src/HOL/Predicate.thy
changeset 32705 04ce6bb14d85
parent 32668 b2de45007537
parent 32703 7f9e05b3d0fb
child 32779 371c7f74282d
     1.1 --- a/src/HOL/Predicate.thy	Thu Sep 24 19:14:18 2009 +0200
     1.2 +++ b/src/HOL/Predicate.thy	Fri Sep 25 09:50:31 2009 +0200
     1.3 @@ -81,7 +81,7 @@
     1.4  lemma sup2_iff: "sup A B x y \<longleftrightarrow> A x y | B x y"
     1.5    by (simp add: sup_fun_eq sup_bool_eq)
     1.6  
     1.7 -lemma sup_Un_eq [pred_set_conv]: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
     1.8 +lemma sup_Un_eq: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
     1.9    by (simp add: sup1_iff expand_fun_eq)
    1.10  
    1.11  lemma sup_Un_eq2 [pred_set_conv]: "sup (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
    1.12 @@ -125,7 +125,7 @@
    1.13  lemma inf2_iff: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
    1.14    by (simp add: inf_fun_eq inf_bool_eq)
    1.15  
    1.16 -lemma inf_Int_eq [pred_set_conv]: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
    1.17 +lemma inf_Int_eq: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
    1.18    by (simp add: inf1_iff expand_fun_eq)
    1.19  
    1.20  lemma inf_Int_eq2 [pred_set_conv]: "inf (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"