce6bb14d85
parent 32682 304a47739407 (current diff)
parent 32704 6f0a56d255f4 (diff)
child 32706 b68f3afdc137
merged
src/HOL/Finite_Set.thy
src/HOL/Library/Executable_Set.thy
src/HOL/Predicate.thy
--- a/NEWS	Thu Sep 24 19:14:18 2009 +0200
+++ b/NEWS	Fri Sep 25 09:50:31 2009 +0200
@@ -94,13 +94,18 @@
   - mere abbreviations:
     Set.empty               (for bot)
     Set.UNIV                (for top)
+    Set.inter               (for inf)
+    Set.union               (for sup)
     Complete_Lattice.Inter  (for Inf)
     Complete_Lattice.Union  (for Sup)
     Complete_Lattice.INTER  (for INFI)
     Complete_Lattice.UNION  (for SUPR)
   - object-logic definitions as far as appropriate
 
-  INCOMPATIBILITY.
+INCOMPATIBILITY.  Care is required when theorems Int_subset_iff or
+Un_subset_iff are explicitly deleted as default simp rules;  then
+also their lattice counterparts le_inf_iff and le_sup_iff have to be
+deleted to achieve the desired effect.
 
 * Rules inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no
 simp rules by default any longer.  The same applies to
--- a/src/HOL/Algebra/FiniteProduct.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Algebra/FiniteProduct.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -212,7 +212,7 @@
   apply (induct set: finite)
    apply simp
   apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb
-    Int_mono2 Un_subset_iff)
+    Int_mono2)
   done
 
 lemma (in LCD) foldD_nest_Un_disjoint:
@@ -274,14 +274,14 @@
   apply (simp add: AC insert_absorb Int_insert_left
     LCD.foldD_insert [OF LCD.intro [of D]]
     LCD.foldD_closed [OF LCD.intro [of D]]
-    Int_mono2 Un_subset_iff)
+    Int_mono2)
   done
 
 lemma (in ACeD) foldD_Un_disjoint:
   "[| finite A; finite B; A Int B = {}; A \<subseteq> D; B \<subseteq> D |] ==>
     foldD D f e (A Un B) = foldD D f e A \<cdot> foldD D f e B"
   by (simp add: foldD_Un_Int
-    left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff)
+    left_commute LCD.foldD_closed [OF LCD.intro [of D]])
 
 
 subsubsection {* Products over Finite Sets *}
@@ -377,7 +377,7 @@
   from insert have A: "g \<in> A -> carrier G" by fast
   from insert A a show ?case
     by (simp add: m_ac Int_insert_left insert_absorb finprod_closed
-          Int_mono2 Un_subset_iff) 
+          Int_mono2) 
 qed
 
 lemma finprod_Un_disjoint:
--- a/src/HOL/Auth/Guard/Extensions.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Auth/Guard/Extensions.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -11,7 +11,9 @@
 
 header {*Extensions to Standard Theories*}
 
-theory Extensions imports "../Event" begin
+theory Extensions
+imports "../Event"
+begin
 
 subsection{*Extensions to Theory @{text Set}*}
 
@@ -173,7 +175,7 @@
 subsubsection{*lemmas on analz*}
 
 lemma analz_UnI1 [intro]: "X:analz G ==> X:analz (G Un H)"
-by (subgoal_tac "G <= G Un H", auto dest: analz_mono)
+  by (subgoal_tac "G <= G Un H") (blast dest: analz_mono)+
 
 lemma analz_sub: "[| X:analz G; G <= H |] ==> X:analz H"
 by (auto dest: analz_mono)
--- a/src/HOL/Bali/DefiniteAssignmentCorrect.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Bali/DefiniteAssignmentCorrect.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1747,7 +1747,7 @@
       have "assigns (In1l e2) \<subseteq> dom (locals (store s2))"
 	by (simp add: need_second_arg_def)
       with s2
-      show ?thesis using False by (simp add: Un_subset_iff)
+      show ?thesis using False by simp
     qed
   next
     case Super thus ?case by simp
--- a/src/HOL/Bali/TypeSafe.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Bali/TypeSafe.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -2953,7 +2953,7 @@
 	  by simp
 	from da_e1 s0_s1 True obtain E1' where
 	  "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile> (dom (locals (store s1)))\<guillemotright>In1l e1\<guillemotright> E1'"
-	  by - (rule da_weakenE, auto iff del: Un_subset_iff)
+	  by - (rule da_weakenE, auto iff del: Un_subset_iff le_sup_iff)
 	with conf_s1 wt_e1
 	obtain 
 	  "s2\<Colon>\<preceq>(G, L)"
@@ -2972,7 +2972,7 @@
 	  by simp
 	from da_e2 s0_s1 False obtain E2' where
 	  "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile> (dom (locals (store s1)))\<guillemotright>In1l e2\<guillemotright> E2'"
-	  by - (rule da_weakenE, auto iff del: Un_subset_iff)
+	  by - (rule da_weakenE, auto iff del: Un_subset_iff le_sup_iff)
 	with conf_s1 wt_e2
 	obtain 
 	  "s2\<Colon>\<preceq>(G, L)"
--- a/src/HOL/Finite_Set.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Finite_Set.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1565,9 +1565,7 @@
   apply (rule finite_subset)
   prefer 2
   apply assumption
-  apply auto
-  apply (rule setsum_cong)
-  apply auto
+  apply (auto simp add: sup_absorb2)
 done
 
 lemma setsum_right_distrib: 
--- a/src/HOL/Hoare_Parallel/Gar_Coll.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Hoare_Parallel/Gar_Coll.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -253,7 +253,7 @@
     \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}."
 apply (unfold Propagate_Black_def  PBInv_def Auxk_def collector_defs)
 apply annhoare
-apply(simp_all add:Graph6 Graph7 Graph8 Graph12)
+apply(simp_all add: Graph6 Graph7 Graph8 Graph12)
        apply force
       apply force
      apply force
@@ -297,8 +297,6 @@
 apply(erule subset_psubset_trans)
 apply(erule Graph11)
 apply fast
---{* 3 subgoals left *}
-apply force
 --{* 2 subgoals left *}
 apply clarify
 apply(simp add:Proper_Edges_def Graph6 Graph7 Graph8 Graph12)
--- a/src/HOL/Hoare_Parallel/Mul_Gar_Coll.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Hoare_Parallel/Mul_Gar_Coll.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -276,8 +276,6 @@
   apply(force)
  apply(force)
 apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force)
---{* 3 subgoals left *}
-apply force
 --{* 2 subgoals left *}
 apply clarify
 apply(conjI_tac)
@@ -1235,9 +1233,9 @@
 apply(unfold mul_modules mul_collector_defs mul_mutator_defs)
 apply(tactic  {* TRYALL (interfree_aux_tac) *})
 --{* 76 subgoals left *}
-apply (clarify,simp add: nth_list_update)+
+apply (clarsimp simp add: nth_list_update)+
 --{* 56 subgoals left *}
-apply(clarify,simp add:Mul_AppendInv_def Append_to_free0 nth_list_update)+
+apply (clarsimp simp add: Mul_AppendInv_def Append_to_free0 nth_list_update)+
 done
 
 subsubsection {* The Multi-Mutator Garbage Collection Algorithm *}
--- a/src/HOL/Hoare_Parallel/RG_Hoare.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Hoare_Parallel/RG_Hoare.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -4,8 +4,8 @@
 
 subsection {* Proof System for Component Programs *}
 
-declare Un_subset_iff [iff del]
-declare Cons_eq_map_conv[iff]
+declare Un_subset_iff [simp del] le_sup_iff [simp del]
+declare Cons_eq_map_conv [iff]
 
 constdefs
   stable :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  
--- a/src/HOL/Inductive.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Inductive.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -83,7 +83,7 @@
       and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
   shows "P(a)"
   by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
-    (auto simp: inf_set_eq intro: indhyp)
+    (auto simp: intro: indhyp)
 
 lemma lfp_ordinal_induct:
   fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a"
@@ -184,7 +184,7 @@
 
 text{*strong version, thanks to Coen and Frost*}
 lemma coinduct_set: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
-by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq])
+by (blast intro: weak_coinduct [OF _ coinduct_lemma])
 
 lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
   apply (rule order_trans)
--- a/src/HOL/Library/Euclidean_Space.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Library/Euclidean_Space.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -3649,10 +3649,7 @@
     from setsum_restrict_set[OF fS, of "\<lambda>v. u v *s v" S', symmetric] SS'
     have "setsum (\<lambda>v. ?u v *s v) S = setsum (\<lambda>v. u v *s v) S'"
       unfolding cond_value_iff cond_application_beta
-      apply (simp add: cond_value_iff cong del: if_weak_cong)
-      apply (rule setsum_cong)
-      apply auto
-      done
+      by (simp add: cond_value_iff inf_absorb2 cong del: if_weak_cong)
     hence "setsum (\<lambda>v. ?u v *s v) S = y" by (metis u)
     hence "y \<in> ?rhs" by auto}
   moreover
--- a/src/HOL/Library/Executable_Set.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Library/Executable_Set.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -12,6 +12,21 @@
 
 declare member [code] 
 
+definition empty :: "'a set" where
+  "empty = {}"
+
+declare empty_def [symmetric, code_unfold]
+
+definition inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
+  "inter = op \<inter>"
+
+declare inter_def [symmetric, code_unfold]
+
+definition union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
+  "union = op \<union>"
+
+declare union_def [symmetric, code_unfold]
+
 definition subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
   "subset = op \<le>"
 
@@ -66,7 +81,7 @@
   Set ("\<module>Set")
 
 consts_code
-  "Set.empty"         ("{*Fset.empty*}")
+  "empty"             ("{*Fset.empty*}")
   "List_Set.is_empty" ("{*Fset.is_empty*}")
   "Set.insert"        ("{*Fset.insert*}")
   "List_Set.remove"   ("{*Fset.remove*}")
@@ -74,14 +89,14 @@
   "List_Set.project"  ("{*Fset.filter*}")
   "Ball"              ("{*flip Fset.forall*}")
   "Bex"               ("{*flip Fset.exists*}")
-  "op \<union>"              ("{*Fset.union*}")
-  "op \<inter>"              ("{*Fset.inter*}")
+  "union"             ("{*Fset.union*}")
+  "inter"             ("{*Fset.inter*}")
   "op - \<Colon> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" ("{*flip Fset.subtract*}")
   "Union"             ("{*Fset.Union*}")
   "Inter"             ("{*Fset.Inter*}")
   card                ("{*Fset.card*}")
   fold                ("{*foldl o flip*}")
 
-hide (open) const subset eq_set Inter Union flip
+hide (open) const empty inter union subset eq_set Inter Union flip
 
 end
\ No newline at end of file
--- a/src/HOL/Library/Topology_Euclidean_Space.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Library/Topology_Euclidean_Space.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -99,11 +99,9 @@
 
 lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" by blast
 lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
-  apply (auto simp add: closedin_def)
+  apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2)
   apply (metis openin_subset subset_eq)
-  apply (auto simp add: Diff_Diff_Int)
-  apply (subgoal_tac "topspace U \<inter> S = S")
-  by auto
+  done
 
 lemma openin_closedin:  "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
   by (simp add: openin_closedin_eq)
--- a/src/HOL/MetisExamples/Message.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/MetisExamples/Message.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MetisTest/Message.thy
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 
 Testing the metis method
@@ -711,17 +710,17 @@
 proof (neg_clausify)
 assume 0: "analz (synth H) \<noteq> analz H \<union> synth H"
 have 1: "\<And>X1 X3. sup (analz (sup X3 X1)) (synth X3) = analz (sup (synth X3) X1)"
-  by (metis analz_synth_Un sup_set_eq sup_set_eq sup_set_eq)
+  by (metis analz_synth_Un)
 have 2: "sup (analz H) (synth H) \<noteq> analz (synth H)"
-  by (metis 0 sup_set_eq)
+  by (metis 0)
 have 3: "\<And>X1 X3. sup (synth X3) (analz (sup X3 X1)) = analz (sup (synth X3) X1)"
-  by (metis 1 Un_commute sup_set_eq sup_set_eq)
+  by (metis 1 Un_commute)
 have 4: "\<And>X3. sup (synth X3) (analz X3) = analz (sup (synth X3) {})"
-  by (metis 3 Un_empty_right sup_set_eq)
+  by (metis 3 Un_empty_right)
 have 5: "\<And>X3. sup (synth X3) (analz X3) = analz (synth X3)"
-  by (metis 4 Un_empty_right sup_set_eq)
+  by (metis 4 Un_empty_right)
 have 6: "\<And>X3. sup (analz X3) (synth X3) = analz (synth X3)"
-  by (metis 5 Un_commute sup_set_eq sup_set_eq)
+  by (metis 5 Un_commute)
 show "False"
   by (metis 2 6)
 qed
--- a/src/HOL/MetisExamples/set.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/MetisExamples/set.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MetisExamples/set.thy
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 
 Testing the metis method
@@ -36,23 +35,23 @@
 assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z"
 assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z"
 have 6: "sup Y Z = X \<or> Y \<subseteq> X"
-  by (metis 0 sup_set_eq)
+  by (metis 0)
 have 7: "sup Y Z = X \<or> Z \<subseteq> X"
-  by (metis 1 sup_set_eq)
+  by (metis 1)
 have 8: "\<And>X3. sup Y Z = X \<or> X \<subseteq> X3 \<or> \<not> Y \<subseteq> X3 \<or> \<not> Z \<subseteq> X3"
-  by (metis 5 sup_set_eq)
+  by (metis 5)
 have 9: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 2 sup_set_eq)
+  by (metis 2)
 have 10: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 3 sup_set_eq)
+  by (metis 3)
 have 11: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 4 sup_set_eq)
+  by (metis 4)
 have 12: "Z \<subseteq> X"
-  by (metis Un_upper2 sup_set_eq 7)
+  by (metis Un_upper2 7)
 have 13: "\<And>X3. sup Y Z = X \<or> X \<subseteq> sup X3 Z \<or> \<not> Y \<subseteq> sup X3 Z"
-  by (metis 8 Un_upper2 sup_set_eq)
+  by (metis 8 Un_upper2)
 have 14: "Y \<subseteq> X"
-  by (metis Un_upper1 sup_set_eq 6)
+  by (metis Un_upper1 6)
 have 15: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X"
   by (metis 10 12)
 have 16: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X"
@@ -66,17 +65,17 @@
 have 20: "Y \<subseteq> x \<or> sup Y Z \<noteq> X"
   by (metis 16 14)
 have 21: "sup Y Z = X \<or> X \<subseteq> sup Y Z"
-  by (metis 13 Un_upper1 sup_set_eq)
+  by (metis 13 Un_upper1)
 have 22: "sup Y Z = X \<or> \<not> sup Y Z \<subseteq> X"
   by (metis equalityI 21)
 have 23: "sup Y Z = X \<or> \<not> Z \<subseteq> X \<or> \<not> Y \<subseteq> X"
-  by (metis 22 Un_least sup_set_eq)
+  by (metis 22 Un_least)
 have 24: "sup Y Z = X \<or> \<not> Y \<subseteq> X"
   by (metis 23 12)
 have 25: "sup Y Z = X"
   by (metis 24 14)
 have 26: "\<And>X3. X \<subseteq> X3 \<or> \<not> Z \<subseteq> X3 \<or> \<not> Y \<subseteq> X3"
-  by (metis Un_least sup_set_eq 25)
+  by (metis Un_least 25)
 have 27: "Y \<subseteq> x"
   by (metis 20 25)
 have 28: "Z \<subseteq> x"
@@ -105,31 +104,31 @@
 assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z"
 assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z"
 have 6: "sup Y Z = X \<or> Y \<subseteq> X"
-  by (metis 0 sup_set_eq)
+  by (metis 0)
 have 7: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 2 sup_set_eq)
+  by (metis 2)
 have 8: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 4 sup_set_eq)
+  by (metis 4)
 have 9: "\<And>X3. sup Y Z = X \<or> X \<subseteq> sup X3 Z \<or> \<not> Y \<subseteq> sup X3 Z"
-  by (metis 5 sup_set_eq Un_upper2 sup_set_eq)
+  by (metis 5 Un_upper2)
 have 10: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X"
-  by (metis 3 sup_set_eq Un_upper2 sup_set_eq sup_set_eq)
+  by (metis 3 Un_upper2)
 have 11: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X"
-  by (metis 8 Un_upper2 sup_set_eq sup_set_eq)
+  by (metis 8 Un_upper2)
 have 12: "Z \<subseteq> x \<or> sup Y Z \<noteq> X"
-  by (metis 10 Un_upper1 sup_set_eq)
+  by (metis 10 Un_upper1)
 have 13: "sup Y Z = X \<or> X \<subseteq> sup Y Z"
-  by (metis 9 Un_upper1 sup_set_eq)
+  by (metis 9 Un_upper1)
 have 14: "sup Y Z = X \<or> \<not> Z \<subseteq> X \<or> \<not> Y \<subseteq> X"
-  by (metis equalityI 13 Un_least sup_set_eq)
+  by (metis equalityI 13 Un_least)
 have 15: "sup Y Z = X"
-  by (metis 14 sup_set_eq 1 sup_set_eq sup_set_eq 6)
+  by (metis 14 1 6)
 have 16: "Y \<subseteq> x"
-  by (metis 7 Un_upper2 sup_set_eq sup_set_eq Un_upper1 sup_set_eq 15)
+  by (metis 7 Un_upper2 Un_upper1 15)
 have 17: "\<not> X \<subseteq> x"
-  by (metis 11 Un_upper1 sup_set_eq 15)
+  by (metis 11 Un_upper1 15)
 have 18: "X \<subseteq> x"
-  by (metis Un_least sup_set_eq 15 12 15 16)
+  by (metis Un_least 15 12 15 16)
 show "False"
   by (metis 18 17)
 qed
@@ -148,23 +147,23 @@
 assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z"
 assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z"
 have 6: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 3 sup_set_eq)
+  by (metis 3)
 have 7: "\<And>X3. sup Y Z = X \<or> X \<subseteq> sup X3 Z \<or> \<not> Y \<subseteq> sup X3 Z"
-  by (metis 5 sup_set_eq Un_upper2 sup_set_eq)
+  by (metis 5 Un_upper2)
 have 8: "Y \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X"
-  by (metis 2 sup_set_eq Un_upper2 sup_set_eq sup_set_eq)
+  by (metis 2 Un_upper2)
 have 9: "Z \<subseteq> x \<or> sup Y Z \<noteq> X"
-  by (metis 6 Un_upper2 sup_set_eq sup_set_eq Un_upper1 sup_set_eq sup_set_eq)
+  by (metis 6 Un_upper2 Un_upper1)
 have 10: "sup Y Z = X \<or> \<not> sup Y Z \<subseteq> X"
-  by (metis equalityI 7 Un_upper1 sup_set_eq)
+  by (metis equalityI 7 Un_upper1)
 have 11: "sup Y Z = X"
-  by (metis 10 Un_least sup_set_eq sup_set_eq 1 sup_set_eq sup_set_eq 0 sup_set_eq)
+  by (metis 10 Un_least 1 0)
 have 12: "Z \<subseteq> x"
   by (metis 9 11)
 have 13: "X \<subseteq> x"
-  by (metis Un_least sup_set_eq 11 12 8 Un_upper1 sup_set_eq sup_set_eq 11)
+  by (metis Un_least 11 12 8 Un_upper1 11)
 show "False"
-  by (metis 13 4 sup_set_eq Un_upper2 sup_set_eq sup_set_eq Un_upper1 sup_set_eq sup_set_eq 11)
+  by (metis 13 4 Un_upper2 Un_upper1 11)
 qed
 
 (*Example included in TPHOLs paper*)
@@ -183,19 +182,19 @@
 assume 4: "(\<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X \<or> \<not> X \<subseteq> x) \<or> X \<noteq> Y \<union> Z"
 assume 5: "\<And>V. ((\<not> Y \<subseteq> V \<or> \<not> Z \<subseteq> V) \<or> X \<subseteq> V) \<or> X = Y \<union> Z"
 have 6: "sup Y Z \<noteq> X \<or> \<not> X \<subseteq> x \<or> \<not> Y \<subseteq> X \<or> \<not> Z \<subseteq> X"
-  by (metis 4 sup_set_eq)
+  by (metis 4)
 have 7: "Z \<subseteq> x \<or> sup Y Z \<noteq> X \<or> \<not> Y \<subseteq> X"
-  by (metis 3 sup_set_eq Un_upper2 sup_set_eq sup_set_eq)
+  by (metis 3 Un_upper2)
 have 8: "Z \<subseteq> x \<or> sup Y Z \<noteq> X"
-  by (metis 7 Un_upper1 sup_set_eq sup_set_eq)
+  by (metis 7 Un_upper1)
 have 9: "sup Y Z = X \<or> \<not> Z \<subseteq> X \<or> \<not> Y \<subseteq> X"
-  by (metis equalityI 5 sup_set_eq Un_upper2 sup_set_eq Un_upper1 sup_set_eq Un_least sup_set_eq)
+  by (metis equalityI 5 Un_upper2 Un_upper1 Un_least)
 have 10: "Y \<subseteq> x"
-  by (metis 2 sup_set_eq Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq)
+  by (metis 2 Un_upper2 1 Un_upper1 0 9 Un_upper2 1 Un_upper1 0)
 have 11: "X \<subseteq> x"
-  by (metis Un_least sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 8 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 10)
+  by (metis Un_least 9 Un_upper2 1 Un_upper1 0 8 9 Un_upper2 1 Un_upper1 0 10)
 show "False"
-  by (metis 11 6 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq)
+  by (metis 11 6 Un_upper2 1 Un_upper1 0 9 Un_upper2 1 Un_upper1 0)
 qed 
 
 ML {*AtpWrapper.problem_name := "set__equal_union"*}
@@ -238,7 +237,7 @@
 
 lemma (*singleton_example_2:*)
      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
-by (metis Set.subsetI Union_upper insert_code mem_def set_eq_subset)
+by (metis Set.subsetI Union_upper insert_iff set_eq_subset)
 
 lemma singleton_example_2:
      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
--- a/src/HOL/MicroJava/BV/Typing_Framework_JVM.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/MicroJava/BV/Typing_Framework_JVM.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -140,7 +140,7 @@
   apply fastsimp
   
   apply (erule disjE)
-   apply (clarsimp simp add: Un_subset_iff)  
+   apply clarsimp
    apply (drule method_wf_mdecl, assumption+)
    apply (clarsimp simp add: wf_mdecl_def wf_mhead_def)
    apply fastsimp
--- a/src/HOL/Predicate.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Predicate.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -81,7 +81,7 @@
 lemma sup2_iff: "sup A B x y \<longleftrightarrow> A x y | B x y"
   by (simp add: sup_fun_eq sup_bool_eq)
 
-lemma sup_Un_eq [pred_set_conv]: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
+lemma sup_Un_eq: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
   by (simp add: sup1_iff expand_fun_eq)
 
 lemma sup_Un_eq2 [pred_set_conv]: "sup (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
@@ -125,7 +125,7 @@
 lemma inf2_iff: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
   by (simp add: inf_fun_eq inf_bool_eq)
 
-lemma inf_Int_eq [pred_set_conv]: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
+lemma inf_Int_eq: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
   by (simp add: inf1_iff expand_fun_eq)
 
 lemma inf_Int_eq2 [pred_set_conv]: "inf (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
--- a/src/HOL/Set.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Set.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -652,8 +652,8 @@
 
 subsubsection {* Binary union -- Un *}
 
-definition union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where
-  sup_set_eq [symmetric]: "A Un B = sup A B"
+abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where
+  "op Un \<equiv> sup"
 
 notation (xsymbols)
   union  (infixl "\<union>" 65)
@@ -663,7 +663,7 @@
 
 lemma Un_def:
   "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
-  by (simp add: sup_fun_eq sup_bool_eq sup_set_eq [symmetric] Collect_def mem_def)
+  by (simp add: sup_fun_eq sup_bool_eq Collect_def mem_def)
 
 lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
   by (unfold Un_def) blast
@@ -689,15 +689,13 @@
   by (simp add: Collect_def mem_def insert_compr Un_def)
 
 lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
-  apply (fold sup_set_eq)
-  apply (erule mono_sup)
-  done
+  by (fact mono_sup)
 
 
 subsubsection {* Binary intersection -- Int *}
 
-definition inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where
-  inf_set_eq [symmetric]: "A Int B = inf A B"
+abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where
+  "op Int \<equiv> inf"
 
 notation (xsymbols)
   inter  (infixl "\<inter>" 70)
@@ -707,7 +705,7 @@
 
 lemma Int_def:
   "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
-  by (simp add: inf_fun_eq inf_bool_eq inf_set_eq [symmetric] Collect_def mem_def)
+  by (simp add: inf_fun_eq inf_bool_eq Collect_def mem_def)
 
 lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
   by (unfold Int_def) blast
@@ -725,9 +723,7 @@
   by simp
 
 lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
-  apply (fold inf_set_eq)
-  apply (erule mono_inf)
-  done
+  by (fact mono_inf)
 
 
 subsubsection {* Set difference *}
--- a/src/HOL/Tools/Function/fundef_lib.ML	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Tools/Function/fundef_lib.ML	Fri Sep 25 09:50:31 2009 +0200
@@ -170,7 +170,7 @@
  end
 
 (* instance for unions *)
-fun regroup_union_conv t = regroup_conv @{const_name Set.empty} @{const_name Set.union}
+fun regroup_union_conv t = regroup_conv @{const_name Set.empty} @{const_name Lattices.sup}
   (map (fn t => t RS eq_reflection) (@{thms Un_ac} @
                                      @{thms Un_empty_right} @
                                      @{thms Un_empty_left})) t
--- a/src/HOL/Tools/Function/termination.ML	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Tools/Function/termination.ML	Fri Sep 25 09:50:31 2009 +0200
@@ -145,7 +145,7 @@
 
 fun mk_sum_skel rel =
   let
-    val cs = FundefLib.dest_binop_list @{const_name Set.union} rel
+    val cs = FundefLib.dest_binop_list @{const_name Lattices.sup} rel
     fun collect_pats (Const (@{const_name Collect}, _) $ Abs (_, _, c)) =
       let
         val (Const ("op &", _) $ (Const ("op =", _) $ _ $ (Const ("Pair", _) $ r $ l)) $ Gam)
@@ -233,7 +233,7 @@
 fun CALLS tac i st =
   if Thm.no_prems st then all_tac st
   else case Thm.term_of (Thm.cprem_of st i) of
-    (_ $ (_ $ rel)) => tac (FundefLib.dest_binop_list @{const_name Set.union} rel, i) st
+    (_ $ (_ $ rel)) => tac (FundefLib.dest_binop_list @{const_name Lattices.sup} rel, i) st
   |_ => no_tac st
 
 type ttac = (data -> int -> tactic) -> (data -> int -> tactic) -> data -> int -> tactic
@@ -293,7 +293,7 @@
           if null ineqs then
               Const (@{const_name Set.empty}, fastype_of rel)
           else
-              foldr1 (HOLogic.mk_binop @{const_name Set.union}) (map mk_compr ineqs)
+              foldr1 (HOLogic.mk_binop @{const_name Lattices.sup}) (map mk_compr ineqs)
 
       fun solve_membership_tac i =
           (EVERY' (replicate (i - 2) (rtac @{thm UnI2}))  (* pick the right component of the union *)
--- a/src/HOL/Tools/inductive_set.ML	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Tools/inductive_set.ML	Fri Sep 25 09:50:31 2009 +0200
@@ -74,8 +74,8 @@
         in Drule.instantiate' [] (rev (map (SOME o cterm_of thy o Var) vs))
           (p (fold (Logic.all o Var) vs t) f)
         end;
-      fun mkop "op &" T x = SOME (Const (@{const_name Set.inter}, T --> T --> T), x)
-        | mkop "op |" T x = SOME (Const (@{const_name Set.union}, T --> T --> T), x)
+      fun mkop "op &" T x = SOME (Const (@{const_name Lattices.inf}, T --> T --> T), x)
+        | mkop "op |" T x = SOME (Const (@{const_name Lattices.sup}, T --> T --> T), x)
         | mkop _ _ _ = NONE;
       fun mk_collect p T t =
         let val U = HOLogic.dest_setT T
--- a/src/HOL/UNITY/Follows.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/UNITY/Follows.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Follows
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 *)
@@ -160,7 +159,7 @@
 lemma Follows_Un: 
     "[| F \<in> f' Fols f;  F \<in> g' Fols g |]  
      ==> F \<in> (%s. (f' s) \<union> (g' s)) Fols (%s. (f s) \<union> (g s))"
-apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff, auto)
+apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff le_sup_iff, auto)
 apply (rule LeadsTo_Trans)
 apply (blast intro: Follows_Un_lemma)
 (*Weakening is used to exchange Un's arguments*)
--- a/src/HOL/UNITY/ProgressSets.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/UNITY/ProgressSets.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/ProgressSets
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   2003  University of Cambridge
 
@@ -245,7 +244,7 @@
   then have "cl C (T\<inter>?r) \<subseteq> ?r"
     by (blast intro!: subset_wens) 
   then have cl_subset: "cl C (T\<inter>?r) \<subseteq> T\<inter>?r"
-    by (simp add: Int_subset_iff cl_ident TC
+    by (simp add: cl_ident TC
                   subset_trans [OF cl_mono [OF Int_lower1]]) 
   show ?thesis
     by (rule cl_subset_in_lattice [OF cl_subset latt]) 
@@ -486,7 +485,7 @@
   shows "closed F T B L"
 apply (simp add: closed_def, clarify)
 apply (rule ProgressSets.cl_subset_in_lattice [OF _ lattice])  
-apply (simp add: Int_Un_distrib cl_Un [OF lattice] Un_subset_iff 
+apply (simp add: Int_Un_distrib cl_Un [OF lattice] 
                  cl_ident Int_in_lattice [OF TL BL lattice] Un_upper1)
 apply (subgoal_tac "cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T \<inter> M)))") 
  prefer 2 
--- a/src/HOL/UNITY/Transformers.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/UNITY/Transformers.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Transformers
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   2003  University of Cambridge
 
@@ -133,7 +132,7 @@
 apply (drule constrains_Un [OF Diff_wens_constrains [of F act A]]) 
 apply (simp add: Un_Int_distrib2 Compl_partition2) 
 apply (erule constrains_weaken, blast) 
-apply (simp add: Un_subset_iff wens_weakening) 
+apply (simp add: wens_weakening)
 done
 
 text{*Assertion 4.20 in the thesis.*}
@@ -151,7 +150,7 @@
       "[|T-B \<subseteq> awp F T; act \<in> Acts F|]
        ==> T \<inter> wens F act B = T \<inter> wens F act (T\<inter>B)"
 apply (rule equalityI)
- apply (simp_all add: Int_lower1 Int_subset_iff) 
+ apply (simp_all add: Int_lower1) 
  apply (rule wens_Int_eq_lemma, assumption+) 
 apply (rule subset_trans [OF _ wens_mono [of "T\<inter>B" B]], auto) 
 done
@@ -176,7 +175,7 @@
  apply (drule_tac act1=act and A1=X 
         in constrains_Un [OF Diff_wens_constrains]) 
  apply (erule constrains_weaken, blast) 
- apply (simp add: Un_subset_iff wens_weakening) 
+ apply (simp add: wens_weakening) 
 apply (rule constrains_weaken) 
 apply (rule_tac I=W and A="\<lambda>v. v-B" and A'="\<lambda>v. v" in constrains_UN, blast+)
 done
@@ -229,7 +228,7 @@
 apply (subgoal_tac "(T \<inter> wens F act B) - B \<subseteq> 
                     wp act B \<inter> awp F (B \<union> wens F act B) \<inter> awp F T") 
  apply (rule subset_wens) 
- apply (simp add: awp_Join_eq awp_Int_eq Int_subset_iff Un_commute)
+ apply (simp add: awp_Join_eq awp_Int_eq Un_commute)
  apply (simp add: awp_def wp_def, blast) 
 apply (insert wens_subset [of F act B], blast) 
 done
@@ -253,7 +252,7 @@
  apply (blast dest: wens_mono intro: wens_Join_subset [THEN subsetD], simp)
 apply (rule equalityI) 
  prefer 2 apply blast
-apply (simp add: Int_lower1 Int_subset_iff) 
+apply (simp add: Int_lower1) 
 apply (frule wens_set_imp_subset) 
 apply (subgoal_tac "T-X \<subseteq> awp F T")  
  prefer 2 apply (blast intro: awpF [THEN subsetD]) 
@@ -347,7 +346,7 @@
       "single_valued act
        ==> wens_single act B \<union> wp act (wens_single act B) = wens_single act B"
 apply (rule equalityI)
- apply (simp_all add: Un_upper1 Un_subset_iff) 
+ apply (simp_all add: Un_upper1) 
 apply (simp add: wens_single_def wp_UN_eq, clarify) 
 apply (rule_tac a="Suc(i)" in UN_I, auto) 
 done
--- a/src/HOL/UNITY/UNITY_Main.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/UNITY/UNITY_Main.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -1,13 +1,14 @@
 (*  Title:      HOL/UNITY/UNITY_Main.thy
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   2003  University of Cambridge
 *)
 
 header{*Comprehensive UNITY Theory*}
 
-theory UNITY_Main imports Detects PPROD Follows ProgressSets
-uses "UNITY_tactics.ML" begin
+theory UNITY_Main
+imports Detects PPROD Follows ProgressSets
+uses "UNITY_tactics.ML"
+begin
 
 method_setup safety = {*
     Scan.succeed (fn ctxt =>
--- a/src/HOL/UNITY/WFair.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/UNITY/WFair.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -113,7 +113,7 @@
 lemma totalize_transient_iff:
    "(totalize F \<in> transient A) = (\<exists>act\<in>Acts F. A \<subseteq> Domain act & act``A \<subseteq> -A)"
 apply (simp add: totalize_def totalize_act_def transient_def 
-                 Un_Image Un_subset_iff, safe)
+                 Un_Image, safe)
 apply (blast intro!: rev_bexI)+
 done
 
--- a/src/HOL/Wellfounded.thy	Thu Sep 24 19:14:18 2009 +0200
+++ b/src/HOL/Wellfounded.thy	Fri Sep 25 09:50:31 2009 +0200
@@ -267,8 +267,8 @@
 
 lemma wfP_SUP:
   "\<forall>i. wfP (r i) \<Longrightarrow> \<forall>i j. r i \<noteq> r j \<longrightarrow> inf (DomainP (r i)) (RangeP (r j)) = bot \<Longrightarrow> wfP (SUPR UNIV r)"
-  by (rule wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}", to_pred SUP_UN_eq2 pred_equals_eq])
-    (simp_all add: bot_fun_eq bot_bool_eq)
+  by (rule wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}", to_pred SUP_UN_eq2])
+    (simp_all add: Collect_def)
 
 lemma wf_Union: 
  "[| ALL r:R. wf r;  
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/predicate_compile.ML	Fri Sep 25 09:50:31 2009 +0200
@@ -0,0 +1,2182 @@
+(* Author: Lukas Bulwahn, TU Muenchen
+
+(Prototype of) A compiler from predicates specified by intro/elim rules
+to equations.
+*)
+
+signature PREDICATE_COMPILE =
+sig
+  type mode = int list option list * int list
+  (*val add_equations_of: bool -> string list -> theory -> theory *)
+  val register_predicate : (thm list * thm * int) -> theory -> theory
+  val is_registered : theory -> string -> bool
+ (* val fetch_pred_data : theory -> string -> (thm list * thm * int)  *)
+  val predfun_intro_of: theory -> string -> mode -> thm
+  val predfun_elim_of: theory -> string -> mode -> thm
+  val strip_intro_concl: int -> term -> term * (term list * term list)
+  val predfun_name_of: theory -> string -> mode -> string
+  val all_preds_of : theory -> string list
+  val modes_of: theory -> string -> mode list
+  val string_of_mode : mode -> string
+  val intros_of: theory -> string -> thm list
+  val nparams_of: theory -> string -> int
+  val add_intro: thm -> theory -> theory
+  val set_elim: thm -> theory -> theory
+  val setup: theory -> theory
+  val code_pred: string -> Proof.context -> Proof.state
+  val code_pred_cmd: string -> Proof.context -> Proof.state
+  val print_stored_rules: theory -> unit
+  val print_all_modes: theory -> unit
+  val do_proofs: bool ref
+  val mk_casesrule : Proof.context -> int -> thm list -> term
+  val analyze_compr: theory -> term -> term
+  val eval_ref: (unit -> term Predicate.pred) option ref
+  val add_equations : string list -> theory -> theory
+  val code_pred_intros_attrib : attribute
+  (* used by Quickcheck_Generator *) 
+  (*val funT_of : mode -> typ -> typ
+  val mk_if_pred : term -> term
+  val mk_Eval : term * term -> term*)
+  val mk_tupleT : typ list -> typ
+(*  val mk_predT :  typ -> typ *)
+  (* temporary for testing of the compilation *)
+  datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
+    GeneratorPrem of term list * term | Generator of (string * typ);
+  val prepare_intrs: theory -> string list ->
+    (string * typ) list * int * string list * string list * (string * mode list) list *
+    (string * (term list * indprem list) list) list * (string * (int option list * int)) list
+  datatype compilation_funs = CompilationFuns of {
+    mk_predT : typ -> typ,
+    dest_predT : typ -> typ,
+    mk_bot : typ -> term,
+    mk_single : term -> term,
+    mk_bind : term * term -> term,
+    mk_sup : term * term -> term,
+    mk_if : term -> term,
+    mk_not : term -> term,
+    mk_map : typ -> typ -> term -> term -> term,
+    lift_pred : term -> term
+  };  
+  datatype tmode = Mode of mode * int list * tmode option list;
+  type moded_clause = term list * (indprem * tmode) list
+  type 'a pred_mode_table = (string * (mode * 'a) list) list
+  val infer_modes : bool -> theory -> (string * (int list option list * int list) list) list
+    -> (string * (int option list * int)) list -> string list
+    -> (string * (term list * indprem list) list) list
+    -> (moded_clause list) pred_mode_table
+  val infer_modes_with_generator : theory -> (string * (int list option list * int list) list) list
+    -> (string * (int option list * int)) list -> string list
+    -> (string * (term list * indprem list) list) list
+    -> (moded_clause list) pred_mode_table  
+  (*val compile_preds : theory -> compilation_funs -> string list -> string list
+    -> (string * typ) list -> (moded_clause list) pred_mode_table -> term pred_mode_table
+  val rpred_create_definitions :(string * typ) list -> string * mode list
+    -> theory -> theory 
+  val split_smode : int list -> term list -> (term list * term list) *)
+  val print_moded_clauses :
+    theory -> (moded_clause list) pred_mode_table -> unit
+  val print_compiled_terms : theory -> term pred_mode_table -> unit
+  (*val rpred_prove_preds : theory -> term pred_mode_table -> thm pred_mode_table*)
+  val rpred_compfuns : compilation_funs
+  val dest_funT : typ -> typ * typ
+ (* val depending_preds_of : theory -> thm list -> string list *)
+  val add_quickcheck_equations : string list -> theory -> theory
+  val add_sizelim_equations : string list -> theory -> theory
+  val is_inductive_predicate : theory -> string -> bool
+  val terms_vs : term list -> string list
+  val subsets : int -> int -> int list list
+  val check_mode_clause : bool -> theory -> string list ->
+    (string * mode list) list -> (string * mode list) list -> mode -> (term list * indprem list)
+      -> (term list * (indprem * tmode) list) option
+  val string_of_moded_prem : theory -> (indprem * tmode) -> string
+  val all_modes_of : theory -> (string * mode list) list
+  val all_generator_modes_of : theory -> (string * mode list) list
+  val compile_clause : compilation_funs -> term option -> (term list -> term) ->
+    theory -> string list -> string list -> mode -> term -> moded_clause -> term
+  val preprocess_intro : theory -> thm -> thm
+  val is_constrt : theory -> term -> bool
+  val is_predT : typ -> bool
+  val guess_nparams : typ -> int
+end;
+
+structure Predicate_Compile : PREDICATE_COMPILE =
+struct
+
+(** auxiliary **)
+
+(* debug stuff *)
+
+fun tracing s = (if ! Toplevel.debug then Output.tracing s else ());
+
+fun print_tac s = Seq.single; (* (if ! Toplevel.debug then Tactical.print_tac s else Seq.single); *)
+fun debug_tac msg = Seq.single; (* (fn st => (Output.tracing msg; Seq.single st)); *)
+
+val do_proofs = ref true;
+
+fun mycheat_tac thy i st =
+  (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) i) st
+
+fun remove_last_goal thy st =
+  (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) (nprems_of st)) st
+
+(* reference to preprocessing of InductiveSet package *)
+
+val ind_set_codegen_preproc = Inductive_Set.codegen_preproc;
+
+(** fundamentals **)
+
+(* syntactic operations *)
+
+fun mk_eq (x, xs) =
+  let fun mk_eqs _ [] = []
+        | mk_eqs a (b::cs) =
+            HOLogic.mk_eq (Free (a, fastype_of b), b) :: mk_eqs a cs
+  in mk_eqs x xs end;
+
+fun mk_tupleT [] = HOLogic.unitT
+  | mk_tupleT Ts = foldr1 HOLogic.mk_prodT Ts;
+
+fun dest_tupleT (Type (@{type_name Product_Type.unit}, [])) = []
+  | dest_tupleT (Type (@{type_name "*"}, [T1, T2])) = T1 :: (dest_tupleT T2)
+  | dest_tupleT t = [t]
+
+fun mk_tuple [] = HOLogic.unit
+  | mk_tuple ts = foldr1 HOLogic.mk_prod ts;
+
+fun dest_tuple (Const (@{const_name Product_Type.Unity}, _)) = []
+  | dest_tuple (Const (@{const_name Pair}, _) $ t1 $ t2) = t1 :: (dest_tuple t2)
+  | dest_tuple t = [t]
+
+fun mk_scomp (t, u) =
+  let
+    val T = fastype_of t
+    val U = fastype_of u
+    val [A] = binder_types T
+    val D = body_type U 
+  in 
+    Const (@{const_name "scomp"}, T --> U --> A --> D) $ t $ u
+  end;
+
+fun dest_funT (Type ("fun",[S, T])) = (S, T)
+  | dest_funT T = raise TYPE ("dest_funT", [T], [])
+ 
+fun mk_fun_comp (t, u) =
+  let
+    val (_, B) = dest_funT (fastype_of t)
+    val (C, A) = dest_funT (fastype_of u)
+  in
+    Const(@{const_name "Fun.comp"}, (A --> B) --> (C --> A) --> C --> B) $ t $ u
+  end;
+
+fun dest_randomT (Type ("fun", [@{typ Random.seed},
+  Type ("*", [Type ("*", [T, @{typ "unit => Code_Evaluation.term"}]) ,@{typ Random.seed}])])) = T
+  | dest_randomT T = raise TYPE ("dest_randomT", [T], [])
+
+(* destruction of intro rules *)
+
+(* FIXME: look for other place where this functionality was used before *)
+fun strip_intro_concl nparams intro = let
+  val _ $ u = Logic.strip_imp_concl intro
+  val (pred, all_args) = strip_comb u
+  val (params, args) = chop nparams all_args
+in (pred, (params, args)) end
+
+(** data structures **)
+
+type smode = int list;
+type mode = smode option list * smode;
+datatype tmode = Mode of mode * int list * tmode option list;
+
+fun split_smode is ts =
+  let
+    fun split_smode' _ _ [] = ([], [])
+      | split_smode' is i (t::ts) = (if i mem is then apfst else apsnd) (cons t)
+          (split_smode' is (i+1) ts)
+  in split_smode' is 1 ts end
+
+fun split_mode (iss, is) ts =
+  let
+    val (t1, t2) = chop (length iss) ts 
+  in (t1, split_smode is t2) end
+
+fun string_of_mode (iss, is) = space_implode " -> " (map
+  (fn NONE => "X"
+    | SOME js => enclose "[" "]" (commas (map string_of_int js)))
+       (iss @ [SOME is]));
+
+fun string_of_tmode (Mode (predmode, termmode, param_modes)) =
+  "predmode: " ^ (string_of_mode predmode) ^ 
+  (if null param_modes then "" else
+    "; " ^ "params: " ^ commas (map (the_default "NONE" o Option.map string_of_tmode) param_modes))
+    
+datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
+  GeneratorPrem of term list * term | Generator of (string * typ);
+
+type moded_clause = term list * (indprem * tmode) list
+type 'a pred_mode_table = (string * (mode * 'a) list) list
+
+datatype predfun_data = PredfunData of {
+  name : string,
+  definition : thm,
+  intro : thm,
+  elim : thm
+};
+
+fun rep_predfun_data (PredfunData data) = data;
+fun mk_predfun_data (name, definition, intro, elim) =
+  PredfunData {name = name, definition = definition, intro = intro, elim = elim}
+
+datatype function_data = FunctionData of {
+  name : string,
+  equation : thm option (* is not used at all? *)
+};
+
+fun rep_function_data (FunctionData data) = data;
+fun mk_function_data (name, equation) =
+  FunctionData {name = name, equation = equation}
+
+datatype pred_data = PredData of {
+  intros : thm list,
+  elim : thm option,
+  nparams : int,
+  functions : (mode * predfun_data) list,
+  generators : (mode * function_data) list,
+  sizelim_functions : (mode * function_data) list 
+};
+
+fun rep_pred_data (PredData data) = data;
+fun mk_pred_data ((intros, elim, nparams), (functions, generators, sizelim_functions)) =
+  PredData {intros = intros, elim = elim, nparams = nparams,
+    functions = functions, generators = generators, sizelim_functions = sizelim_functions}
+fun map_pred_data f (PredData {intros, elim, nparams, functions, generators, sizelim_functions}) =
+  mk_pred_data (f ((intros, elim, nparams), (functions, generators, sizelim_functions)))
+  
+fun eq_option eq (NONE, NONE) = true
+  | eq_option eq (SOME x, SOME y) = eq (x, y)
+  | eq_option eq _ = false
+  
+fun eq_pred_data (PredData d1, PredData d2) = 
+  eq_list (Thm.eq_thm) (#intros d1, #intros d2) andalso
+  eq_option (Thm.eq_thm) (#elim d1, #elim d2) andalso
+  #nparams d1 = #nparams d2
+  
+structure PredData = TheoryDataFun
+(
+  type T = pred_data Graph.T;
+  val empty = Graph.empty;
+  val copy = I;
+  val extend = I;
+  fun merge _ = Graph.merge eq_pred_data;
+);
+
+(* queries *)
+
+fun lookup_pred_data thy name =
+  Option.map rep_pred_data (try (Graph.get_node (PredData.get thy)) name)
+
+fun the_pred_data thy name = case lookup_pred_data thy name
+ of NONE => error ("No such predicate " ^ quote name)  
+  | SOME data => data;
+
+val is_registered = is_some oo lookup_pred_data 
+
+val all_preds_of = Graph.keys o PredData.get
+
+val intros_of = #intros oo the_pred_data
+
+fun the_elim_of thy name = case #elim (the_pred_data thy name)
+ of NONE => error ("No elimination rule for predicate " ^ quote name)
+  | SOME thm => thm 
+  
+val has_elim = is_some o #elim oo the_pred_data;
+
+val nparams_of = #nparams oo the_pred_data
+
+val modes_of = (map fst) o #functions oo the_pred_data
+
+fun all_modes_of thy = map (fn name => (name, modes_of thy name)) (all_preds_of thy) 
+
+val is_compiled = not o null o #functions oo the_pred_data
+
+fun lookup_predfun_data thy name mode =
+  Option.map rep_predfun_data (AList.lookup (op =)
+  (#functions (the_pred_data thy name)) mode)
+
+fun the_predfun_data thy name mode = case lookup_predfun_data thy name mode
+  of NONE => error ("No function defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
+   | SOME data => data;
+
+val predfun_name_of = #name ooo the_predfun_data
+
+val predfun_definition_of = #definition ooo the_predfun_data
+
+val predfun_intro_of = #intro ooo the_predfun_data
+
+val predfun_elim_of = #elim ooo the_predfun_data
+
+fun lookup_generator_data thy name mode = 
+  Option.map rep_function_data (AList.lookup (op =)
+  (#generators (the_pred_data thy name)) mode)
+  
+fun the_generator_data thy name mode = case lookup_generator_data thy name mode
+  of NONE => error ("No generator defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
+   | SOME data => data
+
+val generator_name_of = #name ooo the_generator_data
+
+val generator_modes_of = (map fst) o #generators oo the_pred_data
+
+fun all_generator_modes_of thy =
+  map (fn name => (name, generator_modes_of thy name)) (all_preds_of thy) 
+
+fun lookup_sizelim_function_data thy name mode =
+  Option.map rep_function_data (AList.lookup (op =)
+  (#sizelim_functions (the_pred_data thy name)) mode)
+
+fun the_sizelim_function_data thy name mode = case lookup_sizelim_function_data thy name mode
+  of NONE => error ("No size-limited function defined for mode " ^ string_of_mode mode
+    ^ " of predicate " ^ name)
+   | SOME data => data
+
+val sizelim_function_name_of = #name ooo the_sizelim_function_data
+
+(*val generator_modes_of = (map fst) o #generators oo the_pred_data*)
+     
+(* diagnostic display functions *)
+
+fun print_modes modes = Output.tracing ("Inferred modes:\n" ^
+  cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
+    string_of_mode ms)) modes));
+
+fun print_pred_mode_table string_of_entry thy pred_mode_table =
+  let
+    fun print_mode pred (mode, entry) =  "mode : " ^ (string_of_mode mode)
+      ^ (string_of_entry pred mode entry)  
+    fun print_pred (pred, modes) =
+      "predicate " ^ pred ^ ": " ^ cat_lines (map (print_mode pred) modes)
+    val _ = Output.tracing (cat_lines (map print_pred pred_mode_table))
+  in () end;
+
+fun string_of_moded_prem thy (Prem (ts, p), tmode) =
+    (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+    "(" ^ (string_of_tmode tmode) ^ ")"
+  | string_of_moded_prem thy (GeneratorPrem (ts, p), Mode (predmode, is, _)) =
+    (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+    "(generator_mode: " ^ (string_of_mode predmode) ^ ")"
+  | string_of_moded_prem thy (Generator (v, T), _) =
+    "Generator for " ^ v ^ " of Type " ^ (Syntax.string_of_typ_global thy T)
+  | string_of_moded_prem thy (Negprem (ts, p), Mode (_, is, _)) =
+    (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+    "(negative mode: " ^ (space_implode ", " (map string_of_int is)) ^ ")"
+  | string_of_moded_prem thy (Sidecond t, Mode (_, is, _)) =
+    (Syntax.string_of_term_global thy t) ^
+    "(sidecond mode: " ^ (space_implode ", " (map string_of_int is)) ^ ")"    
+  | string_of_moded_prem _ _ = error "string_of_moded_prem: unimplemented"
+     
+fun print_moded_clauses thy =
+  let        
+    fun string_of_clause pred mode clauses =
+      cat_lines (map (fn (ts, prems) => (space_implode " --> "
+        (map (string_of_moded_prem thy) prems)) ^ " --> " ^ pred ^ " "
+        ^ (space_implode " " (map (Syntax.string_of_term_global thy) ts))) clauses)
+  in print_pred_mode_table string_of_clause thy end;
+
+fun print_compiled_terms thy =
+  print_pred_mode_table (fn _ => fn _ => Syntax.string_of_term_global thy) thy
+    
+fun print_stored_rules thy =
+  let
+    val preds = (Graph.keys o PredData.get) thy
+    fun print pred () = let
+      val _ = writeln ("predicate: " ^ pred)
+      val _ = writeln ("number of parameters: " ^ string_of_int (nparams_of thy pred))
+      val _ = writeln ("introrules: ")
+      val _ = fold (fn thm => fn u => writeln (Display.string_of_thm_global thy thm))
+        (rev (intros_of thy pred)) ()
+    in
+      if (has_elim thy pred) then
+        writeln ("elimrule: " ^ Display.string_of_thm_global thy (the_elim_of thy pred))
+      else
+        writeln ("no elimrule defined")
+    end
+  in
+    fold print preds ()
+  end;
+
+fun print_all_modes thy =
+  let
+    val _ = writeln ("Inferred modes:")
+    fun print (pred, modes) u =
+      let
+        val _ = writeln ("predicate: " ^ pred)
+        val _ = writeln ("modes: " ^ (commas (map string_of_mode modes)))
+      in u end  
+  in
+    fold print (all_modes_of thy) ()
+  end
+  
+(** preprocessing rules **)  
+
+fun imp_prems_conv cv ct =
+  case Thm.term_of ct of
+    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
+  | _ => Conv.all_conv ct
+
+fun Trueprop_conv cv ct =
+  case Thm.term_of ct of
+    Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct  
+  | _ => error "Trueprop_conv"
+
+fun preprocess_intro thy rule =
+  Conv.fconv_rule
+    (imp_prems_conv
+      (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
+    (Thm.transfer thy rule)
+
+fun preprocess_elim thy nparams elimrule =
+  let
+    fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
+       HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs)
+     | replace_eqs t = t
+    val prems = Thm.prems_of elimrule
+    val nargs = length (snd (strip_comb (HOLogic.dest_Trueprop (hd prems)))) - nparams
+    fun preprocess_case t =
+     let
+       val params = Logic.strip_params t
+       val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
+       val assums_hyp' = assums1 @ (map replace_eqs assums2)
+     in
+       list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t))
+     end 
+    val cases' = map preprocess_case (tl prems)
+    val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
+  in
+    Thm.equal_elim
+      (Thm.symmetric (Conv.implies_concl_conv (MetaSimplifier.rewrite true [@{thm eq_is_eq}])
+         (cterm_of thy elimrule')))
+      elimrule
+  end;
+
+(* special case: predicate with no introduction rule *)
+fun noclause thy predname elim = let
+  val T = (Logic.unvarifyT o Sign.the_const_type thy) predname
+  val Ts = binder_types T
+  val names = Name.variant_list []
+        (map (fn i => "x" ^ (string_of_int i)) (1 upto (length Ts)))
+  val vs = map2 (curry Free) names Ts
+  val clausehd = HOLogic.mk_Trueprop (list_comb (Const (predname, T), vs))
+  val intro_t = Logic.mk_implies (@{prop False}, clausehd)
+  val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT))
+  val elim_t = Logic.list_implies ([clausehd, Logic.mk_implies (@{prop False}, P)], P)
+  val intro = Goal.prove (ProofContext.init thy) names [] intro_t
+        (fn {...} => etac @{thm FalseE} 1)
+  val elim = Goal.prove (ProofContext.init thy) ("P" :: names) [] elim_t
+        (fn {...} => etac elim 1) 
+in
+  ([intro], elim)
+end
+
+fun fetch_pred_data thy name =
+  case try (Inductive.the_inductive (ProofContext.init thy)) name of
+    SOME (info as (_, result)) => 
+      let
+        fun is_intro_of intro =
+          let
+            val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro))
+          in (fst (dest_Const const) = name) end;      
+        val intros = ind_set_codegen_preproc thy ((map (preprocess_intro thy))
+          (filter is_intro_of (#intrs result)))
+        val pre_elim = nth (#elims result) (find_index (fn s => s = name) (#names (fst info)))
+        val nparams = length (Inductive.params_of (#raw_induct result))
+        val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
+        val (intros, elim) = if null intros then noclause thy name elim else (intros, elim)
+      in
+        mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
+      end                                                                    
+  | NONE => error ("No such predicate: " ^ quote name)
+  
+(* updaters *)
+
+fun apfst3 f (x, y, z) =  (f x, y, z)
+fun apsnd3 f (x, y, z) =  (x, f y, z)
+fun aptrd3 f (x, y, z) =  (x, y, f z)
+
+fun add_predfun name mode data =
+  let
+    val add = (apsnd o apfst3 o cons) (mode, mk_predfun_data data)
+  in PredData.map (Graph.map_node name (map_pred_data add)) end
+
+fun is_inductive_predicate thy name =
+  is_some (try (Inductive.the_inductive (ProofContext.init thy)) name)
+
+fun depending_preds_of thy (key, value) =
+  let
+    val intros = (#intros o rep_pred_data) value
+  in
+    fold Term.add_const_names (map Thm.prop_of intros) []
+      |> filter (fn c => (not (c = key)) andalso (is_inductive_predicate thy c orelse is_registered thy c))
+  end;
+    
+    
+(* code dependency graph *)    
+(*
+fun dependencies_of thy name =
+  let
+    val (intros, elim, nparams) = fetch_pred_data thy name 
+    val data = mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
+    val keys = depending_preds_of thy intros
+  in
+    (data, keys)
+  end;
+*)
+(* guessing number of parameters *)
+fun find_indexes pred xs =
+  let
+    fun find is n [] = is
+      | find is n (x :: xs) = find (if pred x then (n :: is) else is) (n + 1) xs;
+  in rev (find [] 0 xs) end;
+
+fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = HOLogic.boolT)
+  | is_predT _ = false
+  
+fun guess_nparams T =
+  let
+    val argTs = binder_types T
+    val nparams = fold (curry Int.max)
+      (map (fn x => x + 1) (find_indexes is_predT argTs)) 0
+  in nparams end;
+
+fun add_intro thm thy = let
+   val (name, T) = dest_Const (fst (strip_intro_concl 0 (prop_of thm)))
+   fun cons_intro gr =
+     case try (Graph.get_node gr) name of
+       SOME pred_data => Graph.map_node name (map_pred_data
+         (apfst (fn (intro, elim, nparams) => (thm::intro, elim, nparams)))) gr
+     | NONE =>
+       let
+         val nparams = the_default (guess_nparams T)  (try (#nparams o rep_pred_data o (fetch_pred_data thy)) name)
+       in Graph.new_node (name, mk_pred_data (([thm], NONE, nparams), ([], [], []))) gr end;
+  in PredData.map cons_intro thy end
+
+fun set_elim thm = let
+    val (name, _) = dest_Const (fst 
+      (strip_comb (HOLogic.dest_Trueprop (hd (prems_of thm)))))
+    fun set (intros, _, nparams) = (intros, SOME thm, nparams)  
+  in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+
+fun set_nparams name nparams = let
+    fun set (intros, elim, _ ) = (intros, elim, nparams) 
+  in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+    
+fun register_predicate (pre_intros, pre_elim, nparams) thy = let
+    val (name, _) = dest_Const (fst (strip_intro_concl nparams (prop_of (hd pre_intros))))
+    (* preprocessing *)
+    val intros = ind_set_codegen_preproc thy (map (preprocess_intro thy) pre_intros)
+    val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
+  in
+    PredData.map
+      (Graph.new_node (name, mk_pred_data ((intros, SOME elim, nparams), ([], [], [])))) thy
+  end
+
+fun set_generator_name pred mode name = 
+  let
+    val set = (apsnd o apsnd3 o cons) (mode, mk_function_data (name, NONE))
+  in
+    PredData.map (Graph.map_node pred (map_pred_data set))
+  end
+
+fun set_sizelim_function_name pred mode name = 
+  let
+    val set = (apsnd o aptrd3 o cons) (mode, mk_function_data (name, NONE))
+  in
+    PredData.map (Graph.map_node pred (map_pred_data set))
+  end
+
+(** data structures for generic compilation for different monads **)
+
+(* maybe rename functions more generic:
+  mk_predT -> mk_monadT; dest_predT -> dest_monadT
+  mk_single -> mk_return (?)
+*)
+datatype compilation_funs = CompilationFuns of {
+  mk_predT : typ -> typ,
+  dest_predT : typ -> typ,
+  mk_bot : typ -> term,
+  mk_single : term -> term,
+  mk_bind : term * term -> term,
+  mk_sup : term * term -> term,
+  mk_if : term -> term,
+  mk_not : term -> term,
+(*  funT_of : mode -> typ -> typ, *)
+(*  mk_fun_of : theory -> (string * typ) -> mode -> term, *) 
+  mk_map : typ -> typ -> term -> term -> term,
+  lift_pred : term -> term
+};
+
+fun mk_predT (CompilationFuns funs) = #mk_predT funs
+fun dest_predT (CompilationFuns funs) = #dest_predT funs
+fun mk_bot (CompilationFuns funs) = #mk_bot funs
+fun mk_single (CompilationFuns funs) = #mk_single funs
+fun mk_bind (CompilationFuns funs) = #mk_bind funs
+fun mk_sup (CompilationFuns funs) = #mk_sup funs
+fun mk_if (CompilationFuns funs) = #mk_if funs
+fun mk_not (CompilationFuns funs) = #mk_not funs
+(*fun funT_of (CompilationFuns funs) = #funT_of funs*)
+(*fun mk_fun_of (CompilationFuns funs) = #mk_fun_of funs*)
+fun mk_map (CompilationFuns funs) = #mk_map funs
+fun lift_pred (CompilationFuns funs) = #lift_pred funs
+
+fun funT_of compfuns (iss, is) T =
+  let
+    val Ts = binder_types T
+    val (paramTs, (inargTs, outargTs)) = split_mode (iss, is) Ts
+    val paramTs' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss paramTs 
+  in
+    (paramTs' @ inargTs) ---> (mk_predT compfuns (mk_tupleT outargTs))
+  end;
+
+fun sizelim_funT_of compfuns (iss, is) T =
+  let
+    val Ts = binder_types T
+    val (paramTs, (inargTs, outargTs)) = split_mode (iss, is) Ts
+    val paramTs' = map2 (fn SOME is => sizelim_funT_of compfuns ([], is) | NONE => I) iss paramTs 
+  in
+    (paramTs' @ inargTs @ [@{typ "code_numeral"}]) ---> (mk_predT compfuns (mk_tupleT outargTs))
+  end;  
+
+fun mk_fun_of compfuns thy (name, T) mode = 
+  Const (predfun_name_of thy name mode, funT_of compfuns mode T)
+
+fun mk_sizelim_fun_of compfuns thy (name, T) mode =
+  Const (sizelim_function_name_of thy name mode, sizelim_funT_of compfuns mode T)
+  
+fun mk_generator_of compfuns thy (name, T) mode = 
+  Const (generator_name_of thy name mode, sizelim_funT_of compfuns mode T)
+
+
+structure PredicateCompFuns =
+struct
+
+fun mk_predT T = Type (@{type_name "Predicate.pred"}, [T])
+
+fun dest_predT (Type (@{type_name "Predicate.pred"}, [T])) = T
+  | dest_predT T = raise TYPE ("dest_predT", [T], []);
+
+fun mk_bot T = Const (@{const_name Orderings.bot}, mk_predT T);
+
+fun mk_single t =
+  let val T = fastype_of t
+  in Const(@{const_name Predicate.single}, T --> mk_predT T) $ t end;
+
+fun mk_bind (x, f) =
+  let val T as Type ("fun", [_, U]) = fastype_of f
+  in
+    Const (@{const_name Predicate.bind}, fastype_of x --> T --> U) $ x $ f
+  end;
+
+val mk_sup = HOLogic.mk_binop @{const_name sup};
+
+fun mk_if cond = Const (@{const_name Predicate.if_pred},
+  HOLogic.boolT --> mk_predT HOLogic.unitT) $ cond;
+
+fun mk_not t = let val T = mk_predT HOLogic.unitT
+  in Const (@{const_name Predicate.not_pred}, T --> T) $ t end
+
+fun mk_Enum f =
+  let val T as Type ("fun", [T', _]) = fastype_of f
+  in
+    Const (@{const_name Predicate.Pred}, T --> mk_predT T') $ f    
+  end;
+
+fun mk_Eval (f, x) =
+  let
+    val T = fastype_of x
+  in
+    Const (@{const_name Predicate.eval}, mk_predT T --> T --> HOLogic.boolT) $ f $ x
+  end;
+
+fun mk_map T1 T2 tf tp = Const (@{const_name Predicate.map},
+  (T1 --> T2) --> mk_predT T1 --> mk_predT T2) $ tf $ tp;
+
+val lift_pred = I
+
+val compfuns = CompilationFuns {mk_predT = mk_predT, dest_predT = dest_predT, mk_bot = mk_bot,
+  mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
+  mk_map = mk_map, lift_pred = lift_pred};
+
+end;
+
+(* termify_code:
+val termT = Type ("Code_Evaluation.term", []);
+fun termifyT T = HOLogic.mk_prodT (T, HOLogic.unitT --> termT)
+*)
+(*
+fun lift_random random =
+  let
+    val T = dest_randomT (fastype_of random)
+  in
+    mk_scomp (random,
+      mk_fun_comp (HOLogic.pair_const (PredicateCompFuns.mk_predT T) @{typ Random.seed},
+        mk_fun_comp (Const (@{const_name Predicate.single}, T --> (PredicateCompFuns.mk_predT T)),
+          Const (@{const_name "fst"}, HOLogic.mk_prodT (T, @{typ "unit => term"}) --> T)))) 
+  end;
+*)
+ 
+structure RPredCompFuns =
+struct
+
+fun mk_rpredT T =
+  @{typ "Random.seed"} --> HOLogic.mk_prodT (PredicateCompFuns.mk_predT T, @{typ "Random.seed"})
+
+fun dest_rpredT (Type ("fun", [_,
+  Type (@{type_name "*"}, [Type (@{type_name "Predicate.pred"}, [T]), _])])) = T
+  | dest_rpredT T = raise TYPE ("dest_rpredT", [T], []); 
+
+fun mk_bot T = Const(@{const_name RPred.bot}, mk_rpredT T)
+
+fun mk_single t =
+  let
+    val T = fastype_of t
+  in
+    Const (@{const_name RPred.return}, T --> mk_rpredT T) $ t
+  end;
+
+fun mk_bind (x, f) =
+  let
+    val T as (Type ("fun", [_, U])) = fastype_of f
+  in
+    Const (@{const_name RPred.bind}, fastype_of x --> T --> U) $ x $ f
+  end
+
+val mk_sup = HOLogic.mk_binop @{const_name RPred.supp}
+
+fun mk_if cond = Const (@{const_name RPred.if_rpred},
+  HOLogic.boolT --> mk_rpredT HOLogic.unitT) $ cond;
+
+fun mk_not t = error "Negation is not defined for RPred"
+
+fun mk_map t = error "FIXME" (*FIXME*)
+
+fun lift_pred t =
+  let
+    val T = PredicateCompFuns.dest_predT (fastype_of t)
+    val lift_predT = PredicateCompFuns.mk_predT T --> mk_rpredT T 
+  in
+    Const (@{const_name "RPred.lift_pred"}, lift_predT) $ t  
+  end;
+
+val compfuns = CompilationFuns {mk_predT = mk_rpredT, dest_predT = dest_rpredT, mk_bot = mk_bot,
+    mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
+    mk_map = mk_map, lift_pred = lift_pred};
+
+end;
+(* for external use with interactive mode *)
+val rpred_compfuns = RPredCompFuns.compfuns;
+
+fun lift_random random =
+  let
+    val T = dest_randomT (fastype_of random)
+  in
+    Const (@{const_name lift_random}, (@{typ Random.seed} -->
+      HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) --> 
+      RPredCompFuns.mk_rpredT T) $ random
+  end;
+ 
+(* Mode analysis *)
+
+(*** check if a term contains only constructor functions ***)
+fun is_constrt thy =
+  let
+    val cnstrs = flat (maps
+      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
+      (Symtab.dest (Datatype.get_all thy)));
+    fun check t = (case strip_comb t of
+        (Free _, []) => true
+      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
+            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
+          | _ => false)
+      | _ => false)
+  in check end;
+
+(*** check if a type is an equality type (i.e. doesn't contain fun)
+  FIXME this is only an approximation ***)
+fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
+  | is_eqT _ = true;
+
+fun term_vs tm = fold_aterms (fn Free (x, T) => cons x | _ => I) tm [];
+val terms_vs = distinct (op =) o maps term_vs;
+
+(** collect all Frees in a term (with duplicates!) **)
+fun term_vTs tm =
+  fold_aterms (fn Free xT => cons xT | _ => I) tm [];
+
+(*FIXME this function should not be named merge... make it local instead*)
+fun merge xs [] = xs
+  | merge [] ys = ys
+  | merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
+      else y::merge (x::xs) ys;
+
+fun subsets i j = if i <= j then
+       let val is = subsets (i+1) j
+       in merge (map (fn ks => i::ks) is) is end
+     else [[]];
+     
+(* FIXME: should be in library - map_prod *)
+fun cprod ([], ys) = []
+  | cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
+
+fun cprods xss = foldr (map op :: o cprod) [[]] xss;
+
+
+  
+(*TODO: cleanup function and put together with modes_of_term *)
+(*
+fun modes_of_param default modes t = let
+    val (vs, t') = strip_abs t
+    val b = length vs
+    fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+        let
+          val (args1, args2) =
+            if length args < length iss then
+              error ("Too few arguments for inductive predicate " ^ name)
+            else chop (length iss) args;
+          val k = length args2;
+          val perm = map (fn i => (find_index_eq (Bound (b - i)) args2) + 1)
+            (1 upto b)  
+          val partial_mode = (1 upto k) \\ perm
+        in
+          if not (partial_mode subset is) then [] else
+          let
+            val is' = 
+            (fold_index (fn (i, j) => if j mem is then cons (i + 1) else I) perm [])
+            |> fold (fn i => if i > k then cons (i - k + b) else I) is
+              
+           val res = map (fn x => Mode (m, is', x)) (cprods (map
+            (fn (NONE, _) => [NONE]
+              | (SOME js, arg) => map SOME (filter
+                  (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
+                    (iss ~~ args1)))
+          in res end
+        end)) (AList.lookup op = modes name)
+  in case strip_comb t' of
+    (Const (name, _), args) => the_default default (mk_modes name args)
+    | (Var ((name, _), _), args) => the (mk_modes name args)
+    | (Free (name, _), args) => the (mk_modes name args)
+    | _ => default end
+  
+and
+*)
+fun modes_of_term modes t =
+  let
+    val ks = 1 upto length (binder_types (fastype_of t));
+    val default = [Mode (([], ks), ks, [])];
+    fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+        let
+          val (args1, args2) =
+            if length args < length iss then
+              error ("Too few arguments for inductive predicate " ^ name)
+            else chop (length iss) args;
+          val k = length args2;
+          val prfx = 1 upto k
+        in
+          if not (is_prefix op = prfx is) then [] else
+          let val is' = map (fn i => i - k) (List.drop (is, k))
+          in map (fn x => Mode (m, is', x)) (cprods (map
+            (fn (NONE, _) => [NONE]
+              | (SOME js, arg) => map SOME (filter
+                  (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
+                    (iss ~~ args1)))
+          end
+        end)) (AList.lookup op = modes name)
+
+  in
+    case strip_comb (Envir.eta_contract t) of
+      (Const (name, _), args) => the_default default (mk_modes name args)
+    | (Var ((name, _), _), args) => the (mk_modes name args)
+    | (Free (name, _), args) => the (mk_modes name args)
+    | (Abs _, []) => error "Abs at param position" (* modes_of_param default modes t *)
+    | _ => default
+  end
+  
+fun select_mode_prem thy modes vs ps =
+  find_first (is_some o snd) (ps ~~ map
+    (fn Prem (us, t) => find_first (fn Mode (_, is, _) =>
+          let
+            val (in_ts, out_ts) = split_smode is us;
+            val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts;
+            val vTs = maps term_vTs out_ts';
+            val dupTs = map snd (duplicates (op =) vTs) @
+              List.mapPartial (AList.lookup (op =) vTs) vs;
+          in
+            terms_vs (in_ts @ in_ts') subset vs andalso
+            forall (is_eqT o fastype_of) in_ts' andalso
+            term_vs t subset vs andalso
+            forall is_eqT dupTs
+          end)
+            (modes_of_term modes t handle Option =>
+               error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+      | Negprem (us, t) => find_first (fn Mode (_, is, _) =>
+            length us = length is andalso
+            terms_vs us subset vs andalso
+            term_vs t subset vs)
+            (modes_of_term modes t handle Option =>
+               error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+      | Sidecond t => if term_vs t subset vs then SOME (Mode (([], []), [], []))
+          else NONE
+      ) ps);
+
+fun fold_prem f (Prem (args, _)) = fold f args
+  | fold_prem f (Negprem (args, _)) = fold f args
+  | fold_prem f (Sidecond t) = f t
+
+fun all_subsets [] = [[]]
+  | all_subsets (x::xs) = let val xss' = all_subsets xs in xss' @ (map (cons x) xss') end
+
+fun generator vTs v = 
+  let
+    val T = the (AList.lookup (op =) vTs v)
+  in
+    (Generator (v, T), Mode (([], []), [], []))
+  end;
+
+fun gen_prem (Prem (us, t)) = GeneratorPrem (us, t) 
+  | gen_prem _ = error "gen_prem : invalid input for gen_prem"
+
+fun param_gen_prem param_vs (p as Prem (us, t as Free (v, _))) =
+  if member (op =) param_vs v then
+    GeneratorPrem (us, t)
+  else p  
+  | param_gen_prem param_vs p = p
+  
+fun check_mode_clause with_generator thy param_vs modes gen_modes (iss, is) (ts, ps) =
+  let
+    val modes' = modes @ List.mapPartial
+      (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+        (param_vs ~~ iss);
+    val gen_modes' = gen_modes @ List.mapPartial
+      (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+        (param_vs ~~ iss);  
+    val vTs = distinct (op =) ((fold o fold_prem) Term.add_frees ps (fold Term.add_frees ts []))
+    val prem_vs = distinct (op =) ((fold o fold_prem) Term.add_free_names ps [])
+    fun check_mode_prems acc_ps vs [] = SOME (acc_ps, vs)
+      | check_mode_prems acc_ps vs ps = (case select_mode_prem thy modes' vs ps of
+          NONE =>
+            (if with_generator then
+              (case select_mode_prem thy gen_modes' vs ps of
+                  SOME (p, SOME mode) => check_mode_prems ((gen_prem p, mode) :: acc_ps) 
+                  (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+                  (filter_out (equal p) ps)
+                | NONE =>
+                  let 
+                    val all_generator_vs = all_subsets (prem_vs \\ vs) |> sort (int_ord o (pairself length))
+                  in
+                    case (find_first (fn generator_vs => is_some
+                      (select_mode_prem thy modes' (vs union generator_vs) ps)) all_generator_vs) of
+                      SOME generator_vs => check_mode_prems ((map (generator vTs) generator_vs) @ acc_ps)
+                        (vs union generator_vs) ps
+                    | NONE => NONE
+                  end)
+            else
+              NONE)
+        | SOME (p, SOME mode) => check_mode_prems ((if with_generator then param_gen_prem param_vs p else p, mode) :: acc_ps) 
+            (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+            (filter_out (equal p) ps))
+    val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (split_smode is ts));
+    val in_vs = terms_vs in_ts;
+    val concl_vs = terms_vs ts
+  in
+    if forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
+    forall (is_eqT o fastype_of) in_ts' then
+      case check_mode_prems [] (param_vs union in_vs) ps of
+         NONE => NONE
+       | SOME (acc_ps, vs) =>
+         if with_generator then
+           SOME (ts, (rev acc_ps) @ (map (generator vTs) (concl_vs \\ vs))) 
+         else
+           if concl_vs subset vs then SOME (ts, rev acc_ps) else NONE
+    else NONE
+  end;
+
+fun check_modes_pred with_generator thy param_vs preds modes gen_modes (p, ms) =
+  let val SOME rs = AList.lookup (op =) preds p
+  in (p, List.filter (fn m => case find_index
+    (is_none o check_mode_clause with_generator thy param_vs modes gen_modes m) rs of
+      ~1 => true
+    | i => (Output.tracing ("Clause " ^ string_of_int (i + 1) ^ " of " ^
+      p ^ " violates mode " ^ string_of_mode m); false)) ms)
+  end;
+
+fun get_modes_pred with_generator thy param_vs preds modes gen_modes (p, ms) =
+  let
+    val SOME rs = AList.lookup (op =) preds p 
+  in
+    (p, map (fn m =>
+      (m, map (the o check_mode_clause with_generator thy param_vs modes gen_modes m) rs)) ms)
+  end;
+  
+fun fixp f (x : (string * mode list) list) =
+  let val y = f x
+  in if x = y then x else fixp f y end;
+
+fun modes_of_arities arities =
+  (map (fn (s, (ks, k)) => (s, cprod (cprods (map
+            (fn NONE => [NONE]
+              | SOME k' => map SOME (subsets 1 k')) ks),
+            subsets 1 k))) arities)
+  
+fun infer_modes with_generator thy extra_modes arities param_vs preds =
+  let
+    val modes =
+      fixp (fn modes =>
+        map (check_modes_pred with_generator thy param_vs preds (modes @ extra_modes) []) modes)
+          (modes_of_arities arities)
+  in
+    map (get_modes_pred with_generator thy param_vs preds (modes @ extra_modes) []) modes
+  end;
+
+fun remove_from rem [] = []
+  | remove_from rem ((k, vs) :: xs) =
+    (case AList.lookup (op =) rem k of
+      NONE => (k, vs)
+    | SOME vs' => (k, vs \\ vs'))
+    :: remove_from rem xs
+    
+fun infer_modes_with_generator thy extra_modes arities param_vs preds =
+  let
+    val prednames = map fst preds
+    val extra_modes = all_modes_of thy
+    val gen_modes = all_generator_modes_of thy
+      |> filter_out (fn (name, _) => member (op =) prednames name)
+    val starting_modes = remove_from extra_modes (modes_of_arities arities) 
+    val modes =
+      fixp (fn modes =>
+        map (check_modes_pred true thy param_vs preds extra_modes (gen_modes @ modes)) modes)
+         starting_modes 
+  in
+    map (get_modes_pred true thy param_vs preds extra_modes (gen_modes @ modes)) modes
+  end;
+
+(* term construction *)
+
+fun mk_v (names, vs) s T = (case AList.lookup (op =) vs s of
+      NONE => (Free (s, T), (names, (s, [])::vs))
+    | SOME xs =>
+        let
+          val s' = Name.variant names s;
+          val v = Free (s', T)
+        in
+          (v, (s'::names, AList.update (op =) (s, v::xs) vs))
+        end);
+
+fun distinct_v (Free (s, T)) nvs = mk_v nvs s T
+  | distinct_v (t $ u) nvs =
+      let
+        val (t', nvs') = distinct_v t nvs;
+        val (u', nvs'') = distinct_v u nvs';
+      in (t' $ u', nvs'') end
+  | distinct_v x nvs = (x, nvs);
+
+fun compile_match thy compfuns eqs eqs' out_ts success_t =
+  let
+    val eqs'' = maps mk_eq eqs @ eqs'
+    val names = fold Term.add_free_names (success_t :: eqs'' @ out_ts) [];
+    val name = Name.variant names "x";
+    val name' = Name.variant (name :: names) "y";
+    val T = mk_tupleT (map fastype_of out_ts);
+    val U = fastype_of success_t;
+    val U' = dest_predT compfuns U;
+    val v = Free (name, T);
+    val v' = Free (name', T);
+  in
+    lambda v (fst (Datatype.make_case
+      (ProofContext.init thy) false [] v
+      [(mk_tuple out_ts,
+        if null eqs'' then success_t
+        else Const (@{const_name HOL.If}, HOLogic.boolT --> U --> U --> U) $
+          foldr1 HOLogic.mk_conj eqs'' $ success_t $
+            mk_bot compfuns U'),
+       (v', mk_bot compfuns U')]))
+  end;
+
+(*FIXME function can be removed*)
+fun mk_funcomp f t =
+  let
+    val names = Term.add_free_names t [];
+    val Ts = binder_types (fastype_of t);
+    val vs = map Free
+      (Name.variant_list names (replicate (length Ts) "x") ~~ Ts)
+  in
+    fold_rev lambda vs (f (list_comb (t, vs)))
+  end;
+(*
+fun compile_param_ext thy compfuns modes (NONE, t) = t
+  | compile_param_ext thy compfuns modes (m as SOME (Mode ((iss, is'), is, ms)), t) =
+      let
+        val (vs, u) = strip_abs t
+        val (ivs, ovs) = split_mode is vs    
+        val (f, args) = strip_comb u
+        val (params, args') = chop (length ms) args
+        val (inargs, outargs) = split_mode is' args'
+        val b = length vs
+        val perm = map (fn i => (find_index_eq (Bound (b - i)) args') + 1) (1 upto b)
+        val outp_perm =
+          snd (split_mode is perm)
+          |> map (fn i => i - length (filter (fn x => x < i) is'))
+        val names = [] -- TODO
+        val out_names = Name.variant_list names (replicate (length outargs) "x")
+        val f' = case f of
+            Const (name, T) =>
+              if AList.defined op = modes name then
+                mk_predfun_of thy compfuns (name, T) (iss, is')
+              else error "compile param: Not an inductive predicate with correct mode"
+          | Free (name, T) => Free (name, param_funT_of compfuns T (SOME is'))
+        val outTs = dest_tupleT (dest_predT compfuns (body_type (fastype_of f')))
+        val out_vs = map Free (out_names ~~ outTs)
+        val params' = map (compile_param thy modes) (ms ~~ params)
+        val f_app = list_comb (f', params' @ inargs)
+        val single_t = (mk_single compfuns (mk_tuple (map (fn i => nth out_vs (i - 1)) outp_perm)))
+        val match_t = compile_match thy compfuns [] [] out_vs single_t
+      in list_abs (ivs,
+        mk_bind compfuns (f_app, match_t))
+      end
+  | compile_param_ext _ _ _ _ = error "compile params"
+*)
+
+fun compile_param size thy compfuns (NONE, t) = t
+  | compile_param size thy compfuns (m as SOME (Mode ((iss, is'), is, ms)), t) =
+   let
+     val (f, args) = strip_comb (Envir.eta_contract t)
+     val (params, args') = chop (length ms) args
+     val params' = map (compile_param size thy compfuns) (ms ~~ params)
+     val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
+     val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
+     val f' =
+       case f of
+         Const (name, T) =>
+           mk_fun_of compfuns thy (name, T) (iss, is')
+       | Free (name, T) => Free (name, funT_of compfuns (iss, is') T)
+       | _ => error ("PredicateCompiler: illegal parameter term")
+   in list_comb (f', params' @ args') end
+   
+fun compile_expr size thy ((Mode (mode, is, ms)), t) =
+  case strip_comb t of
+    (Const (name, T), params) =>
+       let
+         val params' = map (compile_param size thy PredicateCompFuns.compfuns) (ms ~~ params)
+         val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
+       in
+         list_comb (mk_fun_of PredicateCompFuns.compfuns thy (name, T) mode, params')
+       end
+  | (Free (name, T), args) =>
+       let 
+         val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of 
+       in
+         list_comb (Free (name, funT_of PredicateCompFuns.compfuns ([], is) T), args)
+       end;
+       
+fun compile_gen_expr size thy compfuns ((Mode (mode, is, ms)), t) =
+  case strip_comb t of
+    (Const (name, T), params) =>
+      let
+        val params' = map (compile_param size thy compfuns) (ms ~~ params)
+      in
+        list_comb (mk_generator_of compfuns thy (name, T) mode, params')
+      end
+    | (Free (name, T), args) =>
+      list_comb (Free (name, sizelim_funT_of RPredCompFuns.compfuns ([], is) T), args)
+          
+(** specific rpred functions -- move them to the correct place in this file *)
+
+(* uncommented termify code; causes more trouble than expected at first *) 
+(*
+fun mk_valtermify_term (t as Const (c, T)) = HOLogic.mk_prod (t, Abs ("u", HOLogic.unitT, HOLogic.reflect_term t))
+  | mk_valtermify_term (Free (x, T)) = Free (x, termifyT T) 
+  | mk_valtermify_term (t1 $ t2) =
+    let
+      val T = fastype_of t1
+      val (T1, T2) = dest_funT T
+      val t1' = mk_valtermify_term t1
+      val t2' = mk_valtermify_term t2
+    in
+      Const ("Code_Evaluation.valapp", termifyT T --> termifyT T1 --> termifyT T2) $ t1' $ t2'
+    end
+  | mk_valtermify_term _ = error "Not a valid term for mk_valtermify_term"
+*)
+
+fun compile_clause compfuns size final_term thy all_vs param_vs (iss, is) inp (ts, moded_ps) =
+  let
+    fun check_constrt t (names, eqs) =
+      if is_constrt thy t then (t, (names, eqs)) else
+        let
+          val s = Name.variant names "x";
+          val v = Free (s, fastype_of t)
+        in (v, (s::names, HOLogic.mk_eq (v, t)::eqs)) end;
+
+    val (in_ts, out_ts) = split_smode is ts;
+    val (in_ts', (all_vs', eqs)) =
+      fold_map check_constrt in_ts (all_vs, []);
+
+    fun compile_prems out_ts' vs names [] =
+          let
+            val (out_ts'', (names', eqs')) =
+              fold_map check_constrt out_ts' (names, []);
+            val (out_ts''', (names'', constr_vs)) = fold_map distinct_v
+              out_ts'' (names', map (rpair []) vs);
+          in
+          (* termify code:
+            compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
+              (mk_single compfuns (mk_tuple (map mk_valtermify_term out_ts)))
+           *)
+            compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
+              (final_term out_ts)
+          end
+      | compile_prems out_ts vs names ((p, mode as Mode ((_, is), _, _)) :: ps) =
+          let
+            val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
+            val (out_ts', (names', eqs)) =
+              fold_map check_constrt out_ts (names, [])
+            val (out_ts'', (names'', constr_vs')) = fold_map distinct_v
+              out_ts' ((names', map (rpair []) vs))
+            val (compiled_clause, rest) = case p of
+               Prem (us, t) =>
+                 let
+                   val (in_ts, out_ts''') = split_smode is us;
+                   val args = case size of
+                     NONE => in_ts
+                   | SOME size_t => in_ts @ [size_t]
+                   val u = lift_pred compfuns
+                     (list_comb (compile_expr size thy (mode, t), args))                     
+                   val rest = compile_prems out_ts''' vs' names'' ps
+                 in
+                   (u, rest)
+                 end
+             | Negprem (us, t) =>
+                 let
+                   val (in_ts, out_ts''') = split_smode is us
+                   val u = lift_pred compfuns
+                     (mk_not PredicateCompFuns.compfuns (list_comb (compile_expr NONE thy (mode, t), in_ts)))
+                   val rest = compile_prems out_ts''' vs' names'' ps
+                 in
+                   (u, rest)
+                 end
+             | Sidecond t =>
+                 let
+                   val rest = compile_prems [] vs' names'' ps;
+                 in
+                   (mk_if compfuns t, rest)
+                 end
+             | GeneratorPrem (us, t) =>
+                 let
+                   val (in_ts, out_ts''') = split_smode is us;
+                   val args = case size of
+                     NONE => in_ts
+                   | SOME size_t => in_ts @ [size_t]
+                   val u = list_comb (compile_gen_expr size thy compfuns (mode, t), args)
+                   val rest = compile_prems out_ts''' vs' names'' ps
+                 in
+                   (u, rest)
+                 end
+             | Generator (v, T) =>
+                 let
+                   val u = lift_random (HOLogic.mk_random T @{term "1::code_numeral"})
+                   val rest = compile_prems [Free (v, T)]  vs' names'' ps;
+                 in
+                   (u, rest)
+                 end
+          in
+            compile_match thy compfuns constr_vs' eqs out_ts'' 
+              (mk_bind compfuns (compiled_clause, rest))
+          end
+    val prem_t = compile_prems in_ts' param_vs all_vs' moded_ps;
+  in
+    mk_bind compfuns (mk_single compfuns inp, prem_t)
+  end
+
+fun compile_pred compfuns mk_fun_of use_size thy all_vs param_vs s T mode moded_cls =
+  let
+    val (Ts1, (Us1, Us2)) = split_mode mode (binder_types T)
+    val funT_of = if use_size then sizelim_funT_of else funT_of 
+    val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) (fst mode) Ts1
+    val xnames = Name.variant_list (all_vs @ param_vs)
+      (map (fn i => "x" ^ string_of_int i) (snd mode));
+    val size_name = Name.variant (all_vs @ param_vs @ xnames) "size"
+    (* termify code: val xs = map2 (fn s => fn T => Free (s, termifyT T)) xnames Us1; *)
+    val xs = map2 (fn s => fn T => Free (s, T)) xnames Us1;
+    val params = map2 (fn s => fn T => Free (s, T)) param_vs Ts1'
+    val size = Free (size_name, @{typ "code_numeral"})
+    val decr_size =
+      if use_size then
+        SOME (Const ("HOL.minus_class.minus", @{typ "code_numeral => code_numeral => code_numeral"})
+          $ size $ Const ("HOL.one_class.one", @{typ "Code_Numeral.code_numeral"}))
+      else
+        NONE
+    val cl_ts =
+      map (compile_clause compfuns decr_size (fn out_ts => mk_single compfuns (mk_tuple out_ts))
+        thy all_vs param_vs mode (mk_tuple xs)) moded_cls;
+    val t = foldr1 (mk_sup compfuns) cl_ts
+    val T' = mk_predT compfuns (mk_tupleT Us2)
+    val size_t = Const (@{const_name "If"}, @{typ bool} --> T' --> T' --> T')
+      $ HOLogic.mk_eq (size, @{term "0 :: code_numeral"})
+      $ mk_bot compfuns (dest_predT compfuns T') $ t
+    val fun_const = mk_fun_of compfuns thy (s, T) mode
+    val eq = if use_size then
+      (list_comb (fun_const, params @ xs @ [size]), size_t)
+    else
+      (list_comb (fun_const, params @ xs), t)
+  in
+    HOLogic.mk_Trueprop (HOLogic.mk_eq eq)
+  end;
+  
+(* special setup for simpset *)                  
+val HOL_basic_ss' = HOL_basic_ss setSolver 
+  (mk_solver "all_tac_solver" (fn _ => fn _ => all_tac))
+
+(* Definition of executable functions and their intro and elim rules *)
+
+fun print_arities arities = tracing ("Arities:\n" ^
+  cat_lines (map (fn (s, (ks, k)) => s ^ ": " ^
+    space_implode " -> " (map
+      (fn NONE => "X" | SOME k' => string_of_int k')
+        (ks @ [SOME k]))) arities));
+
+fun mk_Eval_of ((x, T), NONE) names = (x, names)
+  | mk_Eval_of ((x, T), SOME mode) names = let
+  val Ts = binder_types T
+  val argnames = Name.variant_list names
+        (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+  val args = map Free (argnames ~~ Ts)
+  val (inargs, outargs) = split_smode mode args
+  val r = PredicateCompFuns.mk_Eval (list_comb (x, inargs), mk_tuple outargs)
+  val t = fold_rev lambda args r 
+in
+  (t, argnames @ names)
+end;
+
+fun create_intro_elim_rule (mode as (iss, is)) defthm mode_id funT pred thy =
+let
+  val Ts = binder_types (fastype_of pred)
+  val funtrm = Const (mode_id, funT)
+  val argnames = Name.variant_list []
+        (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+  val (Ts1, Ts2) = chop (length iss) Ts;
+  val Ts1' = map2 (fn NONE => I | SOME is => funT_of (PredicateCompFuns.compfuns) ([], is)) iss Ts1
+  val args = map Free (argnames ~~ (Ts1' @ Ts2))
+  val (params, ioargs) = chop (length iss) args
+  val (inargs, outargs) = split_smode is ioargs
+  val param_names = Name.variant_list argnames
+    (map (fn i => "p" ^ string_of_int i) (1 upto (length iss)))
+  val param_vs = map Free (param_names ~~ Ts1)
+  val (params', names) = fold_map mk_Eval_of ((params ~~ Ts1) ~~ iss) []
+  val predpropI = HOLogic.mk_Trueprop (list_comb (pred, param_vs @ ioargs))
+  val predpropE = HOLogic.mk_Trueprop (list_comb (pred, params' @ ioargs))
+  val param_eqs = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (param_vs ~~ params')
+  val funargs = params @ inargs
+  val funpropE = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
+                  if null outargs then Free("y", HOLogic.unitT) else mk_tuple outargs))
+  val funpropI = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
+                   mk_tuple outargs))
+  val introtrm = Logic.list_implies (predpropI :: param_eqs, funpropI)
+  val simprules = [defthm, @{thm eval_pred},
+                   @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}]
+  val unfolddef_tac = Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1
+  val introthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
+  val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT));
+  val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predpropE, P)], P)
+  val elimthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
+in 
+  (introthm, elimthm)
+end;
+
+fun create_constname_of_mode thy prefix name mode = 
+  let
+    fun string_of_mode mode = if null mode then "0"
+      else space_implode "_" (map string_of_int mode)
+    val HOmode = space_implode "_and_"
+      (fold (fn NONE => I | SOME mode => cons (string_of_mode mode)) (fst mode) [])
+  in
+    (Sign.full_bname thy (prefix ^ (Long_Name.base_name name))) ^
+      (if HOmode = "" then "_" else "_for_" ^ HOmode ^ "_yields_") ^ (string_of_mode (snd mode))
+  end;
+  
+fun create_definitions preds (name, modes) thy =
+  let
+    val compfuns = PredicateCompFuns.compfuns
+    val T = AList.lookup (op =) preds name |> the
+    fun create_definition (mode as (iss, is)) thy = let
+      val mode_cname = create_constname_of_mode thy "" name mode
+      val mode_cbasename = Long_Name.base_name mode_cname
+      val Ts = binder_types T
+      val (Ts1, Ts2) = chop (length iss) Ts
+      val (Us1, Us2) =  split_smode is Ts2
+      val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss Ts1
+      val funT = (Ts1' @ Us1) ---> (mk_predT compfuns (mk_tupleT Us2))
+      val names = Name.variant_list []
+        (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+      val xs = map Free (names ~~ (Ts1' @ Ts2));                   
+      val (xparams, xargs) = chop (length iss) xs;
+      val (xins, xouts) = split_smode is xargs 
+      val (xparams', names') = fold_map mk_Eval_of ((xparams ~~ Ts1) ~~ iss) names
+      fun mk_split_lambda [] t = lambda (Free (Name.variant names' "x", HOLogic.unitT)) t
+        | mk_split_lambda [x] t = lambda x t
+        | mk_split_lambda xs t =
+        let
+          fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
+            | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
+        in
+          mk_split_lambda' xs t
+        end;
+      val predterm = PredicateCompFuns.mk_Enum (mk_split_lambda xouts
+        (list_comb (Const (name, T), xparams' @ xargs)))
+      val lhs = list_comb (Const (mode_cname, funT), xparams @ xins)
+      val def = Logic.mk_equals (lhs, predterm)
+      val ([definition], thy') = thy |>
+        Sign.add_consts_i [(Binding.name mode_cbasename, funT, NoSyn)] |>
+        PureThy.add_defs false [((Binding.name (mode_cbasename ^ "_def"), def), [])]
+      val (intro, elim) =
+        create_intro_elim_rule mode definition mode_cname funT (Const (name, T)) thy'
+      in thy' |> add_predfun name mode (mode_cname, definition, intro, elim)
+        |> PureThy.store_thm (Binding.name (mode_cbasename ^ "I"), intro) |> snd
+        |> PureThy.store_thm (Binding.name (mode_cbasename ^ "E"), elim)  |> snd
+        |> Theory.checkpoint
+      end;
+  in
+    fold create_definition modes thy
+  end;
+
+fun sizelim_create_definitions preds (name, modes) thy =
+  let
+    val T = AList.lookup (op =) preds name |> the
+    fun create_definition mode thy =
+      let
+        val mode_cname = create_constname_of_mode thy "sizelim_" name mode
+        val funT = sizelim_funT_of PredicateCompFuns.compfuns mode T
+      in
+        thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
+        |> set_sizelim_function_name name mode mode_cname 
+      end;
+  in
+    fold create_definition modes thy
+  end;
+    
+fun rpred_create_definitions preds (name, modes) thy =
+  let
+    val T = AList.lookup (op =) preds name |> the
+    fun create_definition mode thy =
+      let
+        val mode_cname = create_constname_of_mode thy "gen_" name mode
+        val funT = sizelim_funT_of RPredCompFuns.compfuns mode T
+      in
+        thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
+        |> set_generator_name name mode mode_cname 
+      end;
+  in
+    fold create_definition modes thy
+  end;
+  
+(* Proving equivalence of term *)
+
+fun is_Type (Type _) = true
+  | is_Type _ = false
+
+(* returns true if t is an application of an datatype constructor *)
+(* which then consequently would be splitted *)
+(* else false *)
+fun is_constructor thy t =
+  if (is_Type (fastype_of t)) then
+    (case Datatype.get_info thy ((fst o dest_Type o fastype_of) t) of
+      NONE => false
+    | SOME info => (let
+      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
+      val (c, _) = strip_comb t
+      in (case c of
+        Const (name, _) => name mem_string constr_consts
+        | _ => false) end))
+  else false
+
+(* MAJOR FIXME:  prove_params should be simple
+ - different form of introrule for parameters ? *)
+fun prove_param thy (NONE, t) = TRY (rtac @{thm refl} 1)
+  | prove_param thy (m as SOME (Mode (mode, is, ms)), t) =
+  let
+    val  (f, args) = strip_comb (Envir.eta_contract t)
+    val (params, _) = chop (length ms) args
+    val f_tac = case f of
+      Const (name, T) => simp_tac (HOL_basic_ss addsimps 
+         (@{thm eval_pred}::(predfun_definition_of thy name mode)::
+         @{thm "Product_Type.split_conv"}::[])) 1
+    | Free _ => TRY (rtac @{thm refl} 1)
+    | Abs _ => error "prove_param: No valid parameter term"
+  in
+    REPEAT_DETERM (etac @{thm thin_rl} 1)
+    THEN REPEAT_DETERM (rtac @{thm ext} 1)
+    THEN print_tac "prove_param"
+    THEN f_tac
+    THEN print_tac "after simplification in prove_args"
+    THEN (EVERY (map (prove_param thy) (ms ~~ params)))
+    THEN (REPEAT_DETERM (atac 1))
+  end
+
+fun prove_expr thy (Mode (mode, is, ms), t, us) (premposition : int) =
+  case strip_comb t of
+    (Const (name, T), args) =>  
+      let
+        val introrule = predfun_intro_of thy name mode
+        val (args1, args2) = chop (length ms) args
+      in
+        rtac @{thm bindI} 1
+        THEN print_tac "before intro rule:"
+        (* for the right assumption in first position *)
+        THEN rotate_tac premposition 1
+        THEN debug_tac (Display.string_of_thm (ProofContext.init thy) introrule)
+        THEN rtac introrule 1
+        THEN print_tac "after intro rule"
+        (* work with parameter arguments *)
+        THEN (atac 1)
+        THEN (print_tac "parameter goal")
+        THEN (EVERY (map (prove_param thy) (ms ~~ args1)))
+        THEN (REPEAT_DETERM (atac 1))
+      end
+  | _ => rtac @{thm bindI} 1 THEN atac 1
+
+fun SOLVED tac st = FILTER (fn st' => nprems_of st' = nprems_of st - 1) tac st; 
+
+fun SOLVEDALL tac st = FILTER (fn st' => nprems_of st' = 0) tac st
+
+fun prove_match thy (out_ts : term list) = let
+  fun get_case_rewrite t =
+    if (is_constructor thy t) then let
+      val case_rewrites = (#case_rewrites (Datatype.the_info thy
+        ((fst o dest_Type o fastype_of) t)))
+      in case_rewrites @ (flat (map get_case_rewrite (snd (strip_comb t)))) end
+    else []
+  val simprules = @{thm "unit.cases"} :: @{thm "prod.cases"} :: (flat (map get_case_rewrite out_ts))
+(* replace TRY by determining if it necessary - are there equations when calling compile match? *)
+in
+   (* make this simpset better! *)
+  asm_simp_tac (HOL_basic_ss' addsimps simprules) 1
+  THEN print_tac "after prove_match:"
+  THEN (DETERM (TRY (EqSubst.eqsubst_tac (ProofContext.init thy) [0] [@{thm "HOL.if_P"}] 1
+         THEN (REPEAT_DETERM (rtac @{thm conjI} 1 THEN (SOLVED (asm_simp_tac HOL_basic_ss 1))))
+         THEN (SOLVED (asm_simp_tac HOL_basic_ss 1)))))
+  THEN print_tac "after if simplification"
+end;
+
+(* corresponds to compile_fun -- maybe call that also compile_sidecond? *)
+
+fun prove_sidecond thy modes t =
+  let
+    fun preds_of t nameTs = case strip_comb t of 
+      (f as Const (name, T), args) =>
+        if AList.defined (op =) modes name then (name, T) :: nameTs
+          else fold preds_of args nameTs
+      | _ => nameTs
+    val preds = preds_of t []
+    val defs = map
+      (fn (pred, T) => predfun_definition_of thy pred ([], (1 upto (length (binder_types T)))))
+        preds
+  in 
+    (* remove not_False_eq_True when simpset in prove_match is better *)
+    simp_tac (HOL_basic_ss addsimps @{thm not_False_eq_True} :: @{thm eval_pred} :: defs) 1 
+    (* need better control here! *)
+  end
+
+fun prove_clause thy nargs modes (iss, is) (_, clauses) (ts, moded_ps) =
+  let
+    val (in_ts, clause_out_ts) = split_smode is ts;
+    fun prove_prems out_ts [] =
+      (prove_match thy out_ts)
+      THEN asm_simp_tac HOL_basic_ss' 1
+      THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
+    | prove_prems out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+      let
+        val premposition = (find_index (equal p) clauses) + nargs
+        val rest_tac = (case p of Prem (us, t) =>
+            let
+              val (_, out_ts''') = split_smode is us
+              val rec_tac = prove_prems out_ts''' ps
+            in
+              print_tac "before clause:"
+              THEN asm_simp_tac HOL_basic_ss 1
+              THEN print_tac "before prove_expr:"
+              THEN prove_expr thy (mode, t, us) premposition
+              THEN print_tac "after prove_expr:"
+              THEN rec_tac
+            end
+          | Negprem (us, t) =>
+            let
+              val (_, out_ts''') = split_smode is us
+              val rec_tac = prove_prems out_ts''' ps
+              val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+              val (_, params) = strip_comb t
+            in
+              rtac @{thm bindI} 1
+              THEN (if (is_some name) then
+                  simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
+                  THEN rtac @{thm not_predI} 1
+                  THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+                  THEN (REPEAT_DETERM (atac 1))
+                  (* FIXME: work with parameter arguments *)
+                  THEN (EVERY (map (prove_param thy) (param_modes ~~ params)))
+                else
+                  rtac @{thm not_predI'} 1)
+                  THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+              THEN rec_tac
+            end
+          | Sidecond t =>
+           rtac @{thm bindI} 1
+           THEN rtac @{thm if_predI} 1
+           THEN print_tac "before sidecond:"
+           THEN prove_sidecond thy modes t
+           THEN print_tac "after sidecond:"
+           THEN prove_prems [] ps)
+      in (prove_match thy out_ts)
+          THEN rest_tac
+      end;
+    val prems_tac = prove_prems in_ts moded_ps
+  in
+    rtac @{thm bindI} 1
+    THEN rtac @{thm singleI} 1
+    THEN prems_tac
+  end;
+
+fun select_sup 1 1 = []
+  | select_sup _ 1 = [rtac @{thm supI1}]
+  | select_sup n i = (rtac @{thm supI2})::(select_sup (n - 1) (i - 1));
+
+fun prove_one_direction thy clauses preds modes pred mode moded_clauses =
+  let
+    val T = the (AList.lookup (op =) preds pred)
+    val nargs = length (binder_types T) - nparams_of thy pred
+    val pred_case_rule = the_elim_of thy pred
+  in
+    REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
+    THEN etac (predfun_elim_of thy pred mode) 1
+    THEN etac pred_case_rule 1
+    THEN (EVERY (map
+           (fn i => EVERY' (select_sup (length moded_clauses) i) i) 
+             (1 upto (length moded_clauses))))
+    THEN (EVERY (map2 (prove_clause thy nargs modes mode) clauses moded_clauses))
+    THEN print_tac "proved one direction"
+  end;
+
+(** Proof in the other direction **)
+
+fun prove_match2 thy out_ts = let
+  fun split_term_tac (Free _) = all_tac
+    | split_term_tac t =
+      if (is_constructor thy t) then let
+        val info = Datatype.the_info thy ((fst o dest_Type o fastype_of) t)
+        val num_of_constrs = length (#case_rewrites info)
+        (* special treatment of pairs -- because of fishing *)
+        val split_rules = case (fst o dest_Type o fastype_of) t of
+          "*" => [@{thm prod.split_asm}] 
+          | _ => PureThy.get_thms thy (((fst o dest_Type o fastype_of) t) ^ ".split_asm")
+        val (_, ts) = strip_comb t
+      in
+        (Splitter.split_asm_tac split_rules 1)
+(*        THEN (Simplifier.asm_full_simp_tac HOL_basic_ss 1)
+          THEN (DETERM (TRY (etac @{thm Pair_inject} 1))) *)
+        THEN (REPEAT_DETERM_N (num_of_constrs - 1) (etac @{thm botE} 1 ORELSE etac @{thm botE} 2))
+        THEN (EVERY (map split_term_tac ts))
+      end
+    else all_tac
+  in
+    split_term_tac (mk_tuple out_ts)
+    THEN (DETERM (TRY ((Splitter.split_asm_tac [@{thm "split_if_asm"}] 1) THEN (etac @{thm botE} 2))))
+  end
+
+(* VERY LARGE SIMILIRATIY to function prove_param 
+-- join both functions
+*)
+(* TODO: remove function *)
+
+fun prove_param2 thy (NONE, t) = all_tac 
+  | prove_param2 thy (m as SOME (Mode (mode, is, ms)), t) = let
+    val  (f, args) = strip_comb (Envir.eta_contract t)
+    val (params, _) = chop (length ms) args
+    val f_tac = case f of
+        Const (name, T) => full_simp_tac (HOL_basic_ss addsimps 
+           (@{thm eval_pred}::(predfun_definition_of thy name mode)
+           :: @{thm "Product_Type.split_conv"}::[])) 1
+      | Free _ => all_tac
+      | _ => error "prove_param2: illegal parameter term"
+  in  
+    print_tac "before simplification in prove_args:"
+    THEN f_tac
+    THEN print_tac "after simplification in prove_args"
+    THEN (EVERY (map (prove_param2 thy) (ms ~~ params)))
+  end
+
+
+fun prove_expr2 thy (Mode (mode, is, ms), t) = 
+  (case strip_comb t of
+    (Const (name, T), args) =>
+      etac @{thm bindE} 1
+      THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
+      THEN print_tac "prove_expr2-before"
+      THEN (debug_tac (Syntax.string_of_term_global thy
+        (prop_of (predfun_elim_of thy name mode))))
+      THEN (etac (predfun_elim_of thy name mode) 1)
+      THEN print_tac "prove_expr2"
+      THEN (EVERY (map (prove_param2 thy) (ms ~~ args)))
+      THEN print_tac "finished prove_expr2"      
+    | _ => etac @{thm bindE} 1)
+    
+(* FIXME: what is this for? *)
+(* replace defined by has_mode thy pred *)
+(* TODO: rewrite function *)
+fun prove_sidecond2 thy modes t = let
+  fun preds_of t nameTs = case strip_comb t of 
+    (f as Const (name, T), args) =>
+      if AList.defined (op =) modes name then (name, T) :: nameTs
+        else fold preds_of args nameTs
+    | _ => nameTs
+  val preds = preds_of t []
+  val defs = map
+    (fn (pred, T) => predfun_definition_of thy pred ([], (1 upto (length (binder_types T)))))
+      preds
+  in
+   (* only simplify the one assumption *)
+   full_simp_tac (HOL_basic_ss' addsimps @{thm eval_pred} :: defs) 1 
+   (* need better control here! *)
+   THEN print_tac "after sidecond2 simplification"
+   end
+  
+fun prove_clause2 thy modes pred (iss, is) (ts, ps) i =
+  let
+    val pred_intro_rule = nth (intros_of thy pred) (i - 1)
+    val (in_ts, clause_out_ts) = split_smode is ts;
+    fun prove_prems2 out_ts [] =
+      print_tac "before prove_match2 - last call:"
+      THEN prove_match2 thy out_ts
+      THEN print_tac "after prove_match2 - last call:"
+      THEN (etac @{thm singleE} 1)
+      THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+      THEN (asm_full_simp_tac HOL_basic_ss' 1)
+      THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+      THEN (asm_full_simp_tac HOL_basic_ss' 1)
+      THEN SOLVED (print_tac "state before applying intro rule:"
+      THEN (rtac pred_intro_rule 1)
+      (* How to handle equality correctly? *)
+      THEN (print_tac "state before assumption matching")
+      THEN (REPEAT (atac 1 ORELSE 
+         (CHANGED (asm_full_simp_tac HOL_basic_ss' 1)
+          THEN print_tac "state after simp_tac:"))))
+    | prove_prems2 out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+      let
+        val rest_tac = (case p of
+          Prem (us, t) =>
+          let
+            val (_, out_ts''') = split_smode is us
+            val rec_tac = prove_prems2 out_ts''' ps
+          in
+            (prove_expr2 thy (mode, t)) THEN rec_tac
+          end
+        | Negprem (us, t) =>
+          let
+            val (_, out_ts''') = split_smode is us
+            val rec_tac = prove_prems2 out_ts''' ps
+            val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+            val (_, params) = strip_comb t
+          in
+            print_tac "before neg prem 2"
+            THEN etac @{thm bindE} 1
+            THEN (if is_some name then
+                full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1 
+                THEN etac @{thm not_predE} 1
+                THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+                THEN (EVERY (map (prove_param2 thy) (param_modes ~~ params)))
+              else
+                etac @{thm not_predE'} 1)
+            THEN rec_tac
+          end 
+        | Sidecond t =>
+          etac @{thm bindE} 1
+          THEN etac @{thm if_predE} 1
+          THEN prove_sidecond2 thy modes t 
+          THEN prove_prems2 [] ps)
+      in print_tac "before prove_match2:"
+         THEN prove_match2 thy out_ts
+         THEN print_tac "after prove_match2:"
+         THEN rest_tac
+      end;
+    val prems_tac = prove_prems2 in_ts ps 
+  in
+    print_tac "starting prove_clause2"
+    THEN etac @{thm bindE} 1
+    THEN (etac @{thm singleE'} 1)
+    THEN (TRY (etac @{thm Pair_inject} 1))
+    THEN print_tac "after singleE':"
+    THEN prems_tac
+  end;
+ 
+fun prove_other_direction thy modes pred mode moded_clauses =
+  let
+    fun prove_clause clause i =
+      (if i < length moded_clauses then etac @{thm supE} 1 else all_tac)
+      THEN (prove_clause2 thy modes pred mode clause i)
+  in
+    (DETERM (TRY (rtac @{thm unit.induct} 1)))
+     THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
+     THEN (rtac (predfun_intro_of thy pred mode) 1)
+     THEN (REPEAT_DETERM (rtac @{thm refl} 2))
+     THEN (EVERY (map2 prove_clause moded_clauses (1 upto (length moded_clauses))))
+  end;
+
+(** proof procedure **)
+
+fun prove_pred thy clauses preds modes pred mode (moded_clauses, compiled_term) =
+  let
+    val ctxt = ProofContext.init thy
+    val clauses = the (AList.lookup (op =) clauses pred)
+  in
+    Goal.prove ctxt (Term.add_free_names compiled_term []) [] compiled_term
+      (if !do_proofs then
+        (fn _ =>
+        rtac @{thm pred_iffI} 1
+        THEN prove_one_direction thy clauses preds modes pred mode moded_clauses
+        THEN print_tac "proved one direction"
+        THEN prove_other_direction thy modes pred mode moded_clauses
+        THEN print_tac "proved other direction")
+       else (fn _ => mycheat_tac thy 1))
+  end;
+
+(* composition of mode inference, definition, compilation and proof *)
+
+(** auxillary combinators for table of preds and modes **)
+
+fun map_preds_modes f preds_modes_table =
+  map (fn (pred, modes) =>
+    (pred, map (fn (mode, value) => (mode, f pred mode value)) modes)) preds_modes_table
+
+fun join_preds_modes table1 table2 =
+  map_preds_modes (fn pred => fn mode => fn value =>
+    (value, the (AList.lookup (op =) (the (AList.lookup (op =) table2 pred)) mode))) table1
+    
+fun maps_modes preds_modes_table =
+  map (fn (pred, modes) =>
+    (pred, map (fn (mode, value) => value) modes)) preds_modes_table  
+    
+fun compile_preds compfuns mk_fun_of use_size thy all_vs param_vs preds moded_clauses =
+  map_preds_modes (fn pred => compile_pred compfuns mk_fun_of use_size thy all_vs param_vs pred
+      (the (AList.lookup (op =) preds pred))) moded_clauses  
+  
+fun prove thy clauses preds modes moded_clauses compiled_terms =
+  map_preds_modes (prove_pred thy clauses preds modes)
+    (join_preds_modes moded_clauses compiled_terms)
+
+fun prove_by_skip thy _ _ _ _ compiled_terms =
+  map_preds_modes (fn pred => fn mode => fn t => Drule.standard (SkipProof.make_thm thy t))
+    compiled_terms
+    
+fun prepare_intrs thy prednames =
+  let
+    val intrs = maps (intros_of thy) prednames
+      |> map (Logic.unvarify o prop_of)
+    val nparams = nparams_of thy (hd prednames)
+    val extra_modes = all_modes_of thy |> filter_out (fn (name, _) => member (op =) prednames name)
+    val preds = distinct (op =) (map (dest_Const o fst o (strip_intro_concl nparams)) intrs)
+    val _ $ u = Logic.strip_imp_concl (hd intrs);
+    val params = List.take (snd (strip_comb u), nparams);
+    val param_vs = maps term_vs params
+    val all_vs = terms_vs intrs
+    fun dest_prem t =
+      (case strip_comb t of
+        (v as Free _, ts) => if v mem params then Prem (ts, v) else Sidecond t
+      | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem t of          
+          Prem (ts, t) => Negprem (ts, t)
+        | Negprem _ => error ("Double negation not allowed in premise: " ^ (Syntax.string_of_term_global thy (c $ t))) 
+        | Sidecond t => Sidecond (c $ t))
+      | (c as Const (s, _), ts) =>
+        if is_registered thy s then
+          let val (ts1, ts2) = chop (nparams_of thy s) ts
+          in Prem (ts2, list_comb (c, ts1)) end
+        else Sidecond t
+      | _ => Sidecond t)
+    fun add_clause intr (clauses, arities) =
+    let
+      val _ $ t = Logic.strip_imp_concl intr;
+      val (Const (name, T), ts) = strip_comb t;
+      val (ts1, ts2) = chop nparams ts;
+      val prems = map (dest_prem o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr);
+      val (Ts, Us) = chop nparams (binder_types T)
+    in
+      (AList.update op = (name, these (AList.lookup op = clauses name) @
+        [(ts2, prems)]) clauses,
+       AList.update op = (name, (map (fn U => (case strip_type U of
+                 (Rs as _ :: _, Type ("bool", [])) => SOME (length Rs)
+               | _ => NONE)) Ts,
+             length Us)) arities)
+    end;
+    val (clauses, arities) = fold add_clause intrs ([], []);
+  in (preds, nparams, all_vs, param_vs, extra_modes, clauses, arities) end;
+
+(** main function of predicate compiler **)
+
+fun add_equations_of steps prednames thy =
+  let
+    val _ = Output.tracing ("Starting predicate compiler for predicates " ^ commas prednames ^ "...")
+    val (preds, nparams, all_vs, param_vs, extra_modes, clauses, arities) =
+      prepare_intrs thy prednames
+    val _ = Output.tracing "Infering modes..."
+    val moded_clauses = #infer_modes steps thy extra_modes arities param_vs clauses 
+    val modes = map (fn (p, mps) => (p, map fst mps)) moded_clauses
+    val _ = print_modes modes
+    val _ = print_moded_clauses thy moded_clauses
+    val _ = Output.tracing "Defining executable functions..."
+    val thy' = fold (#create_definitions steps preds) modes thy
+      |> Theory.checkpoint
+    val _ = Output.tracing "Compiling equations..."
+    val compiled_terms =
+      (#compile_preds steps) thy' all_vs param_vs preds moded_clauses
+    val _ = print_compiled_terms thy' compiled_terms
+    val _ = Output.tracing "Proving equations..."
+    val result_thms = #prove steps thy' clauses preds (extra_modes @ modes)
+      moded_clauses compiled_terms
+    val qname = #qname steps
+    (* val attrib = gn thy => Attrib.attribute_i thy Code.add_eqn_attrib *)
+    val attrib = fn thy => Attrib.attribute_i thy (Attrib.internal (K (Thm.declaration_attribute
+      (fn thm => Context.mapping (Code.add_eqn thm) I))))
+    val thy'' = fold (fn (name, result_thms) => fn thy => snd (PureThy.add_thmss
+      [((Binding.qualify true (Long_Name.base_name name) (Binding.name qname), result_thms),
+        [attrib thy ])] thy))
+      (maps_modes result_thms) thy'
+      |> Theory.checkpoint
+  in
+    thy''
+  end
+
+fun extend' value_of edges_of key (G, visited) =
+  let
+    val (G', v) = case try (Graph.get_node G) key of
+        SOME v => (G, v)
+      | NONE => (Graph.new_node (key, value_of key) G, value_of key)
+    val (G'', visited') = fold (extend' value_of edges_of) (edges_of (key, v) \\ visited)
+      (G', key :: visited) 
+  in
+    (fold (Graph.add_edge o (pair key)) (edges_of (key, v)) G'', visited')
+  end;
+
+fun extend value_of edges_of key G = fst (extend' value_of edges_of key (G, [])) 
+  
+fun gen_add_equations steps names thy =
+  let
+    val thy' = PredData.map (fold (extend (fetch_pred_data thy) (depending_preds_of thy)) names) thy
+      |> Theory.checkpoint;
+    fun strong_conn_of gr keys =
+      Graph.strong_conn (Graph.subgraph (member (op =) (Graph.all_succs gr keys)) gr)
+    val scc = strong_conn_of (PredData.get thy') names
+    val thy'' = fold_rev
+      (fn preds => fn thy =>
+        if #are_not_defined steps thy preds then add_equations_of steps preds thy else thy)
+      scc thy' |> Theory.checkpoint
+  in thy'' end
+
+(* different instantiantions of the predicate compiler *)
+
+val add_equations = gen_add_equations
+  {infer_modes = infer_modes false,
+  create_definitions = create_definitions,
+  compile_preds = compile_preds PredicateCompFuns.compfuns mk_fun_of false,
+  prove = prove,
+  are_not_defined = (fn thy => forall (null o modes_of thy)),
+  qname = "equation"}
+
+val add_sizelim_equations = gen_add_equations
+  {infer_modes = infer_modes false,
+  create_definitions = sizelim_create_definitions,
+  compile_preds = compile_preds PredicateCompFuns.compfuns mk_sizelim_fun_of true,
+  prove = prove_by_skip,
+  are_not_defined = (fn thy => fn preds => true), (* TODO *)
+  qname = "sizelim_equation"
+  }
+  
+val add_quickcheck_equations = gen_add_equations
+  {infer_modes = infer_modes_with_generator,
+  create_definitions = rpred_create_definitions,
+  compile_preds = compile_preds RPredCompFuns.compfuns mk_generator_of true,
+  prove = prove_by_skip,
+  are_not_defined = (fn thy => fn preds => true), (* TODO *)
+  qname = "rpred_equation"}
+
+(** user interface **)
+
+(* generation of case rules from user-given introduction rules *)
+
+fun mk_casesrule ctxt nparams introrules =
+  let
+    val intros = map (Logic.unvarify o prop_of) introrules
+    val (pred, (params, args)) = strip_intro_concl nparams (hd intros)
+    val ([propname], ctxt1) = Variable.variant_fixes ["thesis"] ctxt
+    val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
+    val (argnames, ctxt2) = Variable.variant_fixes
+      (map (fn i => "a" ^ string_of_int i) (1 upto (length args))) ctxt1
+    val argvs = map2 (curry Free) argnames (map fastype_of args)
+    fun mk_case intro =
+      let
+        val (_, (_, args)) = strip_intro_concl nparams intro
+        val prems = Logic.strip_imp_prems intro
+        val eqprems = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (argvs ~~ args)
+        val frees = (fold o fold_aterms)
+          (fn t as Free _ =>
+              if member (op aconv) params t then I else insert (op aconv) t
+           | _ => I) (args @ prems) []
+      in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
+    val assm = HOLogic.mk_Trueprop (list_comb (pred, params @ argvs))
+    val cases = map mk_case intros
+  in Logic.list_implies (assm :: cases, prop) end;
+
+(* code_pred_intro attribute *)
+
+fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
+
+val code_pred_intros_attrib = attrib add_intro;
+
+local
+
+(* TODO: make TheoryDataFun to GenericDataFun & remove duplication of local theory and theory *)
+(* TODO: must create state to prove multiple cases *)
+fun generic_code_pred prep_const raw_const lthy =
+  let
+    val thy = ProofContext.theory_of lthy
+    val const = prep_const thy raw_const
+    val lthy' = LocalTheory.theory (PredData.map
+        (extend (fetch_pred_data thy) (depending_preds_of thy) const)) lthy
+      |> LocalTheory.checkpoint
+    val thy' = ProofContext.theory_of lthy'
+    val preds = Graph.all_preds (PredData.get thy') [const] |> filter_out (has_elim thy')
+    fun mk_cases const =
+      let
+        val nparams = nparams_of thy' const
+        val intros = intros_of thy' const
+      in mk_casesrule lthy' nparams intros end  
+    val cases_rules = map mk_cases preds
+    val cases =
+      map (fn case_rule => RuleCases.Case {fixes = [],
+        assumes = [("", Logic.strip_imp_prems case_rule)],
+        binds = [], cases = []}) cases_rules
+    val case_env = map2 (fn p => fn c => (Long_Name.base_name p, SOME c)) preds cases
+    val lthy'' = lthy'
+      |> fold Variable.auto_fixes cases_rules 
+      |> ProofContext.add_cases true case_env
+    fun after_qed thms goal_ctxt =
+      let
+        val global_thms = ProofContext.export goal_ctxt
+          (ProofContext.init (ProofContext.theory_of goal_ctxt)) (map the_single thms)
+      in
+        goal_ctxt |> LocalTheory.theory (fold set_elim global_thms #> add_equations [const])
+      end  
+  in
+    Proof.theorem_i NONE after_qed (map (single o (rpair [])) cases_rules) lthy''
+  end;
+
+structure P = OuterParse
+
+in
+
+val code_pred = generic_code_pred (K I);
+val code_pred_cmd = generic_code_pred Code.read_const
+
+val setup = PredData.put (Graph.empty) #>
+  Attrib.setup @{binding code_pred_intros} (Scan.succeed (attrib add_intro))
+    "adding alternative introduction rules for code generation of inductive predicates"
+(*  Attrib.setup @{binding code_ind_cases} (Scan.succeed add_elim_attrib)
+    "adding alternative elimination rules for code generation of inductive predicates";
+    *)
+  (*FIXME name discrepancy in attribs and ML code*)
+  (*FIXME intros should be better named intro*)
+  (*FIXME why distinguished attribute for cases?*)
+
+val _ = OuterSyntax.local_theory_to_proof "code_pred"
+  "prove equations for predicate specified by intro/elim rules"
+  OuterKeyword.thy_goal (P.term_group >> code_pred_cmd)
+
+end
+
+(*FIXME
+- Naming of auxiliary rules necessary?
+- add default code equations P x y z = P_i_i_i x y z
+*)
+
+(* transformation for code generation *)
+
+val eval_ref = ref (NONE : (unit -> term Predicate.pred) option);
+
+(*FIXME turn this into an LCF-guarded preprocessor for comprehensions*)
+fun analyze_compr thy t_compr =
+  let
+    val split = case t_compr of (Const (@{const_name Collect}, _) $ t) => t
+      | _ => error ("Not a set comprehension: " ^ Syntax.string_of_term_global thy t_compr);
+    val (body, Ts, fp) = HOLogic.strip_psplits split;
+    val (pred as Const (name, T), all_args) = strip_comb body;
+    val (params, args) = chop (nparams_of thy name) all_args;
+    val user_mode = map_filter I (map_index
+      (fn (i, t) => case t of Bound j => if j < length Ts then NONE
+        else SOME (i+1) | _ => SOME (i+1)) args); (*FIXME dangling bounds should not occur*)
+    val modes = filter (fn Mode (_, is, _) => is = user_mode)
+      (modes_of_term (all_modes_of thy) (list_comb (pred, params)));
+    val m = case modes
+     of [] => error ("No mode possible for comprehension "
+                ^ Syntax.string_of_term_global thy t_compr)
+      | [m] => m
+      | m :: _ :: _ => (warning ("Multiple modes possible for comprehension "
+                ^ Syntax.string_of_term_global thy t_compr); m);
+    val (inargs, outargs) = split_smode user_mode args;
+    val t_pred = list_comb (compile_expr NONE thy (m, list_comb (pred, params)), inargs);
+    val t_eval = if null outargs then t_pred else let
+        val outargs_bounds = map (fn Bound i => i) outargs;
+        val outargsTs = map (nth Ts) outargs_bounds;
+        val T_pred = HOLogic.mk_tupleT outargsTs;
+        val T_compr = HOLogic.mk_ptupleT fp Ts;
+        val arrange_bounds = map_index I outargs_bounds
+          |> sort (prod_ord (K EQUAL) int_ord)
+          |> map fst;
+        val arrange = funpow (length outargs_bounds - 1) HOLogic.mk_split
+          (Term.list_abs (map (pair "") outargsTs,
+            HOLogic.mk_ptuple fp T_compr (map Bound arrange_bounds)))
+      in mk_map PredicateCompFuns.compfuns T_pred T_compr arrange t_pred end
+  in t_eval end;
+
+fun eval thy t_compr =
+  let
+    val t = analyze_compr thy t_compr;
+    val T = dest_predT PredicateCompFuns.compfuns (fastype_of t);
+    val t' = mk_map PredicateCompFuns.compfuns T HOLogic.termT (HOLogic.term_of_const T) t;
+  in (T, Code_ML.eval NONE ("Predicate_Compile.eval_ref", eval_ref) Predicate.map thy t' []) end;
+
+fun values ctxt k t_compr =
+  let
+    val thy = ProofContext.theory_of ctxt;
+    val (T, t) = eval thy t_compr;
+    val setT = HOLogic.mk_setT T;
+    val (ts, _) = Predicate.yieldn k t;
+    val elemsT = HOLogic.mk_set T ts;
+  in if k = ~1 orelse length ts < k then elemsT
+    else Const (@{const_name Lattices.sup}, setT --> setT --> setT) $ elemsT $ t_compr
+  end;
+
+fun values_cmd modes k raw_t state =
+  let
+    val ctxt = Toplevel.context_of state;
+    val t = Syntax.read_term ctxt raw_t;
+    val t' = values ctxt k t;
+    val ty' = Term.type_of t';
+    val ctxt' = Variable.auto_fixes t' ctxt;
+    val p = PrintMode.with_modes modes (fn () =>
+      Pretty.block [Pretty.quote (Syntax.pretty_term ctxt' t'), Pretty.fbrk,
+        Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt' ty')]) ();
+  in Pretty.writeln p end;
+
+local structure P = OuterParse in
+
+val opt_modes = Scan.optional (P.$$$ "(" |-- P.!!! (Scan.repeat1 P.xname --| P.$$$ ")")) [];
+
+val _ = OuterSyntax.improper_command "values" "enumerate and print comprehensions" OuterKeyword.diag
+  (opt_modes -- Scan.optional P.nat ~1 -- P.term
+    >> (fn ((modes, k), t) => Toplevel.no_timing o Toplevel.keep
+        (values_cmd modes k t)));
+
+end;
+
+end;
+