--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/predicate_compile.ML Fri Sep 25 09:50:31 2009 +0200
@@ -0,0 +1,2182 @@
+(* Author: Lukas Bulwahn, TU Muenchen
+
+(Prototype of) A compiler from predicates specified by intro/elim rules
+to equations.
+*)
+
+signature PREDICATE_COMPILE =
+sig
+ type mode = int list option list * int list
+ (*val add_equations_of: bool -> string list -> theory -> theory *)
+ val register_predicate : (thm list * thm * int) -> theory -> theory
+ val is_registered : theory -> string -> bool
+ (* val fetch_pred_data : theory -> string -> (thm list * thm * int) *)
+ val predfun_intro_of: theory -> string -> mode -> thm
+ val predfun_elim_of: theory -> string -> mode -> thm
+ val strip_intro_concl: int -> term -> term * (term list * term list)
+ val predfun_name_of: theory -> string -> mode -> string
+ val all_preds_of : theory -> string list
+ val modes_of: theory -> string -> mode list
+ val string_of_mode : mode -> string
+ val intros_of: theory -> string -> thm list
+ val nparams_of: theory -> string -> int
+ val add_intro: thm -> theory -> theory
+ val set_elim: thm -> theory -> theory
+ val setup: theory -> theory
+ val code_pred: string -> Proof.context -> Proof.state
+ val code_pred_cmd: string -> Proof.context -> Proof.state
+ val print_stored_rules: theory -> unit
+ val print_all_modes: theory -> unit
+ val do_proofs: bool ref
+ val mk_casesrule : Proof.context -> int -> thm list -> term
+ val analyze_compr: theory -> term -> term
+ val eval_ref: (unit -> term Predicate.pred) option ref
+ val add_equations : string list -> theory -> theory
+ val code_pred_intros_attrib : attribute
+ (* used by Quickcheck_Generator *)
+ (*val funT_of : mode -> typ -> typ
+ val mk_if_pred : term -> term
+ val mk_Eval : term * term -> term*)
+ val mk_tupleT : typ list -> typ
+(* val mk_predT : typ -> typ *)
+ (* temporary for testing of the compilation *)
+ datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
+ GeneratorPrem of term list * term | Generator of (string * typ);
+ val prepare_intrs: theory -> string list ->
+ (string * typ) list * int * string list * string list * (string * mode list) list *
+ (string * (term list * indprem list) list) list * (string * (int option list * int)) list
+ datatype compilation_funs = CompilationFuns of {
+ mk_predT : typ -> typ,
+ dest_predT : typ -> typ,
+ mk_bot : typ -> term,
+ mk_single : term -> term,
+ mk_bind : term * term -> term,
+ mk_sup : term * term -> term,
+ mk_if : term -> term,
+ mk_not : term -> term,
+ mk_map : typ -> typ -> term -> term -> term,
+ lift_pred : term -> term
+ };
+ datatype tmode = Mode of mode * int list * tmode option list;
+ type moded_clause = term list * (indprem * tmode) list
+ type 'a pred_mode_table = (string * (mode * 'a) list) list
+ val infer_modes : bool -> theory -> (string * (int list option list * int list) list) list
+ -> (string * (int option list * int)) list -> string list
+ -> (string * (term list * indprem list) list) list
+ -> (moded_clause list) pred_mode_table
+ val infer_modes_with_generator : theory -> (string * (int list option list * int list) list) list
+ -> (string * (int option list * int)) list -> string list
+ -> (string * (term list * indprem list) list) list
+ -> (moded_clause list) pred_mode_table
+ (*val compile_preds : theory -> compilation_funs -> string list -> string list
+ -> (string * typ) list -> (moded_clause list) pred_mode_table -> term pred_mode_table
+ val rpred_create_definitions :(string * typ) list -> string * mode list
+ -> theory -> theory
+ val split_smode : int list -> term list -> (term list * term list) *)
+ val print_moded_clauses :
+ theory -> (moded_clause list) pred_mode_table -> unit
+ val print_compiled_terms : theory -> term pred_mode_table -> unit
+ (*val rpred_prove_preds : theory -> term pred_mode_table -> thm pred_mode_table*)
+ val rpred_compfuns : compilation_funs
+ val dest_funT : typ -> typ * typ
+ (* val depending_preds_of : theory -> thm list -> string list *)
+ val add_quickcheck_equations : string list -> theory -> theory
+ val add_sizelim_equations : string list -> theory -> theory
+ val is_inductive_predicate : theory -> string -> bool
+ val terms_vs : term list -> string list
+ val subsets : int -> int -> int list list
+ val check_mode_clause : bool -> theory -> string list ->
+ (string * mode list) list -> (string * mode list) list -> mode -> (term list * indprem list)
+ -> (term list * (indprem * tmode) list) option
+ val string_of_moded_prem : theory -> (indprem * tmode) -> string
+ val all_modes_of : theory -> (string * mode list) list
+ val all_generator_modes_of : theory -> (string * mode list) list
+ val compile_clause : compilation_funs -> term option -> (term list -> term) ->
+ theory -> string list -> string list -> mode -> term -> moded_clause -> term
+ val preprocess_intro : theory -> thm -> thm
+ val is_constrt : theory -> term -> bool
+ val is_predT : typ -> bool
+ val guess_nparams : typ -> int
+end;
+
+structure Predicate_Compile : PREDICATE_COMPILE =
+struct
+
+(** auxiliary **)
+
+(* debug stuff *)
+
+fun tracing s = (if ! Toplevel.debug then Output.tracing s else ());
+
+fun print_tac s = Seq.single; (* (if ! Toplevel.debug then Tactical.print_tac s else Seq.single); *)
+fun debug_tac msg = Seq.single; (* (fn st => (Output.tracing msg; Seq.single st)); *)
+
+val do_proofs = ref true;
+
+fun mycheat_tac thy i st =
+ (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) i) st
+
+fun remove_last_goal thy st =
+ (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) (nprems_of st)) st
+
+(* reference to preprocessing of InductiveSet package *)
+
+val ind_set_codegen_preproc = Inductive_Set.codegen_preproc;
+
+(** fundamentals **)
+
+(* syntactic operations *)
+
+fun mk_eq (x, xs) =
+ let fun mk_eqs _ [] = []
+ | mk_eqs a (b::cs) =
+ HOLogic.mk_eq (Free (a, fastype_of b), b) :: mk_eqs a cs
+ in mk_eqs x xs end;
+
+fun mk_tupleT [] = HOLogic.unitT
+ | mk_tupleT Ts = foldr1 HOLogic.mk_prodT Ts;
+
+fun dest_tupleT (Type (@{type_name Product_Type.unit}, [])) = []
+ | dest_tupleT (Type (@{type_name "*"}, [T1, T2])) = T1 :: (dest_tupleT T2)
+ | dest_tupleT t = [t]
+
+fun mk_tuple [] = HOLogic.unit
+ | mk_tuple ts = foldr1 HOLogic.mk_prod ts;
+
+fun dest_tuple (Const (@{const_name Product_Type.Unity}, _)) = []
+ | dest_tuple (Const (@{const_name Pair}, _) $ t1 $ t2) = t1 :: (dest_tuple t2)
+ | dest_tuple t = [t]
+
+fun mk_scomp (t, u) =
+ let
+ val T = fastype_of t
+ val U = fastype_of u
+ val [A] = binder_types T
+ val D = body_type U
+ in
+ Const (@{const_name "scomp"}, T --> U --> A --> D) $ t $ u
+ end;
+
+fun dest_funT (Type ("fun",[S, T])) = (S, T)
+ | dest_funT T = raise TYPE ("dest_funT", [T], [])
+
+fun mk_fun_comp (t, u) =
+ let
+ val (_, B) = dest_funT (fastype_of t)
+ val (C, A) = dest_funT (fastype_of u)
+ in
+ Const(@{const_name "Fun.comp"}, (A --> B) --> (C --> A) --> C --> B) $ t $ u
+ end;
+
+fun dest_randomT (Type ("fun", [@{typ Random.seed},
+ Type ("*", [Type ("*", [T, @{typ "unit => Code_Evaluation.term"}]) ,@{typ Random.seed}])])) = T
+ | dest_randomT T = raise TYPE ("dest_randomT", [T], [])
+
+(* destruction of intro rules *)
+
+(* FIXME: look for other place where this functionality was used before *)
+fun strip_intro_concl nparams intro = let
+ val _ $ u = Logic.strip_imp_concl intro
+ val (pred, all_args) = strip_comb u
+ val (params, args) = chop nparams all_args
+in (pred, (params, args)) end
+
+(** data structures **)
+
+type smode = int list;
+type mode = smode option list * smode;
+datatype tmode = Mode of mode * int list * tmode option list;
+
+fun split_smode is ts =
+ let
+ fun split_smode' _ _ [] = ([], [])
+ | split_smode' is i (t::ts) = (if i mem is then apfst else apsnd) (cons t)
+ (split_smode' is (i+1) ts)
+ in split_smode' is 1 ts end
+
+fun split_mode (iss, is) ts =
+ let
+ val (t1, t2) = chop (length iss) ts
+ in (t1, split_smode is t2) end
+
+fun string_of_mode (iss, is) = space_implode " -> " (map
+ (fn NONE => "X"
+ | SOME js => enclose "[" "]" (commas (map string_of_int js)))
+ (iss @ [SOME is]));
+
+fun string_of_tmode (Mode (predmode, termmode, param_modes)) =
+ "predmode: " ^ (string_of_mode predmode) ^
+ (if null param_modes then "" else
+ "; " ^ "params: " ^ commas (map (the_default "NONE" o Option.map string_of_tmode) param_modes))
+
+datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
+ GeneratorPrem of term list * term | Generator of (string * typ);
+
+type moded_clause = term list * (indprem * tmode) list
+type 'a pred_mode_table = (string * (mode * 'a) list) list
+
+datatype predfun_data = PredfunData of {
+ name : string,
+ definition : thm,
+ intro : thm,
+ elim : thm
+};
+
+fun rep_predfun_data (PredfunData data) = data;
+fun mk_predfun_data (name, definition, intro, elim) =
+ PredfunData {name = name, definition = definition, intro = intro, elim = elim}
+
+datatype function_data = FunctionData of {
+ name : string,
+ equation : thm option (* is not used at all? *)
+};
+
+fun rep_function_data (FunctionData data) = data;
+fun mk_function_data (name, equation) =
+ FunctionData {name = name, equation = equation}
+
+datatype pred_data = PredData of {
+ intros : thm list,
+ elim : thm option,
+ nparams : int,
+ functions : (mode * predfun_data) list,
+ generators : (mode * function_data) list,
+ sizelim_functions : (mode * function_data) list
+};
+
+fun rep_pred_data (PredData data) = data;
+fun mk_pred_data ((intros, elim, nparams), (functions, generators, sizelim_functions)) =
+ PredData {intros = intros, elim = elim, nparams = nparams,
+ functions = functions, generators = generators, sizelim_functions = sizelim_functions}
+fun map_pred_data f (PredData {intros, elim, nparams, functions, generators, sizelim_functions}) =
+ mk_pred_data (f ((intros, elim, nparams), (functions, generators, sizelim_functions)))
+
+fun eq_option eq (NONE, NONE) = true
+ | eq_option eq (SOME x, SOME y) = eq (x, y)
+ | eq_option eq _ = false
+
+fun eq_pred_data (PredData d1, PredData d2) =
+ eq_list (Thm.eq_thm) (#intros d1, #intros d2) andalso
+ eq_option (Thm.eq_thm) (#elim d1, #elim d2) andalso
+ #nparams d1 = #nparams d2
+
+structure PredData = TheoryDataFun
+(
+ type T = pred_data Graph.T;
+ val empty = Graph.empty;
+ val copy = I;
+ val extend = I;
+ fun merge _ = Graph.merge eq_pred_data;
+);
+
+(* queries *)
+
+fun lookup_pred_data thy name =
+ Option.map rep_pred_data (try (Graph.get_node (PredData.get thy)) name)
+
+fun the_pred_data thy name = case lookup_pred_data thy name
+ of NONE => error ("No such predicate " ^ quote name)
+ | SOME data => data;
+
+val is_registered = is_some oo lookup_pred_data
+
+val all_preds_of = Graph.keys o PredData.get
+
+val intros_of = #intros oo the_pred_data
+
+fun the_elim_of thy name = case #elim (the_pred_data thy name)
+ of NONE => error ("No elimination rule for predicate " ^ quote name)
+ | SOME thm => thm
+
+val has_elim = is_some o #elim oo the_pred_data;
+
+val nparams_of = #nparams oo the_pred_data
+
+val modes_of = (map fst) o #functions oo the_pred_data
+
+fun all_modes_of thy = map (fn name => (name, modes_of thy name)) (all_preds_of thy)
+
+val is_compiled = not o null o #functions oo the_pred_data
+
+fun lookup_predfun_data thy name mode =
+ Option.map rep_predfun_data (AList.lookup (op =)
+ (#functions (the_pred_data thy name)) mode)
+
+fun the_predfun_data thy name mode = case lookup_predfun_data thy name mode
+ of NONE => error ("No function defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
+ | SOME data => data;
+
+val predfun_name_of = #name ooo the_predfun_data
+
+val predfun_definition_of = #definition ooo the_predfun_data
+
+val predfun_intro_of = #intro ooo the_predfun_data
+
+val predfun_elim_of = #elim ooo the_predfun_data
+
+fun lookup_generator_data thy name mode =
+ Option.map rep_function_data (AList.lookup (op =)
+ (#generators (the_pred_data thy name)) mode)
+
+fun the_generator_data thy name mode = case lookup_generator_data thy name mode
+ of NONE => error ("No generator defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
+ | SOME data => data
+
+val generator_name_of = #name ooo the_generator_data
+
+val generator_modes_of = (map fst) o #generators oo the_pred_data
+
+fun all_generator_modes_of thy =
+ map (fn name => (name, generator_modes_of thy name)) (all_preds_of thy)
+
+fun lookup_sizelim_function_data thy name mode =
+ Option.map rep_function_data (AList.lookup (op =)
+ (#sizelim_functions (the_pred_data thy name)) mode)
+
+fun the_sizelim_function_data thy name mode = case lookup_sizelim_function_data thy name mode
+ of NONE => error ("No size-limited function defined for mode " ^ string_of_mode mode
+ ^ " of predicate " ^ name)
+ | SOME data => data
+
+val sizelim_function_name_of = #name ooo the_sizelim_function_data
+
+(*val generator_modes_of = (map fst) o #generators oo the_pred_data*)
+
+(* diagnostic display functions *)
+
+fun print_modes modes = Output.tracing ("Inferred modes:\n" ^
+ cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
+ string_of_mode ms)) modes));
+
+fun print_pred_mode_table string_of_entry thy pred_mode_table =
+ let
+ fun print_mode pred (mode, entry) = "mode : " ^ (string_of_mode mode)
+ ^ (string_of_entry pred mode entry)
+ fun print_pred (pred, modes) =
+ "predicate " ^ pred ^ ": " ^ cat_lines (map (print_mode pred) modes)
+ val _ = Output.tracing (cat_lines (map print_pred pred_mode_table))
+ in () end;
+
+fun string_of_moded_prem thy (Prem (ts, p), tmode) =
+ (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+ "(" ^ (string_of_tmode tmode) ^ ")"
+ | string_of_moded_prem thy (GeneratorPrem (ts, p), Mode (predmode, is, _)) =
+ (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+ "(generator_mode: " ^ (string_of_mode predmode) ^ ")"
+ | string_of_moded_prem thy (Generator (v, T), _) =
+ "Generator for " ^ v ^ " of Type " ^ (Syntax.string_of_typ_global thy T)
+ | string_of_moded_prem thy (Negprem (ts, p), Mode (_, is, _)) =
+ (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+ "(negative mode: " ^ (space_implode ", " (map string_of_int is)) ^ ")"
+ | string_of_moded_prem thy (Sidecond t, Mode (_, is, _)) =
+ (Syntax.string_of_term_global thy t) ^
+ "(sidecond mode: " ^ (space_implode ", " (map string_of_int is)) ^ ")"
+ | string_of_moded_prem _ _ = error "string_of_moded_prem: unimplemented"
+
+fun print_moded_clauses thy =
+ let
+ fun string_of_clause pred mode clauses =
+ cat_lines (map (fn (ts, prems) => (space_implode " --> "
+ (map (string_of_moded_prem thy) prems)) ^ " --> " ^ pred ^ " "
+ ^ (space_implode " " (map (Syntax.string_of_term_global thy) ts))) clauses)
+ in print_pred_mode_table string_of_clause thy end;
+
+fun print_compiled_terms thy =
+ print_pred_mode_table (fn _ => fn _ => Syntax.string_of_term_global thy) thy
+
+fun print_stored_rules thy =
+ let
+ val preds = (Graph.keys o PredData.get) thy
+ fun print pred () = let
+ val _ = writeln ("predicate: " ^ pred)
+ val _ = writeln ("number of parameters: " ^ string_of_int (nparams_of thy pred))
+ val _ = writeln ("introrules: ")
+ val _ = fold (fn thm => fn u => writeln (Display.string_of_thm_global thy thm))
+ (rev (intros_of thy pred)) ()
+ in
+ if (has_elim thy pred) then
+ writeln ("elimrule: " ^ Display.string_of_thm_global thy (the_elim_of thy pred))
+ else
+ writeln ("no elimrule defined")
+ end
+ in
+ fold print preds ()
+ end;
+
+fun print_all_modes thy =
+ let
+ val _ = writeln ("Inferred modes:")
+ fun print (pred, modes) u =
+ let
+ val _ = writeln ("predicate: " ^ pred)
+ val _ = writeln ("modes: " ^ (commas (map string_of_mode modes)))
+ in u end
+ in
+ fold print (all_modes_of thy) ()
+ end
+
+(** preprocessing rules **)
+
+fun imp_prems_conv cv ct =
+ case Thm.term_of ct of
+ Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
+ | _ => Conv.all_conv ct
+
+fun Trueprop_conv cv ct =
+ case Thm.term_of ct of
+ Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct
+ | _ => error "Trueprop_conv"
+
+fun preprocess_intro thy rule =
+ Conv.fconv_rule
+ (imp_prems_conv
+ (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
+ (Thm.transfer thy rule)
+
+fun preprocess_elim thy nparams elimrule =
+ let
+ fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
+ HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs)
+ | replace_eqs t = t
+ val prems = Thm.prems_of elimrule
+ val nargs = length (snd (strip_comb (HOLogic.dest_Trueprop (hd prems)))) - nparams
+ fun preprocess_case t =
+ let
+ val params = Logic.strip_params t
+ val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
+ val assums_hyp' = assums1 @ (map replace_eqs assums2)
+ in
+ list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t))
+ end
+ val cases' = map preprocess_case (tl prems)
+ val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
+ in
+ Thm.equal_elim
+ (Thm.symmetric (Conv.implies_concl_conv (MetaSimplifier.rewrite true [@{thm eq_is_eq}])
+ (cterm_of thy elimrule')))
+ elimrule
+ end;
+
+(* special case: predicate with no introduction rule *)
+fun noclause thy predname elim = let
+ val T = (Logic.unvarifyT o Sign.the_const_type thy) predname
+ val Ts = binder_types T
+ val names = Name.variant_list []
+ (map (fn i => "x" ^ (string_of_int i)) (1 upto (length Ts)))
+ val vs = map2 (curry Free) names Ts
+ val clausehd = HOLogic.mk_Trueprop (list_comb (Const (predname, T), vs))
+ val intro_t = Logic.mk_implies (@{prop False}, clausehd)
+ val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT))
+ val elim_t = Logic.list_implies ([clausehd, Logic.mk_implies (@{prop False}, P)], P)
+ val intro = Goal.prove (ProofContext.init thy) names [] intro_t
+ (fn {...} => etac @{thm FalseE} 1)
+ val elim = Goal.prove (ProofContext.init thy) ("P" :: names) [] elim_t
+ (fn {...} => etac elim 1)
+in
+ ([intro], elim)
+end
+
+fun fetch_pred_data thy name =
+ case try (Inductive.the_inductive (ProofContext.init thy)) name of
+ SOME (info as (_, result)) =>
+ let
+ fun is_intro_of intro =
+ let
+ val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro))
+ in (fst (dest_Const const) = name) end;
+ val intros = ind_set_codegen_preproc thy ((map (preprocess_intro thy))
+ (filter is_intro_of (#intrs result)))
+ val pre_elim = nth (#elims result) (find_index (fn s => s = name) (#names (fst info)))
+ val nparams = length (Inductive.params_of (#raw_induct result))
+ val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
+ val (intros, elim) = if null intros then noclause thy name elim else (intros, elim)
+ in
+ mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
+ end
+ | NONE => error ("No such predicate: " ^ quote name)
+
+(* updaters *)
+
+fun apfst3 f (x, y, z) = (f x, y, z)
+fun apsnd3 f (x, y, z) = (x, f y, z)
+fun aptrd3 f (x, y, z) = (x, y, f z)
+
+fun add_predfun name mode data =
+ let
+ val add = (apsnd o apfst3 o cons) (mode, mk_predfun_data data)
+ in PredData.map (Graph.map_node name (map_pred_data add)) end
+
+fun is_inductive_predicate thy name =
+ is_some (try (Inductive.the_inductive (ProofContext.init thy)) name)
+
+fun depending_preds_of thy (key, value) =
+ let
+ val intros = (#intros o rep_pred_data) value
+ in
+ fold Term.add_const_names (map Thm.prop_of intros) []
+ |> filter (fn c => (not (c = key)) andalso (is_inductive_predicate thy c orelse is_registered thy c))
+ end;
+
+
+(* code dependency graph *)
+(*
+fun dependencies_of thy name =
+ let
+ val (intros, elim, nparams) = fetch_pred_data thy name
+ val data = mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
+ val keys = depending_preds_of thy intros
+ in
+ (data, keys)
+ end;
+*)
+(* guessing number of parameters *)
+fun find_indexes pred xs =
+ let
+ fun find is n [] = is
+ | find is n (x :: xs) = find (if pred x then (n :: is) else is) (n + 1) xs;
+ in rev (find [] 0 xs) end;
+
+fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = HOLogic.boolT)
+ | is_predT _ = false
+
+fun guess_nparams T =
+ let
+ val argTs = binder_types T
+ val nparams = fold (curry Int.max)
+ (map (fn x => x + 1) (find_indexes is_predT argTs)) 0
+ in nparams end;
+
+fun add_intro thm thy = let
+ val (name, T) = dest_Const (fst (strip_intro_concl 0 (prop_of thm)))
+ fun cons_intro gr =
+ case try (Graph.get_node gr) name of
+ SOME pred_data => Graph.map_node name (map_pred_data
+ (apfst (fn (intro, elim, nparams) => (thm::intro, elim, nparams)))) gr
+ | NONE =>
+ let
+ val nparams = the_default (guess_nparams T) (try (#nparams o rep_pred_data o (fetch_pred_data thy)) name)
+ in Graph.new_node (name, mk_pred_data (([thm], NONE, nparams), ([], [], []))) gr end;
+ in PredData.map cons_intro thy end
+
+fun set_elim thm = let
+ val (name, _) = dest_Const (fst
+ (strip_comb (HOLogic.dest_Trueprop (hd (prems_of thm)))))
+ fun set (intros, _, nparams) = (intros, SOME thm, nparams)
+ in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+
+fun set_nparams name nparams = let
+ fun set (intros, elim, _ ) = (intros, elim, nparams)
+ in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+
+fun register_predicate (pre_intros, pre_elim, nparams) thy = let
+ val (name, _) = dest_Const (fst (strip_intro_concl nparams (prop_of (hd pre_intros))))
+ (* preprocessing *)
+ val intros = ind_set_codegen_preproc thy (map (preprocess_intro thy) pre_intros)
+ val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
+ in
+ PredData.map
+ (Graph.new_node (name, mk_pred_data ((intros, SOME elim, nparams), ([], [], [])))) thy
+ end
+
+fun set_generator_name pred mode name =
+ let
+ val set = (apsnd o apsnd3 o cons) (mode, mk_function_data (name, NONE))
+ in
+ PredData.map (Graph.map_node pred (map_pred_data set))
+ end
+
+fun set_sizelim_function_name pred mode name =
+ let
+ val set = (apsnd o aptrd3 o cons) (mode, mk_function_data (name, NONE))
+ in
+ PredData.map (Graph.map_node pred (map_pred_data set))
+ end
+
+(** data structures for generic compilation for different monads **)
+
+(* maybe rename functions more generic:
+ mk_predT -> mk_monadT; dest_predT -> dest_monadT
+ mk_single -> mk_return (?)
+*)
+datatype compilation_funs = CompilationFuns of {
+ mk_predT : typ -> typ,
+ dest_predT : typ -> typ,
+ mk_bot : typ -> term,
+ mk_single : term -> term,
+ mk_bind : term * term -> term,
+ mk_sup : term * term -> term,
+ mk_if : term -> term,
+ mk_not : term -> term,
+(* funT_of : mode -> typ -> typ, *)
+(* mk_fun_of : theory -> (string * typ) -> mode -> term, *)
+ mk_map : typ -> typ -> term -> term -> term,
+ lift_pred : term -> term
+};
+
+fun mk_predT (CompilationFuns funs) = #mk_predT funs
+fun dest_predT (CompilationFuns funs) = #dest_predT funs
+fun mk_bot (CompilationFuns funs) = #mk_bot funs
+fun mk_single (CompilationFuns funs) = #mk_single funs
+fun mk_bind (CompilationFuns funs) = #mk_bind funs
+fun mk_sup (CompilationFuns funs) = #mk_sup funs
+fun mk_if (CompilationFuns funs) = #mk_if funs
+fun mk_not (CompilationFuns funs) = #mk_not funs
+(*fun funT_of (CompilationFuns funs) = #funT_of funs*)
+(*fun mk_fun_of (CompilationFuns funs) = #mk_fun_of funs*)
+fun mk_map (CompilationFuns funs) = #mk_map funs
+fun lift_pred (CompilationFuns funs) = #lift_pred funs
+
+fun funT_of compfuns (iss, is) T =
+ let
+ val Ts = binder_types T
+ val (paramTs, (inargTs, outargTs)) = split_mode (iss, is) Ts
+ val paramTs' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss paramTs
+ in
+ (paramTs' @ inargTs) ---> (mk_predT compfuns (mk_tupleT outargTs))
+ end;
+
+fun sizelim_funT_of compfuns (iss, is) T =
+ let
+ val Ts = binder_types T
+ val (paramTs, (inargTs, outargTs)) = split_mode (iss, is) Ts
+ val paramTs' = map2 (fn SOME is => sizelim_funT_of compfuns ([], is) | NONE => I) iss paramTs
+ in
+ (paramTs' @ inargTs @ [@{typ "code_numeral"}]) ---> (mk_predT compfuns (mk_tupleT outargTs))
+ end;
+
+fun mk_fun_of compfuns thy (name, T) mode =
+ Const (predfun_name_of thy name mode, funT_of compfuns mode T)
+
+fun mk_sizelim_fun_of compfuns thy (name, T) mode =
+ Const (sizelim_function_name_of thy name mode, sizelim_funT_of compfuns mode T)
+
+fun mk_generator_of compfuns thy (name, T) mode =
+ Const (generator_name_of thy name mode, sizelim_funT_of compfuns mode T)
+
+
+structure PredicateCompFuns =
+struct
+
+fun mk_predT T = Type (@{type_name "Predicate.pred"}, [T])
+
+fun dest_predT (Type (@{type_name "Predicate.pred"}, [T])) = T
+ | dest_predT T = raise TYPE ("dest_predT", [T], []);
+
+fun mk_bot T = Const (@{const_name Orderings.bot}, mk_predT T);
+
+fun mk_single t =
+ let val T = fastype_of t
+ in Const(@{const_name Predicate.single}, T --> mk_predT T) $ t end;
+
+fun mk_bind (x, f) =
+ let val T as Type ("fun", [_, U]) = fastype_of f
+ in
+ Const (@{const_name Predicate.bind}, fastype_of x --> T --> U) $ x $ f
+ end;
+
+val mk_sup = HOLogic.mk_binop @{const_name sup};
+
+fun mk_if cond = Const (@{const_name Predicate.if_pred},
+ HOLogic.boolT --> mk_predT HOLogic.unitT) $ cond;
+
+fun mk_not t = let val T = mk_predT HOLogic.unitT
+ in Const (@{const_name Predicate.not_pred}, T --> T) $ t end
+
+fun mk_Enum f =
+ let val T as Type ("fun", [T', _]) = fastype_of f
+ in
+ Const (@{const_name Predicate.Pred}, T --> mk_predT T') $ f
+ end;
+
+fun mk_Eval (f, x) =
+ let
+ val T = fastype_of x
+ in
+ Const (@{const_name Predicate.eval}, mk_predT T --> T --> HOLogic.boolT) $ f $ x
+ end;
+
+fun mk_map T1 T2 tf tp = Const (@{const_name Predicate.map},
+ (T1 --> T2) --> mk_predT T1 --> mk_predT T2) $ tf $ tp;
+
+val lift_pred = I
+
+val compfuns = CompilationFuns {mk_predT = mk_predT, dest_predT = dest_predT, mk_bot = mk_bot,
+ mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
+ mk_map = mk_map, lift_pred = lift_pred};
+
+end;
+
+(* termify_code:
+val termT = Type ("Code_Evaluation.term", []);
+fun termifyT T = HOLogic.mk_prodT (T, HOLogic.unitT --> termT)
+*)
+(*
+fun lift_random random =
+ let
+ val T = dest_randomT (fastype_of random)
+ in
+ mk_scomp (random,
+ mk_fun_comp (HOLogic.pair_const (PredicateCompFuns.mk_predT T) @{typ Random.seed},
+ mk_fun_comp (Const (@{const_name Predicate.single}, T --> (PredicateCompFuns.mk_predT T)),
+ Const (@{const_name "fst"}, HOLogic.mk_prodT (T, @{typ "unit => term"}) --> T))))
+ end;
+*)
+
+structure RPredCompFuns =
+struct
+
+fun mk_rpredT T =
+ @{typ "Random.seed"} --> HOLogic.mk_prodT (PredicateCompFuns.mk_predT T, @{typ "Random.seed"})
+
+fun dest_rpredT (Type ("fun", [_,
+ Type (@{type_name "*"}, [Type (@{type_name "Predicate.pred"}, [T]), _])])) = T
+ | dest_rpredT T = raise TYPE ("dest_rpredT", [T], []);
+
+fun mk_bot T = Const(@{const_name RPred.bot}, mk_rpredT T)
+
+fun mk_single t =
+ let
+ val T = fastype_of t
+ in
+ Const (@{const_name RPred.return}, T --> mk_rpredT T) $ t
+ end;
+
+fun mk_bind (x, f) =
+ let
+ val T as (Type ("fun", [_, U])) = fastype_of f
+ in
+ Const (@{const_name RPred.bind}, fastype_of x --> T --> U) $ x $ f
+ end
+
+val mk_sup = HOLogic.mk_binop @{const_name RPred.supp}
+
+fun mk_if cond = Const (@{const_name RPred.if_rpred},
+ HOLogic.boolT --> mk_rpredT HOLogic.unitT) $ cond;
+
+fun mk_not t = error "Negation is not defined for RPred"
+
+fun mk_map t = error "FIXME" (*FIXME*)
+
+fun lift_pred t =
+ let
+ val T = PredicateCompFuns.dest_predT (fastype_of t)
+ val lift_predT = PredicateCompFuns.mk_predT T --> mk_rpredT T
+ in
+ Const (@{const_name "RPred.lift_pred"}, lift_predT) $ t
+ end;
+
+val compfuns = CompilationFuns {mk_predT = mk_rpredT, dest_predT = dest_rpredT, mk_bot = mk_bot,
+ mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
+ mk_map = mk_map, lift_pred = lift_pred};
+
+end;
+(* for external use with interactive mode *)
+val rpred_compfuns = RPredCompFuns.compfuns;
+
+fun lift_random random =
+ let
+ val T = dest_randomT (fastype_of random)
+ in
+ Const (@{const_name lift_random}, (@{typ Random.seed} -->
+ HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) -->
+ RPredCompFuns.mk_rpredT T) $ random
+ end;
+
+(* Mode analysis *)
+
+(*** check if a term contains only constructor functions ***)
+fun is_constrt thy =
+ let
+ val cnstrs = flat (maps
+ (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
+ (Symtab.dest (Datatype.get_all thy)));
+ fun check t = (case strip_comb t of
+ (Free _, []) => true
+ | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
+ (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
+ | _ => false)
+ | _ => false)
+ in check end;
+
+(*** check if a type is an equality type (i.e. doesn't contain fun)
+ FIXME this is only an approximation ***)
+fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
+ | is_eqT _ = true;
+
+fun term_vs tm = fold_aterms (fn Free (x, T) => cons x | _ => I) tm [];
+val terms_vs = distinct (op =) o maps term_vs;
+
+(** collect all Frees in a term (with duplicates!) **)
+fun term_vTs tm =
+ fold_aterms (fn Free xT => cons xT | _ => I) tm [];
+
+(*FIXME this function should not be named merge... make it local instead*)
+fun merge xs [] = xs
+ | merge [] ys = ys
+ | merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
+ else y::merge (x::xs) ys;
+
+fun subsets i j = if i <= j then
+ let val is = subsets (i+1) j
+ in merge (map (fn ks => i::ks) is) is end
+ else [[]];
+
+(* FIXME: should be in library - map_prod *)
+fun cprod ([], ys) = []
+ | cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
+
+fun cprods xss = foldr (map op :: o cprod) [[]] xss;
+
+
+
+(*TODO: cleanup function and put together with modes_of_term *)
+(*
+fun modes_of_param default modes t = let
+ val (vs, t') = strip_abs t
+ val b = length vs
+ fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+ let
+ val (args1, args2) =
+ if length args < length iss then
+ error ("Too few arguments for inductive predicate " ^ name)
+ else chop (length iss) args;
+ val k = length args2;
+ val perm = map (fn i => (find_index_eq (Bound (b - i)) args2) + 1)
+ (1 upto b)
+ val partial_mode = (1 upto k) \\ perm
+ in
+ if not (partial_mode subset is) then [] else
+ let
+ val is' =
+ (fold_index (fn (i, j) => if j mem is then cons (i + 1) else I) perm [])
+ |> fold (fn i => if i > k then cons (i - k + b) else I) is
+
+ val res = map (fn x => Mode (m, is', x)) (cprods (map
+ (fn (NONE, _) => [NONE]
+ | (SOME js, arg) => map SOME (filter
+ (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
+ (iss ~~ args1)))
+ in res end
+ end)) (AList.lookup op = modes name)
+ in case strip_comb t' of
+ (Const (name, _), args) => the_default default (mk_modes name args)
+ | (Var ((name, _), _), args) => the (mk_modes name args)
+ | (Free (name, _), args) => the (mk_modes name args)
+ | _ => default end
+
+and
+*)
+fun modes_of_term modes t =
+ let
+ val ks = 1 upto length (binder_types (fastype_of t));
+ val default = [Mode (([], ks), ks, [])];
+ fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+ let
+ val (args1, args2) =
+ if length args < length iss then
+ error ("Too few arguments for inductive predicate " ^ name)
+ else chop (length iss) args;
+ val k = length args2;
+ val prfx = 1 upto k
+ in
+ if not (is_prefix op = prfx is) then [] else
+ let val is' = map (fn i => i - k) (List.drop (is, k))
+ in map (fn x => Mode (m, is', x)) (cprods (map
+ (fn (NONE, _) => [NONE]
+ | (SOME js, arg) => map SOME (filter
+ (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
+ (iss ~~ args1)))
+ end
+ end)) (AList.lookup op = modes name)
+
+ in
+ case strip_comb (Envir.eta_contract t) of
+ (Const (name, _), args) => the_default default (mk_modes name args)
+ | (Var ((name, _), _), args) => the (mk_modes name args)
+ | (Free (name, _), args) => the (mk_modes name args)
+ | (Abs _, []) => error "Abs at param position" (* modes_of_param default modes t *)
+ | _ => default
+ end
+
+fun select_mode_prem thy modes vs ps =
+ find_first (is_some o snd) (ps ~~ map
+ (fn Prem (us, t) => find_first (fn Mode (_, is, _) =>
+ let
+ val (in_ts, out_ts) = split_smode is us;
+ val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts;
+ val vTs = maps term_vTs out_ts';
+ val dupTs = map snd (duplicates (op =) vTs) @
+ List.mapPartial (AList.lookup (op =) vTs) vs;
+ in
+ terms_vs (in_ts @ in_ts') subset vs andalso
+ forall (is_eqT o fastype_of) in_ts' andalso
+ term_vs t subset vs andalso
+ forall is_eqT dupTs
+ end)
+ (modes_of_term modes t handle Option =>
+ error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+ | Negprem (us, t) => find_first (fn Mode (_, is, _) =>
+ length us = length is andalso
+ terms_vs us subset vs andalso
+ term_vs t subset vs)
+ (modes_of_term modes t handle Option =>
+ error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+ | Sidecond t => if term_vs t subset vs then SOME (Mode (([], []), [], []))
+ else NONE
+ ) ps);
+
+fun fold_prem f (Prem (args, _)) = fold f args
+ | fold_prem f (Negprem (args, _)) = fold f args
+ | fold_prem f (Sidecond t) = f t
+
+fun all_subsets [] = [[]]
+ | all_subsets (x::xs) = let val xss' = all_subsets xs in xss' @ (map (cons x) xss') end
+
+fun generator vTs v =
+ let
+ val T = the (AList.lookup (op =) vTs v)
+ in
+ (Generator (v, T), Mode (([], []), [], []))
+ end;
+
+fun gen_prem (Prem (us, t)) = GeneratorPrem (us, t)
+ | gen_prem _ = error "gen_prem : invalid input for gen_prem"
+
+fun param_gen_prem param_vs (p as Prem (us, t as Free (v, _))) =
+ if member (op =) param_vs v then
+ GeneratorPrem (us, t)
+ else p
+ | param_gen_prem param_vs p = p
+
+fun check_mode_clause with_generator thy param_vs modes gen_modes (iss, is) (ts, ps) =
+ let
+ val modes' = modes @ List.mapPartial
+ (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+ (param_vs ~~ iss);
+ val gen_modes' = gen_modes @ List.mapPartial
+ (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+ (param_vs ~~ iss);
+ val vTs = distinct (op =) ((fold o fold_prem) Term.add_frees ps (fold Term.add_frees ts []))
+ val prem_vs = distinct (op =) ((fold o fold_prem) Term.add_free_names ps [])
+ fun check_mode_prems acc_ps vs [] = SOME (acc_ps, vs)
+ | check_mode_prems acc_ps vs ps = (case select_mode_prem thy modes' vs ps of
+ NONE =>
+ (if with_generator then
+ (case select_mode_prem thy gen_modes' vs ps of
+ SOME (p, SOME mode) => check_mode_prems ((gen_prem p, mode) :: acc_ps)
+ (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+ (filter_out (equal p) ps)
+ | NONE =>
+ let
+ val all_generator_vs = all_subsets (prem_vs \\ vs) |> sort (int_ord o (pairself length))
+ in
+ case (find_first (fn generator_vs => is_some
+ (select_mode_prem thy modes' (vs union generator_vs) ps)) all_generator_vs) of
+ SOME generator_vs => check_mode_prems ((map (generator vTs) generator_vs) @ acc_ps)
+ (vs union generator_vs) ps
+ | NONE => NONE
+ end)
+ else
+ NONE)
+ | SOME (p, SOME mode) => check_mode_prems ((if with_generator then param_gen_prem param_vs p else p, mode) :: acc_ps)
+ (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+ (filter_out (equal p) ps))
+ val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (split_smode is ts));
+ val in_vs = terms_vs in_ts;
+ val concl_vs = terms_vs ts
+ in
+ if forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
+ forall (is_eqT o fastype_of) in_ts' then
+ case check_mode_prems [] (param_vs union in_vs) ps of
+ NONE => NONE
+ | SOME (acc_ps, vs) =>
+ if with_generator then
+ SOME (ts, (rev acc_ps) @ (map (generator vTs) (concl_vs \\ vs)))
+ else
+ if concl_vs subset vs then SOME (ts, rev acc_ps) else NONE
+ else NONE
+ end;
+
+fun check_modes_pred with_generator thy param_vs preds modes gen_modes (p, ms) =
+ let val SOME rs = AList.lookup (op =) preds p
+ in (p, List.filter (fn m => case find_index
+ (is_none o check_mode_clause with_generator thy param_vs modes gen_modes m) rs of
+ ~1 => true
+ | i => (Output.tracing ("Clause " ^ string_of_int (i + 1) ^ " of " ^
+ p ^ " violates mode " ^ string_of_mode m); false)) ms)
+ end;
+
+fun get_modes_pred with_generator thy param_vs preds modes gen_modes (p, ms) =
+ let
+ val SOME rs = AList.lookup (op =) preds p
+ in
+ (p, map (fn m =>
+ (m, map (the o check_mode_clause with_generator thy param_vs modes gen_modes m) rs)) ms)
+ end;
+
+fun fixp f (x : (string * mode list) list) =
+ let val y = f x
+ in if x = y then x else fixp f y end;
+
+fun modes_of_arities arities =
+ (map (fn (s, (ks, k)) => (s, cprod (cprods (map
+ (fn NONE => [NONE]
+ | SOME k' => map SOME (subsets 1 k')) ks),
+ subsets 1 k))) arities)
+
+fun infer_modes with_generator thy extra_modes arities param_vs preds =
+ let
+ val modes =
+ fixp (fn modes =>
+ map (check_modes_pred with_generator thy param_vs preds (modes @ extra_modes) []) modes)
+ (modes_of_arities arities)
+ in
+ map (get_modes_pred with_generator thy param_vs preds (modes @ extra_modes) []) modes
+ end;
+
+fun remove_from rem [] = []
+ | remove_from rem ((k, vs) :: xs) =
+ (case AList.lookup (op =) rem k of
+ NONE => (k, vs)
+ | SOME vs' => (k, vs \\ vs'))
+ :: remove_from rem xs
+
+fun infer_modes_with_generator thy extra_modes arities param_vs preds =
+ let
+ val prednames = map fst preds
+ val extra_modes = all_modes_of thy
+ val gen_modes = all_generator_modes_of thy
+ |> filter_out (fn (name, _) => member (op =) prednames name)
+ val starting_modes = remove_from extra_modes (modes_of_arities arities)
+ val modes =
+ fixp (fn modes =>
+ map (check_modes_pred true thy param_vs preds extra_modes (gen_modes @ modes)) modes)
+ starting_modes
+ in
+ map (get_modes_pred true thy param_vs preds extra_modes (gen_modes @ modes)) modes
+ end;
+
+(* term construction *)
+
+fun mk_v (names, vs) s T = (case AList.lookup (op =) vs s of
+ NONE => (Free (s, T), (names, (s, [])::vs))
+ | SOME xs =>
+ let
+ val s' = Name.variant names s;
+ val v = Free (s', T)
+ in
+ (v, (s'::names, AList.update (op =) (s, v::xs) vs))
+ end);
+
+fun distinct_v (Free (s, T)) nvs = mk_v nvs s T
+ | distinct_v (t $ u) nvs =
+ let
+ val (t', nvs') = distinct_v t nvs;
+ val (u', nvs'') = distinct_v u nvs';
+ in (t' $ u', nvs'') end
+ | distinct_v x nvs = (x, nvs);
+
+fun compile_match thy compfuns eqs eqs' out_ts success_t =
+ let
+ val eqs'' = maps mk_eq eqs @ eqs'
+ val names = fold Term.add_free_names (success_t :: eqs'' @ out_ts) [];
+ val name = Name.variant names "x";
+ val name' = Name.variant (name :: names) "y";
+ val T = mk_tupleT (map fastype_of out_ts);
+ val U = fastype_of success_t;
+ val U' = dest_predT compfuns U;
+ val v = Free (name, T);
+ val v' = Free (name', T);
+ in
+ lambda v (fst (Datatype.make_case
+ (ProofContext.init thy) false [] v
+ [(mk_tuple out_ts,
+ if null eqs'' then success_t
+ else Const (@{const_name HOL.If}, HOLogic.boolT --> U --> U --> U) $
+ foldr1 HOLogic.mk_conj eqs'' $ success_t $
+ mk_bot compfuns U'),
+ (v', mk_bot compfuns U')]))
+ end;
+
+(*FIXME function can be removed*)
+fun mk_funcomp f t =
+ let
+ val names = Term.add_free_names t [];
+ val Ts = binder_types (fastype_of t);
+ val vs = map Free
+ (Name.variant_list names (replicate (length Ts) "x") ~~ Ts)
+ in
+ fold_rev lambda vs (f (list_comb (t, vs)))
+ end;
+(*
+fun compile_param_ext thy compfuns modes (NONE, t) = t
+ | compile_param_ext thy compfuns modes (m as SOME (Mode ((iss, is'), is, ms)), t) =
+ let
+ val (vs, u) = strip_abs t
+ val (ivs, ovs) = split_mode is vs
+ val (f, args) = strip_comb u
+ val (params, args') = chop (length ms) args
+ val (inargs, outargs) = split_mode is' args'
+ val b = length vs
+ val perm = map (fn i => (find_index_eq (Bound (b - i)) args') + 1) (1 upto b)
+ val outp_perm =
+ snd (split_mode is perm)
+ |> map (fn i => i - length (filter (fn x => x < i) is'))
+ val names = [] -- TODO
+ val out_names = Name.variant_list names (replicate (length outargs) "x")
+ val f' = case f of
+ Const (name, T) =>
+ if AList.defined op = modes name then
+ mk_predfun_of thy compfuns (name, T) (iss, is')
+ else error "compile param: Not an inductive predicate with correct mode"
+ | Free (name, T) => Free (name, param_funT_of compfuns T (SOME is'))
+ val outTs = dest_tupleT (dest_predT compfuns (body_type (fastype_of f')))
+ val out_vs = map Free (out_names ~~ outTs)
+ val params' = map (compile_param thy modes) (ms ~~ params)
+ val f_app = list_comb (f', params' @ inargs)
+ val single_t = (mk_single compfuns (mk_tuple (map (fn i => nth out_vs (i - 1)) outp_perm)))
+ val match_t = compile_match thy compfuns [] [] out_vs single_t
+ in list_abs (ivs,
+ mk_bind compfuns (f_app, match_t))
+ end
+ | compile_param_ext _ _ _ _ = error "compile params"
+*)
+
+fun compile_param size thy compfuns (NONE, t) = t
+ | compile_param size thy compfuns (m as SOME (Mode ((iss, is'), is, ms)), t) =
+ let
+ val (f, args) = strip_comb (Envir.eta_contract t)
+ val (params, args') = chop (length ms) args
+ val params' = map (compile_param size thy compfuns) (ms ~~ params)
+ val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
+ val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
+ val f' =
+ case f of
+ Const (name, T) =>
+ mk_fun_of compfuns thy (name, T) (iss, is')
+ | Free (name, T) => Free (name, funT_of compfuns (iss, is') T)
+ | _ => error ("PredicateCompiler: illegal parameter term")
+ in list_comb (f', params' @ args') end
+
+fun compile_expr size thy ((Mode (mode, is, ms)), t) =
+ case strip_comb t of
+ (Const (name, T), params) =>
+ let
+ val params' = map (compile_param size thy PredicateCompFuns.compfuns) (ms ~~ params)
+ val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
+ in
+ list_comb (mk_fun_of PredicateCompFuns.compfuns thy (name, T) mode, params')
+ end
+ | (Free (name, T), args) =>
+ let
+ val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
+ in
+ list_comb (Free (name, funT_of PredicateCompFuns.compfuns ([], is) T), args)
+ end;
+
+fun compile_gen_expr size thy compfuns ((Mode (mode, is, ms)), t) =
+ case strip_comb t of
+ (Const (name, T), params) =>
+ let
+ val params' = map (compile_param size thy compfuns) (ms ~~ params)
+ in
+ list_comb (mk_generator_of compfuns thy (name, T) mode, params')
+ end
+ | (Free (name, T), args) =>
+ list_comb (Free (name, sizelim_funT_of RPredCompFuns.compfuns ([], is) T), args)
+
+(** specific rpred functions -- move them to the correct place in this file *)
+
+(* uncommented termify code; causes more trouble than expected at first *)
+(*
+fun mk_valtermify_term (t as Const (c, T)) = HOLogic.mk_prod (t, Abs ("u", HOLogic.unitT, HOLogic.reflect_term t))
+ | mk_valtermify_term (Free (x, T)) = Free (x, termifyT T)
+ | mk_valtermify_term (t1 $ t2) =
+ let
+ val T = fastype_of t1
+ val (T1, T2) = dest_funT T
+ val t1' = mk_valtermify_term t1
+ val t2' = mk_valtermify_term t2
+ in
+ Const ("Code_Evaluation.valapp", termifyT T --> termifyT T1 --> termifyT T2) $ t1' $ t2'
+ end
+ | mk_valtermify_term _ = error "Not a valid term for mk_valtermify_term"
+*)
+
+fun compile_clause compfuns size final_term thy all_vs param_vs (iss, is) inp (ts, moded_ps) =
+ let
+ fun check_constrt t (names, eqs) =
+ if is_constrt thy t then (t, (names, eqs)) else
+ let
+ val s = Name.variant names "x";
+ val v = Free (s, fastype_of t)
+ in (v, (s::names, HOLogic.mk_eq (v, t)::eqs)) end;
+
+ val (in_ts, out_ts) = split_smode is ts;
+ val (in_ts', (all_vs', eqs)) =
+ fold_map check_constrt in_ts (all_vs, []);
+
+ fun compile_prems out_ts' vs names [] =
+ let
+ val (out_ts'', (names', eqs')) =
+ fold_map check_constrt out_ts' (names, []);
+ val (out_ts''', (names'', constr_vs)) = fold_map distinct_v
+ out_ts'' (names', map (rpair []) vs);
+ in
+ (* termify code:
+ compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
+ (mk_single compfuns (mk_tuple (map mk_valtermify_term out_ts)))
+ *)
+ compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
+ (final_term out_ts)
+ end
+ | compile_prems out_ts vs names ((p, mode as Mode ((_, is), _, _)) :: ps) =
+ let
+ val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
+ val (out_ts', (names', eqs)) =
+ fold_map check_constrt out_ts (names, [])
+ val (out_ts'', (names'', constr_vs')) = fold_map distinct_v
+ out_ts' ((names', map (rpair []) vs))
+ val (compiled_clause, rest) = case p of
+ Prem (us, t) =>
+ let
+ val (in_ts, out_ts''') = split_smode is us;
+ val args = case size of
+ NONE => in_ts
+ | SOME size_t => in_ts @ [size_t]
+ val u = lift_pred compfuns
+ (list_comb (compile_expr size thy (mode, t), args))
+ val rest = compile_prems out_ts''' vs' names'' ps
+ in
+ (u, rest)
+ end
+ | Negprem (us, t) =>
+ let
+ val (in_ts, out_ts''') = split_smode is us
+ val u = lift_pred compfuns
+ (mk_not PredicateCompFuns.compfuns (list_comb (compile_expr NONE thy (mode, t), in_ts)))
+ val rest = compile_prems out_ts''' vs' names'' ps
+ in
+ (u, rest)
+ end
+ | Sidecond t =>
+ let
+ val rest = compile_prems [] vs' names'' ps;
+ in
+ (mk_if compfuns t, rest)
+ end
+ | GeneratorPrem (us, t) =>
+ let
+ val (in_ts, out_ts''') = split_smode is us;
+ val args = case size of
+ NONE => in_ts
+ | SOME size_t => in_ts @ [size_t]
+ val u = list_comb (compile_gen_expr size thy compfuns (mode, t), args)
+ val rest = compile_prems out_ts''' vs' names'' ps
+ in
+ (u, rest)
+ end
+ | Generator (v, T) =>
+ let
+ val u = lift_random (HOLogic.mk_random T @{term "1::code_numeral"})
+ val rest = compile_prems [Free (v, T)] vs' names'' ps;
+ in
+ (u, rest)
+ end
+ in
+ compile_match thy compfuns constr_vs' eqs out_ts''
+ (mk_bind compfuns (compiled_clause, rest))
+ end
+ val prem_t = compile_prems in_ts' param_vs all_vs' moded_ps;
+ in
+ mk_bind compfuns (mk_single compfuns inp, prem_t)
+ end
+
+fun compile_pred compfuns mk_fun_of use_size thy all_vs param_vs s T mode moded_cls =
+ let
+ val (Ts1, (Us1, Us2)) = split_mode mode (binder_types T)
+ val funT_of = if use_size then sizelim_funT_of else funT_of
+ val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) (fst mode) Ts1
+ val xnames = Name.variant_list (all_vs @ param_vs)
+ (map (fn i => "x" ^ string_of_int i) (snd mode));
+ val size_name = Name.variant (all_vs @ param_vs @ xnames) "size"
+ (* termify code: val xs = map2 (fn s => fn T => Free (s, termifyT T)) xnames Us1; *)
+ val xs = map2 (fn s => fn T => Free (s, T)) xnames Us1;
+ val params = map2 (fn s => fn T => Free (s, T)) param_vs Ts1'
+ val size = Free (size_name, @{typ "code_numeral"})
+ val decr_size =
+ if use_size then
+ SOME (Const ("HOL.minus_class.minus", @{typ "code_numeral => code_numeral => code_numeral"})
+ $ size $ Const ("HOL.one_class.one", @{typ "Code_Numeral.code_numeral"}))
+ else
+ NONE
+ val cl_ts =
+ map (compile_clause compfuns decr_size (fn out_ts => mk_single compfuns (mk_tuple out_ts))
+ thy all_vs param_vs mode (mk_tuple xs)) moded_cls;
+ val t = foldr1 (mk_sup compfuns) cl_ts
+ val T' = mk_predT compfuns (mk_tupleT Us2)
+ val size_t = Const (@{const_name "If"}, @{typ bool} --> T' --> T' --> T')
+ $ HOLogic.mk_eq (size, @{term "0 :: code_numeral"})
+ $ mk_bot compfuns (dest_predT compfuns T') $ t
+ val fun_const = mk_fun_of compfuns thy (s, T) mode
+ val eq = if use_size then
+ (list_comb (fun_const, params @ xs @ [size]), size_t)
+ else
+ (list_comb (fun_const, params @ xs), t)
+ in
+ HOLogic.mk_Trueprop (HOLogic.mk_eq eq)
+ end;
+
+(* special setup for simpset *)
+val HOL_basic_ss' = HOL_basic_ss setSolver
+ (mk_solver "all_tac_solver" (fn _ => fn _ => all_tac))
+
+(* Definition of executable functions and their intro and elim rules *)
+
+fun print_arities arities = tracing ("Arities:\n" ^
+ cat_lines (map (fn (s, (ks, k)) => s ^ ": " ^
+ space_implode " -> " (map
+ (fn NONE => "X" | SOME k' => string_of_int k')
+ (ks @ [SOME k]))) arities));
+
+fun mk_Eval_of ((x, T), NONE) names = (x, names)
+ | mk_Eval_of ((x, T), SOME mode) names = let
+ val Ts = binder_types T
+ val argnames = Name.variant_list names
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+ val args = map Free (argnames ~~ Ts)
+ val (inargs, outargs) = split_smode mode args
+ val r = PredicateCompFuns.mk_Eval (list_comb (x, inargs), mk_tuple outargs)
+ val t = fold_rev lambda args r
+in
+ (t, argnames @ names)
+end;
+
+fun create_intro_elim_rule (mode as (iss, is)) defthm mode_id funT pred thy =
+let
+ val Ts = binder_types (fastype_of pred)
+ val funtrm = Const (mode_id, funT)
+ val argnames = Name.variant_list []
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+ val (Ts1, Ts2) = chop (length iss) Ts;
+ val Ts1' = map2 (fn NONE => I | SOME is => funT_of (PredicateCompFuns.compfuns) ([], is)) iss Ts1
+ val args = map Free (argnames ~~ (Ts1' @ Ts2))
+ val (params, ioargs) = chop (length iss) args
+ val (inargs, outargs) = split_smode is ioargs
+ val param_names = Name.variant_list argnames
+ (map (fn i => "p" ^ string_of_int i) (1 upto (length iss)))
+ val param_vs = map Free (param_names ~~ Ts1)
+ val (params', names) = fold_map mk_Eval_of ((params ~~ Ts1) ~~ iss) []
+ val predpropI = HOLogic.mk_Trueprop (list_comb (pred, param_vs @ ioargs))
+ val predpropE = HOLogic.mk_Trueprop (list_comb (pred, params' @ ioargs))
+ val param_eqs = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (param_vs ~~ params')
+ val funargs = params @ inargs
+ val funpropE = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
+ if null outargs then Free("y", HOLogic.unitT) else mk_tuple outargs))
+ val funpropI = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
+ mk_tuple outargs))
+ val introtrm = Logic.list_implies (predpropI :: param_eqs, funpropI)
+ val simprules = [defthm, @{thm eval_pred},
+ @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}]
+ val unfolddef_tac = Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1
+ val introthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
+ val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT));
+ val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predpropE, P)], P)
+ val elimthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
+in
+ (introthm, elimthm)
+end;
+
+fun create_constname_of_mode thy prefix name mode =
+ let
+ fun string_of_mode mode = if null mode then "0"
+ else space_implode "_" (map string_of_int mode)
+ val HOmode = space_implode "_and_"
+ (fold (fn NONE => I | SOME mode => cons (string_of_mode mode)) (fst mode) [])
+ in
+ (Sign.full_bname thy (prefix ^ (Long_Name.base_name name))) ^
+ (if HOmode = "" then "_" else "_for_" ^ HOmode ^ "_yields_") ^ (string_of_mode (snd mode))
+ end;
+
+fun create_definitions preds (name, modes) thy =
+ let
+ val compfuns = PredicateCompFuns.compfuns
+ val T = AList.lookup (op =) preds name |> the
+ fun create_definition (mode as (iss, is)) thy = let
+ val mode_cname = create_constname_of_mode thy "" name mode
+ val mode_cbasename = Long_Name.base_name mode_cname
+ val Ts = binder_types T
+ val (Ts1, Ts2) = chop (length iss) Ts
+ val (Us1, Us2) = split_smode is Ts2
+ val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss Ts1
+ val funT = (Ts1' @ Us1) ---> (mk_predT compfuns (mk_tupleT Us2))
+ val names = Name.variant_list []
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+ val xs = map Free (names ~~ (Ts1' @ Ts2));
+ val (xparams, xargs) = chop (length iss) xs;
+ val (xins, xouts) = split_smode is xargs
+ val (xparams', names') = fold_map mk_Eval_of ((xparams ~~ Ts1) ~~ iss) names
+ fun mk_split_lambda [] t = lambda (Free (Name.variant names' "x", HOLogic.unitT)) t
+ | mk_split_lambda [x] t = lambda x t
+ | mk_split_lambda xs t =
+ let
+ fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
+ | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
+ in
+ mk_split_lambda' xs t
+ end;
+ val predterm = PredicateCompFuns.mk_Enum (mk_split_lambda xouts
+ (list_comb (Const (name, T), xparams' @ xargs)))
+ val lhs = list_comb (Const (mode_cname, funT), xparams @ xins)
+ val def = Logic.mk_equals (lhs, predterm)
+ val ([definition], thy') = thy |>
+ Sign.add_consts_i [(Binding.name mode_cbasename, funT, NoSyn)] |>
+ PureThy.add_defs false [((Binding.name (mode_cbasename ^ "_def"), def), [])]
+ val (intro, elim) =
+ create_intro_elim_rule mode definition mode_cname funT (Const (name, T)) thy'
+ in thy' |> add_predfun name mode (mode_cname, definition, intro, elim)
+ |> PureThy.store_thm (Binding.name (mode_cbasename ^ "I"), intro) |> snd
+ |> PureThy.store_thm (Binding.name (mode_cbasename ^ "E"), elim) |> snd
+ |> Theory.checkpoint
+ end;
+ in
+ fold create_definition modes thy
+ end;
+
+fun sizelim_create_definitions preds (name, modes) thy =
+ let
+ val T = AList.lookup (op =) preds name |> the
+ fun create_definition mode thy =
+ let
+ val mode_cname = create_constname_of_mode thy "sizelim_" name mode
+ val funT = sizelim_funT_of PredicateCompFuns.compfuns mode T
+ in
+ thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
+ |> set_sizelim_function_name name mode mode_cname
+ end;
+ in
+ fold create_definition modes thy
+ end;
+
+fun rpred_create_definitions preds (name, modes) thy =
+ let
+ val T = AList.lookup (op =) preds name |> the
+ fun create_definition mode thy =
+ let
+ val mode_cname = create_constname_of_mode thy "gen_" name mode
+ val funT = sizelim_funT_of RPredCompFuns.compfuns mode T
+ in
+ thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
+ |> set_generator_name name mode mode_cname
+ end;
+ in
+ fold create_definition modes thy
+ end;
+
+(* Proving equivalence of term *)
+
+fun is_Type (Type _) = true
+ | is_Type _ = false
+
+(* returns true if t is an application of an datatype constructor *)
+(* which then consequently would be splitted *)
+(* else false *)
+fun is_constructor thy t =
+ if (is_Type (fastype_of t)) then
+ (case Datatype.get_info thy ((fst o dest_Type o fastype_of) t) of
+ NONE => false
+ | SOME info => (let
+ val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
+ val (c, _) = strip_comb t
+ in (case c of
+ Const (name, _) => name mem_string constr_consts
+ | _ => false) end))
+ else false
+
+(* MAJOR FIXME: prove_params should be simple
+ - different form of introrule for parameters ? *)
+fun prove_param thy (NONE, t) = TRY (rtac @{thm refl} 1)
+ | prove_param thy (m as SOME (Mode (mode, is, ms)), t) =
+ let
+ val (f, args) = strip_comb (Envir.eta_contract t)
+ val (params, _) = chop (length ms) args
+ val f_tac = case f of
+ Const (name, T) => simp_tac (HOL_basic_ss addsimps
+ (@{thm eval_pred}::(predfun_definition_of thy name mode)::
+ @{thm "Product_Type.split_conv"}::[])) 1
+ | Free _ => TRY (rtac @{thm refl} 1)
+ | Abs _ => error "prove_param: No valid parameter term"
+ in
+ REPEAT_DETERM (etac @{thm thin_rl} 1)
+ THEN REPEAT_DETERM (rtac @{thm ext} 1)
+ THEN print_tac "prove_param"
+ THEN f_tac
+ THEN print_tac "after simplification in prove_args"
+ THEN (EVERY (map (prove_param thy) (ms ~~ params)))
+ THEN (REPEAT_DETERM (atac 1))
+ end
+
+fun prove_expr thy (Mode (mode, is, ms), t, us) (premposition : int) =
+ case strip_comb t of
+ (Const (name, T), args) =>
+ let
+ val introrule = predfun_intro_of thy name mode
+ val (args1, args2) = chop (length ms) args
+ in
+ rtac @{thm bindI} 1
+ THEN print_tac "before intro rule:"
+ (* for the right assumption in first position *)
+ THEN rotate_tac premposition 1
+ THEN debug_tac (Display.string_of_thm (ProofContext.init thy) introrule)
+ THEN rtac introrule 1
+ THEN print_tac "after intro rule"
+ (* work with parameter arguments *)
+ THEN (atac 1)
+ THEN (print_tac "parameter goal")
+ THEN (EVERY (map (prove_param thy) (ms ~~ args1)))
+ THEN (REPEAT_DETERM (atac 1))
+ end
+ | _ => rtac @{thm bindI} 1 THEN atac 1
+
+fun SOLVED tac st = FILTER (fn st' => nprems_of st' = nprems_of st - 1) tac st;
+
+fun SOLVEDALL tac st = FILTER (fn st' => nprems_of st' = 0) tac st
+
+fun prove_match thy (out_ts : term list) = let
+ fun get_case_rewrite t =
+ if (is_constructor thy t) then let
+ val case_rewrites = (#case_rewrites (Datatype.the_info thy
+ ((fst o dest_Type o fastype_of) t)))
+ in case_rewrites @ (flat (map get_case_rewrite (snd (strip_comb t)))) end
+ else []
+ val simprules = @{thm "unit.cases"} :: @{thm "prod.cases"} :: (flat (map get_case_rewrite out_ts))
+(* replace TRY by determining if it necessary - are there equations when calling compile match? *)
+in
+ (* make this simpset better! *)
+ asm_simp_tac (HOL_basic_ss' addsimps simprules) 1
+ THEN print_tac "after prove_match:"
+ THEN (DETERM (TRY (EqSubst.eqsubst_tac (ProofContext.init thy) [0] [@{thm "HOL.if_P"}] 1
+ THEN (REPEAT_DETERM (rtac @{thm conjI} 1 THEN (SOLVED (asm_simp_tac HOL_basic_ss 1))))
+ THEN (SOLVED (asm_simp_tac HOL_basic_ss 1)))))
+ THEN print_tac "after if simplification"
+end;
+
+(* corresponds to compile_fun -- maybe call that also compile_sidecond? *)
+
+fun prove_sidecond thy modes t =
+ let
+ fun preds_of t nameTs = case strip_comb t of
+ (f as Const (name, T), args) =>
+ if AList.defined (op =) modes name then (name, T) :: nameTs
+ else fold preds_of args nameTs
+ | _ => nameTs
+ val preds = preds_of t []
+ val defs = map
+ (fn (pred, T) => predfun_definition_of thy pred ([], (1 upto (length (binder_types T)))))
+ preds
+ in
+ (* remove not_False_eq_True when simpset in prove_match is better *)
+ simp_tac (HOL_basic_ss addsimps @{thm not_False_eq_True} :: @{thm eval_pred} :: defs) 1
+ (* need better control here! *)
+ end
+
+fun prove_clause thy nargs modes (iss, is) (_, clauses) (ts, moded_ps) =
+ let
+ val (in_ts, clause_out_ts) = split_smode is ts;
+ fun prove_prems out_ts [] =
+ (prove_match thy out_ts)
+ THEN asm_simp_tac HOL_basic_ss' 1
+ THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
+ | prove_prems out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+ let
+ val premposition = (find_index (equal p) clauses) + nargs
+ val rest_tac = (case p of Prem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems out_ts''' ps
+ in
+ print_tac "before clause:"
+ THEN asm_simp_tac HOL_basic_ss 1
+ THEN print_tac "before prove_expr:"
+ THEN prove_expr thy (mode, t, us) premposition
+ THEN print_tac "after prove_expr:"
+ THEN rec_tac
+ end
+ | Negprem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems out_ts''' ps
+ val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+ val (_, params) = strip_comb t
+ in
+ rtac @{thm bindI} 1
+ THEN (if (is_some name) then
+ simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
+ THEN rtac @{thm not_predI} 1
+ THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+ THEN (REPEAT_DETERM (atac 1))
+ (* FIXME: work with parameter arguments *)
+ THEN (EVERY (map (prove_param thy) (param_modes ~~ params)))
+ else
+ rtac @{thm not_predI'} 1)
+ THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+ THEN rec_tac
+ end
+ | Sidecond t =>
+ rtac @{thm bindI} 1
+ THEN rtac @{thm if_predI} 1
+ THEN print_tac "before sidecond:"
+ THEN prove_sidecond thy modes t
+ THEN print_tac "after sidecond:"
+ THEN prove_prems [] ps)
+ in (prove_match thy out_ts)
+ THEN rest_tac
+ end;
+ val prems_tac = prove_prems in_ts moded_ps
+ in
+ rtac @{thm bindI} 1
+ THEN rtac @{thm singleI} 1
+ THEN prems_tac
+ end;
+
+fun select_sup 1 1 = []
+ | select_sup _ 1 = [rtac @{thm supI1}]
+ | select_sup n i = (rtac @{thm supI2})::(select_sup (n - 1) (i - 1));
+
+fun prove_one_direction thy clauses preds modes pred mode moded_clauses =
+ let
+ val T = the (AList.lookup (op =) preds pred)
+ val nargs = length (binder_types T) - nparams_of thy pred
+ val pred_case_rule = the_elim_of thy pred
+ in
+ REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
+ THEN etac (predfun_elim_of thy pred mode) 1
+ THEN etac pred_case_rule 1
+ THEN (EVERY (map
+ (fn i => EVERY' (select_sup (length moded_clauses) i) i)
+ (1 upto (length moded_clauses))))
+ THEN (EVERY (map2 (prove_clause thy nargs modes mode) clauses moded_clauses))
+ THEN print_tac "proved one direction"
+ end;
+
+(** Proof in the other direction **)
+
+fun prove_match2 thy out_ts = let
+ fun split_term_tac (Free _) = all_tac
+ | split_term_tac t =
+ if (is_constructor thy t) then let
+ val info = Datatype.the_info thy ((fst o dest_Type o fastype_of) t)
+ val num_of_constrs = length (#case_rewrites info)
+ (* special treatment of pairs -- because of fishing *)
+ val split_rules = case (fst o dest_Type o fastype_of) t of
+ "*" => [@{thm prod.split_asm}]
+ | _ => PureThy.get_thms thy (((fst o dest_Type o fastype_of) t) ^ ".split_asm")
+ val (_, ts) = strip_comb t
+ in
+ (Splitter.split_asm_tac split_rules 1)
+(* THEN (Simplifier.asm_full_simp_tac HOL_basic_ss 1)
+ THEN (DETERM (TRY (etac @{thm Pair_inject} 1))) *)
+ THEN (REPEAT_DETERM_N (num_of_constrs - 1) (etac @{thm botE} 1 ORELSE etac @{thm botE} 2))
+ THEN (EVERY (map split_term_tac ts))
+ end
+ else all_tac
+ in
+ split_term_tac (mk_tuple out_ts)
+ THEN (DETERM (TRY ((Splitter.split_asm_tac [@{thm "split_if_asm"}] 1) THEN (etac @{thm botE} 2))))
+ end
+
+(* VERY LARGE SIMILIRATIY to function prove_param
+-- join both functions
+*)
+(* TODO: remove function *)
+
+fun prove_param2 thy (NONE, t) = all_tac
+ | prove_param2 thy (m as SOME (Mode (mode, is, ms)), t) = let
+ val (f, args) = strip_comb (Envir.eta_contract t)
+ val (params, _) = chop (length ms) args
+ val f_tac = case f of
+ Const (name, T) => full_simp_tac (HOL_basic_ss addsimps
+ (@{thm eval_pred}::(predfun_definition_of thy name mode)
+ :: @{thm "Product_Type.split_conv"}::[])) 1
+ | Free _ => all_tac
+ | _ => error "prove_param2: illegal parameter term"
+ in
+ print_tac "before simplification in prove_args:"
+ THEN f_tac
+ THEN print_tac "after simplification in prove_args"
+ THEN (EVERY (map (prove_param2 thy) (ms ~~ params)))
+ end
+
+
+fun prove_expr2 thy (Mode (mode, is, ms), t) =
+ (case strip_comb t of
+ (Const (name, T), args) =>
+ etac @{thm bindE} 1
+ THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
+ THEN print_tac "prove_expr2-before"
+ THEN (debug_tac (Syntax.string_of_term_global thy
+ (prop_of (predfun_elim_of thy name mode))))
+ THEN (etac (predfun_elim_of thy name mode) 1)
+ THEN print_tac "prove_expr2"
+ THEN (EVERY (map (prove_param2 thy) (ms ~~ args)))
+ THEN print_tac "finished prove_expr2"
+ | _ => etac @{thm bindE} 1)
+
+(* FIXME: what is this for? *)
+(* replace defined by has_mode thy pred *)
+(* TODO: rewrite function *)
+fun prove_sidecond2 thy modes t = let
+ fun preds_of t nameTs = case strip_comb t of
+ (f as Const (name, T), args) =>
+ if AList.defined (op =) modes name then (name, T) :: nameTs
+ else fold preds_of args nameTs
+ | _ => nameTs
+ val preds = preds_of t []
+ val defs = map
+ (fn (pred, T) => predfun_definition_of thy pred ([], (1 upto (length (binder_types T)))))
+ preds
+ in
+ (* only simplify the one assumption *)
+ full_simp_tac (HOL_basic_ss' addsimps @{thm eval_pred} :: defs) 1
+ (* need better control here! *)
+ THEN print_tac "after sidecond2 simplification"
+ end
+
+fun prove_clause2 thy modes pred (iss, is) (ts, ps) i =
+ let
+ val pred_intro_rule = nth (intros_of thy pred) (i - 1)
+ val (in_ts, clause_out_ts) = split_smode is ts;
+ fun prove_prems2 out_ts [] =
+ print_tac "before prove_match2 - last call:"
+ THEN prove_match2 thy out_ts
+ THEN print_tac "after prove_match2 - last call:"
+ THEN (etac @{thm singleE} 1)
+ THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+ THEN (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+ THEN (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN SOLVED (print_tac "state before applying intro rule:"
+ THEN (rtac pred_intro_rule 1)
+ (* How to handle equality correctly? *)
+ THEN (print_tac "state before assumption matching")
+ THEN (REPEAT (atac 1 ORELSE
+ (CHANGED (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN print_tac "state after simp_tac:"))))
+ | prove_prems2 out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+ let
+ val rest_tac = (case p of
+ Prem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems2 out_ts''' ps
+ in
+ (prove_expr2 thy (mode, t)) THEN rec_tac
+ end
+ | Negprem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems2 out_ts''' ps
+ val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+ val (_, params) = strip_comb t
+ in
+ print_tac "before neg prem 2"
+ THEN etac @{thm bindE} 1
+ THEN (if is_some name then
+ full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
+ THEN etac @{thm not_predE} 1
+ THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+ THEN (EVERY (map (prove_param2 thy) (param_modes ~~ params)))
+ else
+ etac @{thm not_predE'} 1)
+ THEN rec_tac
+ end
+ | Sidecond t =>
+ etac @{thm bindE} 1
+ THEN etac @{thm if_predE} 1
+ THEN prove_sidecond2 thy modes t
+ THEN prove_prems2 [] ps)
+ in print_tac "before prove_match2:"
+ THEN prove_match2 thy out_ts
+ THEN print_tac "after prove_match2:"
+ THEN rest_tac
+ end;
+ val prems_tac = prove_prems2 in_ts ps
+ in
+ print_tac "starting prove_clause2"
+ THEN etac @{thm bindE} 1
+ THEN (etac @{thm singleE'} 1)
+ THEN (TRY (etac @{thm Pair_inject} 1))
+ THEN print_tac "after singleE':"
+ THEN prems_tac
+ end;
+
+fun prove_other_direction thy modes pred mode moded_clauses =
+ let
+ fun prove_clause clause i =
+ (if i < length moded_clauses then etac @{thm supE} 1 else all_tac)
+ THEN (prove_clause2 thy modes pred mode clause i)
+ in
+ (DETERM (TRY (rtac @{thm unit.induct} 1)))
+ THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
+ THEN (rtac (predfun_intro_of thy pred mode) 1)
+ THEN (REPEAT_DETERM (rtac @{thm refl} 2))
+ THEN (EVERY (map2 prove_clause moded_clauses (1 upto (length moded_clauses))))
+ end;
+
+(** proof procedure **)
+
+fun prove_pred thy clauses preds modes pred mode (moded_clauses, compiled_term) =
+ let
+ val ctxt = ProofContext.init thy
+ val clauses = the (AList.lookup (op =) clauses pred)
+ in
+ Goal.prove ctxt (Term.add_free_names compiled_term []) [] compiled_term
+ (if !do_proofs then
+ (fn _ =>
+ rtac @{thm pred_iffI} 1
+ THEN prove_one_direction thy clauses preds modes pred mode moded_clauses
+ THEN print_tac "proved one direction"
+ THEN prove_other_direction thy modes pred mode moded_clauses
+ THEN print_tac "proved other direction")
+ else (fn _ => mycheat_tac thy 1))
+ end;
+
+(* composition of mode inference, definition, compilation and proof *)
+
+(** auxillary combinators for table of preds and modes **)
+
+fun map_preds_modes f preds_modes_table =
+ map (fn (pred, modes) =>
+ (pred, map (fn (mode, value) => (mode, f pred mode value)) modes)) preds_modes_table
+
+fun join_preds_modes table1 table2 =
+ map_preds_modes (fn pred => fn mode => fn value =>
+ (value, the (AList.lookup (op =) (the (AList.lookup (op =) table2 pred)) mode))) table1
+
+fun maps_modes preds_modes_table =
+ map (fn (pred, modes) =>
+ (pred, map (fn (mode, value) => value) modes)) preds_modes_table
+
+fun compile_preds compfuns mk_fun_of use_size thy all_vs param_vs preds moded_clauses =
+ map_preds_modes (fn pred => compile_pred compfuns mk_fun_of use_size thy all_vs param_vs pred
+ (the (AList.lookup (op =) preds pred))) moded_clauses
+
+fun prove thy clauses preds modes moded_clauses compiled_terms =
+ map_preds_modes (prove_pred thy clauses preds modes)
+ (join_preds_modes moded_clauses compiled_terms)
+
+fun prove_by_skip thy _ _ _ _ compiled_terms =
+ map_preds_modes (fn pred => fn mode => fn t => Drule.standard (SkipProof.make_thm thy t))
+ compiled_terms
+
+fun prepare_intrs thy prednames =
+ let
+ val intrs = maps (intros_of thy) prednames
+ |> map (Logic.unvarify o prop_of)
+ val nparams = nparams_of thy (hd prednames)
+ val extra_modes = all_modes_of thy |> filter_out (fn (name, _) => member (op =) prednames name)
+ val preds = distinct (op =) (map (dest_Const o fst o (strip_intro_concl nparams)) intrs)
+ val _ $ u = Logic.strip_imp_concl (hd intrs);
+ val params = List.take (snd (strip_comb u), nparams);
+ val param_vs = maps term_vs params
+ val all_vs = terms_vs intrs
+ fun dest_prem t =
+ (case strip_comb t of
+ (v as Free _, ts) => if v mem params then Prem (ts, v) else Sidecond t
+ | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem t of
+ Prem (ts, t) => Negprem (ts, t)
+ | Negprem _ => error ("Double negation not allowed in premise: " ^ (Syntax.string_of_term_global thy (c $ t)))
+ | Sidecond t => Sidecond (c $ t))
+ | (c as Const (s, _), ts) =>
+ if is_registered thy s then
+ let val (ts1, ts2) = chop (nparams_of thy s) ts
+ in Prem (ts2, list_comb (c, ts1)) end
+ else Sidecond t
+ | _ => Sidecond t)
+ fun add_clause intr (clauses, arities) =
+ let
+ val _ $ t = Logic.strip_imp_concl intr;
+ val (Const (name, T), ts) = strip_comb t;
+ val (ts1, ts2) = chop nparams ts;
+ val prems = map (dest_prem o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr);
+ val (Ts, Us) = chop nparams (binder_types T)
+ in
+ (AList.update op = (name, these (AList.lookup op = clauses name) @
+ [(ts2, prems)]) clauses,
+ AList.update op = (name, (map (fn U => (case strip_type U of
+ (Rs as _ :: _, Type ("bool", [])) => SOME (length Rs)
+ | _ => NONE)) Ts,
+ length Us)) arities)
+ end;
+ val (clauses, arities) = fold add_clause intrs ([], []);
+ in (preds, nparams, all_vs, param_vs, extra_modes, clauses, arities) end;
+
+(** main function of predicate compiler **)
+
+fun add_equations_of steps prednames thy =
+ let
+ val _ = Output.tracing ("Starting predicate compiler for predicates " ^ commas prednames ^ "...")
+ val (preds, nparams, all_vs, param_vs, extra_modes, clauses, arities) =
+ prepare_intrs thy prednames
+ val _ = Output.tracing "Infering modes..."
+ val moded_clauses = #infer_modes steps thy extra_modes arities param_vs clauses
+ val modes = map (fn (p, mps) => (p, map fst mps)) moded_clauses
+ val _ = print_modes modes
+ val _ = print_moded_clauses thy moded_clauses
+ val _ = Output.tracing "Defining executable functions..."
+ val thy' = fold (#create_definitions steps preds) modes thy
+ |> Theory.checkpoint
+ val _ = Output.tracing "Compiling equations..."
+ val compiled_terms =
+ (#compile_preds steps) thy' all_vs param_vs preds moded_clauses
+ val _ = print_compiled_terms thy' compiled_terms
+ val _ = Output.tracing "Proving equations..."
+ val result_thms = #prove steps thy' clauses preds (extra_modes @ modes)
+ moded_clauses compiled_terms
+ val qname = #qname steps
+ (* val attrib = gn thy => Attrib.attribute_i thy Code.add_eqn_attrib *)
+ val attrib = fn thy => Attrib.attribute_i thy (Attrib.internal (K (Thm.declaration_attribute
+ (fn thm => Context.mapping (Code.add_eqn thm) I))))
+ val thy'' = fold (fn (name, result_thms) => fn thy => snd (PureThy.add_thmss
+ [((Binding.qualify true (Long_Name.base_name name) (Binding.name qname), result_thms),
+ [attrib thy ])] thy))
+ (maps_modes result_thms) thy'
+ |> Theory.checkpoint
+ in
+ thy''
+ end
+
+fun extend' value_of edges_of key (G, visited) =
+ let
+ val (G', v) = case try (Graph.get_node G) key of
+ SOME v => (G, v)
+ | NONE => (Graph.new_node (key, value_of key) G, value_of key)
+ val (G'', visited') = fold (extend' value_of edges_of) (edges_of (key, v) \\ visited)
+ (G', key :: visited)
+ in
+ (fold (Graph.add_edge o (pair key)) (edges_of (key, v)) G'', visited')
+ end;
+
+fun extend value_of edges_of key G = fst (extend' value_of edges_of key (G, []))
+
+fun gen_add_equations steps names thy =
+ let
+ val thy' = PredData.map (fold (extend (fetch_pred_data thy) (depending_preds_of thy)) names) thy
+ |> Theory.checkpoint;
+ fun strong_conn_of gr keys =
+ Graph.strong_conn (Graph.subgraph (member (op =) (Graph.all_succs gr keys)) gr)
+ val scc = strong_conn_of (PredData.get thy') names
+ val thy'' = fold_rev
+ (fn preds => fn thy =>
+ if #are_not_defined steps thy preds then add_equations_of steps preds thy else thy)
+ scc thy' |> Theory.checkpoint
+ in thy'' end
+
+(* different instantiantions of the predicate compiler *)
+
+val add_equations = gen_add_equations
+ {infer_modes = infer_modes false,
+ create_definitions = create_definitions,
+ compile_preds = compile_preds PredicateCompFuns.compfuns mk_fun_of false,
+ prove = prove,
+ are_not_defined = (fn thy => forall (null o modes_of thy)),
+ qname = "equation"}
+
+val add_sizelim_equations = gen_add_equations
+ {infer_modes = infer_modes false,
+ create_definitions = sizelim_create_definitions,
+ compile_preds = compile_preds PredicateCompFuns.compfuns mk_sizelim_fun_of true,
+ prove = prove_by_skip,
+ are_not_defined = (fn thy => fn preds => true), (* TODO *)
+ qname = "sizelim_equation"
+ }
+
+val add_quickcheck_equations = gen_add_equations
+ {infer_modes = infer_modes_with_generator,
+ create_definitions = rpred_create_definitions,
+ compile_preds = compile_preds RPredCompFuns.compfuns mk_generator_of true,
+ prove = prove_by_skip,
+ are_not_defined = (fn thy => fn preds => true), (* TODO *)
+ qname = "rpred_equation"}
+
+(** user interface **)
+
+(* generation of case rules from user-given introduction rules *)
+
+fun mk_casesrule ctxt nparams introrules =
+ let
+ val intros = map (Logic.unvarify o prop_of) introrules
+ val (pred, (params, args)) = strip_intro_concl nparams (hd intros)
+ val ([propname], ctxt1) = Variable.variant_fixes ["thesis"] ctxt
+ val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
+ val (argnames, ctxt2) = Variable.variant_fixes
+ (map (fn i => "a" ^ string_of_int i) (1 upto (length args))) ctxt1
+ val argvs = map2 (curry Free) argnames (map fastype_of args)
+ fun mk_case intro =
+ let
+ val (_, (_, args)) = strip_intro_concl nparams intro
+ val prems = Logic.strip_imp_prems intro
+ val eqprems = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (argvs ~~ args)
+ val frees = (fold o fold_aterms)
+ (fn t as Free _ =>
+ if member (op aconv) params t then I else insert (op aconv) t
+ | _ => I) (args @ prems) []
+ in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
+ val assm = HOLogic.mk_Trueprop (list_comb (pred, params @ argvs))
+ val cases = map mk_case intros
+ in Logic.list_implies (assm :: cases, prop) end;
+
+(* code_pred_intro attribute *)
+
+fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
+
+val code_pred_intros_attrib = attrib add_intro;
+
+local
+
+(* TODO: make TheoryDataFun to GenericDataFun & remove duplication of local theory and theory *)
+(* TODO: must create state to prove multiple cases *)
+fun generic_code_pred prep_const raw_const lthy =
+ let
+ val thy = ProofContext.theory_of lthy
+ val const = prep_const thy raw_const
+ val lthy' = LocalTheory.theory (PredData.map
+ (extend (fetch_pred_data thy) (depending_preds_of thy) const)) lthy
+ |> LocalTheory.checkpoint
+ val thy' = ProofContext.theory_of lthy'
+ val preds = Graph.all_preds (PredData.get thy') [const] |> filter_out (has_elim thy')
+ fun mk_cases const =
+ let
+ val nparams = nparams_of thy' const
+ val intros = intros_of thy' const
+ in mk_casesrule lthy' nparams intros end
+ val cases_rules = map mk_cases preds
+ val cases =
+ map (fn case_rule => RuleCases.Case {fixes = [],
+ assumes = [("", Logic.strip_imp_prems case_rule)],
+ binds = [], cases = []}) cases_rules
+ val case_env = map2 (fn p => fn c => (Long_Name.base_name p, SOME c)) preds cases
+ val lthy'' = lthy'
+ |> fold Variable.auto_fixes cases_rules
+ |> ProofContext.add_cases true case_env
+ fun after_qed thms goal_ctxt =
+ let
+ val global_thms = ProofContext.export goal_ctxt
+ (ProofContext.init (ProofContext.theory_of goal_ctxt)) (map the_single thms)
+ in
+ goal_ctxt |> LocalTheory.theory (fold set_elim global_thms #> add_equations [const])
+ end
+ in
+ Proof.theorem_i NONE after_qed (map (single o (rpair [])) cases_rules) lthy''
+ end;
+
+structure P = OuterParse
+
+in
+
+val code_pred = generic_code_pred (K I);
+val code_pred_cmd = generic_code_pred Code.read_const
+
+val setup = PredData.put (Graph.empty) #>
+ Attrib.setup @{binding code_pred_intros} (Scan.succeed (attrib add_intro))
+ "adding alternative introduction rules for code generation of inductive predicates"
+(* Attrib.setup @{binding code_ind_cases} (Scan.succeed add_elim_attrib)
+ "adding alternative elimination rules for code generation of inductive predicates";
+ *)
+ (*FIXME name discrepancy in attribs and ML code*)
+ (*FIXME intros should be better named intro*)
+ (*FIXME why distinguished attribute for cases?*)
+
+val _ = OuterSyntax.local_theory_to_proof "code_pred"
+ "prove equations for predicate specified by intro/elim rules"
+ OuterKeyword.thy_goal (P.term_group >> code_pred_cmd)
+
+end
+
+(*FIXME
+- Naming of auxiliary rules necessary?
+- add default code equations P x y z = P_i_i_i x y z
+*)
+
+(* transformation for code generation *)
+
+val eval_ref = ref (NONE : (unit -> term Predicate.pred) option);
+
+(*FIXME turn this into an LCF-guarded preprocessor for comprehensions*)
+fun analyze_compr thy t_compr =
+ let
+ val split = case t_compr of (Const (@{const_name Collect}, _) $ t) => t
+ | _ => error ("Not a set comprehension: " ^ Syntax.string_of_term_global thy t_compr);
+ val (body, Ts, fp) = HOLogic.strip_psplits split;
+ val (pred as Const (name, T), all_args) = strip_comb body;
+ val (params, args) = chop (nparams_of thy name) all_args;
+ val user_mode = map_filter I (map_index
+ (fn (i, t) => case t of Bound j => if j < length Ts then NONE
+ else SOME (i+1) | _ => SOME (i+1)) args); (*FIXME dangling bounds should not occur*)
+ val modes = filter (fn Mode (_, is, _) => is = user_mode)
+ (modes_of_term (all_modes_of thy) (list_comb (pred, params)));
+ val m = case modes
+ of [] => error ("No mode possible for comprehension "
+ ^ Syntax.string_of_term_global thy t_compr)
+ | [m] => m
+ | m :: _ :: _ => (warning ("Multiple modes possible for comprehension "
+ ^ Syntax.string_of_term_global thy t_compr); m);
+ val (inargs, outargs) = split_smode user_mode args;
+ val t_pred = list_comb (compile_expr NONE thy (m, list_comb (pred, params)), inargs);
+ val t_eval = if null outargs then t_pred else let
+ val outargs_bounds = map (fn Bound i => i) outargs;
+ val outargsTs = map (nth Ts) outargs_bounds;
+ val T_pred = HOLogic.mk_tupleT outargsTs;
+ val T_compr = HOLogic.mk_ptupleT fp Ts;
+ val arrange_bounds = map_index I outargs_bounds
+ |> sort (prod_ord (K EQUAL) int_ord)
+ |> map fst;
+ val arrange = funpow (length outargs_bounds - 1) HOLogic.mk_split
+ (Term.list_abs (map (pair "") outargsTs,
+ HOLogic.mk_ptuple fp T_compr (map Bound arrange_bounds)))
+ in mk_map PredicateCompFuns.compfuns T_pred T_compr arrange t_pred end
+ in t_eval end;
+
+fun eval thy t_compr =
+ let
+ val t = analyze_compr thy t_compr;
+ val T = dest_predT PredicateCompFuns.compfuns (fastype_of t);
+ val t' = mk_map PredicateCompFuns.compfuns T HOLogic.termT (HOLogic.term_of_const T) t;
+ in (T, Code_ML.eval NONE ("Predicate_Compile.eval_ref", eval_ref) Predicate.map thy t' []) end;
+
+fun values ctxt k t_compr =
+ let
+ val thy = ProofContext.theory_of ctxt;
+ val (T, t) = eval thy t_compr;
+ val setT = HOLogic.mk_setT T;
+ val (ts, _) = Predicate.yieldn k t;
+ val elemsT = HOLogic.mk_set T ts;
+ in if k = ~1 orelse length ts < k then elemsT
+ else Const (@{const_name Lattices.sup}, setT --> setT --> setT) $ elemsT $ t_compr
+ end;
+
+fun values_cmd modes k raw_t state =
+ let
+ val ctxt = Toplevel.context_of state;
+ val t = Syntax.read_term ctxt raw_t;
+ val t' = values ctxt k t;
+ val ty' = Term.type_of t';
+ val ctxt' = Variable.auto_fixes t' ctxt;
+ val p = PrintMode.with_modes modes (fn () =>
+ Pretty.block [Pretty.quote (Syntax.pretty_term ctxt' t'), Pretty.fbrk,
+ Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt' ty')]) ();
+ in Pretty.writeln p end;
+
+local structure P = OuterParse in
+
+val opt_modes = Scan.optional (P.$$$ "(" |-- P.!!! (Scan.repeat1 P.xname --| P.$$$ ")")) [];
+
+val _ = OuterSyntax.improper_command "values" "enumerate and print comprehensions" OuterKeyword.diag
+ (opt_modes -- Scan.optional P.nat ~1 -- P.term
+ >> (fn ((modes, k), t) => Toplevel.no_timing o Toplevel.keep
+ (values_cmd modes k t)));
+
+end;
+
+end;
+