author | berghofe |
Thu, 19 Jul 2007 15:35:00 +0200 | |
changeset 23847 | 32d76edc5e5c |
parent 20140 | 98acc6d0fab6 |
child 23894 | 1a4167d761ac |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Type.thy |
0 | 2 |
ID: $Id$ |
3 |
Author: Martin Coen |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
*) |
|
6 |
||
17456 | 7 |
header {* Types in CCL are defined as sets of terms *} |
8 |
||
9 |
theory Type |
|
10 |
imports Term |
|
11 |
begin |
|
0 | 12 |
|
13 |
consts |
|
14 |
||
15 |
Subtype :: "['a set, 'a => o] => 'a set" |
|
16 |
Bool :: "i set" |
|
17 |
Unit :: "i set" |
|
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
18 |
"+" :: "[i set, i set] => i set" (infixr 55) |
0 | 19 |
Pi :: "[i set, i => i set] => i set" |
20 |
Sigma :: "[i set, i => i set] => i set" |
|
21 |
Nat :: "i set" |
|
22 |
List :: "i set => i set" |
|
23 |
Lists :: "i set => i set" |
|
24 |
ILists :: "i set => i set" |
|
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
25 |
TAll :: "(i set => i set) => i set" (binder "TALL " 55) |
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
26 |
TEx :: "(i set => i set) => i set" (binder "TEX " 55) |
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
27 |
Lift :: "i set => i set" ("(3[_])") |
0 | 28 |
|
29 |
SPLIT :: "[i, [i, i] => i set] => i set" |
|
30 |
||
14765 | 31 |
syntax |
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
32 |
"@Pi" :: "[idt, i set, i set] => i set" ("(3PROD _:_./ _)" |
1474 | 33 |
[0,0,60] 60) |
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
34 |
|
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
35 |
"@Sigma" :: "[idt, i set, i set] => i set" ("(3SUM _:_./ _)" |
1474 | 36 |
[0,0,60] 60) |
17456 | 37 |
|
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
38 |
"@->" :: "[i set, i set] => i set" ("(_ ->/ _)" [54, 53] 53) |
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
39 |
"@*" :: "[i set, i set] => i set" ("(_ */ _)" [56, 55] 55) |
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
40 |
"@Subtype" :: "[idt, 'a set, o] => 'a set" ("(1{_: _ ./ _})") |
0 | 41 |
|
42 |
translations |
|
43 |
"PROD x:A. B" => "Pi(A, %x. B)" |
|
17782 | 44 |
"A -> B" => "Pi(A, %_. B)" |
0 | 45 |
"SUM x:A. B" => "Sigma(A, %x. B)" |
17782 | 46 |
"A * B" => "Sigma(A, %_. B)" |
0 | 47 |
"{x: A. B}" == "Subtype(A, %x. B)" |
48 |
||
17456 | 49 |
print_translation {* |
50 |
[("Pi", dependent_tr' ("@Pi", "@->")), |
|
51 |
("Sigma", dependent_tr' ("@Sigma", "@*"))] *} |
|
0 | 52 |
|
17456 | 53 |
axioms |
54 |
Subtype_def: "{x:A. P(x)} == {x. x:A & P(x)}" |
|
55 |
Unit_def: "Unit == {x. x=one}" |
|
56 |
Bool_def: "Bool == {x. x=true | x=false}" |
|
57 |
Plus_def: "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}" |
|
58 |
Pi_def: "Pi(A,B) == {x. EX b. x=lam x. b(x) & (ALL x:A. b(x):B(x))}" |
|
59 |
Sigma_def: "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}" |
|
60 |
Nat_def: "Nat == lfp(% X. Unit + X)" |
|
61 |
List_def: "List(A) == lfp(% X. Unit + A*X)" |
|
0 | 62 |
|
17456 | 63 |
Lists_def: "Lists(A) == gfp(% X. Unit + A*X)" |
64 |
ILists_def: "ILists(A) == gfp(% X.{} + A*X)" |
|
0 | 65 |
|
17456 | 66 |
Tall_def: "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})" |
67 |
Tex_def: "TEX X. B(X) == Union({X. EX Y. X=B(Y)})" |
|
68 |
Lift_def: "[A] == A Un {bot}" |
|
0 | 69 |
|
17456 | 70 |
SPLIT_def: "SPLIT(p,B) == Union({A. EX x y. p=<x,y> & A=B(x,y)})" |
71 |
||
20140 | 72 |
|
73 |
lemmas simp_type_defs = |
|
74 |
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def Tall_def Tex_def |
|
75 |
and ind_type_defs = Nat_def List_def |
|
76 |
and simp_data_defs = one_def inl_def inr_def |
|
77 |
and ind_data_defs = zero_def succ_def nil_def cons_def |
|
78 |
||
79 |
lemma subsetXH: "A <= B <-> (ALL x. x:A --> x:B)" |
|
80 |
by blast |
|
81 |
||
82 |
||
83 |
subsection {* Exhaustion Rules *} |
|
84 |
||
85 |
lemma EmptyXH: "!!a. a : {} <-> False" |
|
86 |
and SubtypeXH: "!!a A P. a : {x:A. P(x)} <-> (a:A & P(a))" |
|
87 |
and UnitXH: "!!a. a : Unit <-> a=one" |
|
88 |
and BoolXH: "!!a. a : Bool <-> a=true | a=false" |
|
89 |
and PlusXH: "!!a A B. a : A+B <-> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))" |
|
90 |
and PiXH: "!!a A B. a : PROD x:A. B(x) <-> (EX b. a=lam x. b(x) & (ALL x:A. b(x):B(x)))" |
|
91 |
and SgXH: "!!a A B. a : SUM x:A. B(x) <-> (EX x:A. EX y:B(x).a=<x,y>)" |
|
92 |
unfolding simp_type_defs by blast+ |
|
93 |
||
94 |
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH |
|
95 |
||
96 |
lemma LiftXH: "a : [A] <-> (a=bot | a:A)" |
|
97 |
and TallXH: "a : TALL X. B(X) <-> (ALL X. a:B(X))" |
|
98 |
and TexXH: "a : TEX X. B(X) <-> (EX X. a:B(X))" |
|
99 |
unfolding simp_type_defs by blast+ |
|
100 |
||
101 |
ML {* |
|
102 |
bind_thms ("case_rls", XH_to_Es (thms "XHs")); |
|
103 |
*} |
|
104 |
||
105 |
||
106 |
subsection {* Canonical Type Rules *} |
|
107 |
||
108 |
lemma oneT: "one : Unit" |
|
109 |
and trueT: "true : Bool" |
|
110 |
and falseT: "false : Bool" |
|
111 |
and lamT: "!!b B. [| !!x. x:A ==> b(x):B(x) |] ==> lam x. b(x) : Pi(A,B)" |
|
112 |
and pairT: "!!b B. [| a:A; b:B(a) |] ==> <a,b>:Sigma(A,B)" |
|
113 |
and inlT: "a:A ==> inl(a) : A+B" |
|
114 |
and inrT: "b:B ==> inr(b) : A+B" |
|
115 |
by (blast intro: XHs [THEN iffD2])+ |
|
116 |
||
117 |
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT |
|
118 |
||
119 |
||
120 |
subsection {* Non-Canonical Type Rules *} |
|
121 |
||
122 |
lemma lem: "[| a:B(u); u=v |] ==> a : B(v)" |
|
123 |
by blast |
|
124 |
||
125 |
||
126 |
ML {* |
|
127 |
local |
|
128 |
val lemma = thm "lem" |
|
129 |
val bspec = thm "bspec" |
|
130 |
val bexE = thm "bexE" |
|
131 |
in |
|
132 |
||
133 |
fun mk_ncanT_tac thy defs top_crls crls s = prove_goalw thy defs s |
|
134 |
(fn major::prems => [(resolve_tac ([major] RL top_crls) 1), |
|
135 |
(REPEAT_SOME (eresolve_tac (crls @ [exE,bexE,conjE,disjE]))), |
|
136 |
(ALLGOALS (asm_simp_tac (simpset ()))), |
|
137 |
(ALLGOALS (ares_tac (prems RL [lemma]) ORELSE' |
|
138 |
etac bspec )), |
|
139 |
(safe_tac (claset () addSIs prems))]) |
|
140 |
||
141 |
val ncanT_tac = mk_ncanT_tac (the_context ()) [] case_rls case_rls |
|
142 |
end |
|
143 |
*} |
|
144 |
||
145 |
ML {* |
|
146 |
||
147 |
bind_thm ("ifT", ncanT_tac |
|
148 |
"[| b:Bool; b=true ==> t:A(true); b=false ==> u:A(false) |] ==> if b then t else u : A(b)"); |
|
149 |
||
150 |
bind_thm ("applyT", ncanT_tac "[| f : Pi(A,B); a:A |] ==> f ` a : B(a)"); |
|
151 |
||
152 |
bind_thm ("splitT", ncanT_tac |
|
153 |
"[| p:Sigma(A,B); !!x y. [| x:A; y:B(x); p=<x,y> |] ==> c(x,y):C(<x,y>) |] ==> split(p,c):C(p)"); |
|
154 |
||
155 |
bind_thm ("whenT", ncanT_tac |
|
156 |
"[| p:A+B; !!x.[| x:A; p=inl(x) |] ==> a(x):C(inl(x)); !!y.[| y:B; p=inr(y) |] ==> b(y):C(inr(y)) |] ==> when(p,a,b) : C(p)"); |
|
157 |
*} |
|
158 |
||
159 |
lemmas ncanTs = ifT applyT splitT whenT |
|
160 |
||
161 |
||
162 |
subsection {* Subtypes *} |
|
163 |
||
164 |
lemma SubtypeD1: "a : Subtype(A, P) ==> a : A" |
|
165 |
and SubtypeD2: "a : Subtype(A, P) ==> P(a)" |
|
166 |
by (simp_all add: SubtypeXH) |
|
167 |
||
168 |
lemma SubtypeI: "[| a:A; P(a) |] ==> a : {x:A. P(x)}" |
|
169 |
by (simp add: SubtypeXH) |
|
170 |
||
171 |
lemma SubtypeE: "[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> Q |] ==> Q" |
|
172 |
by (simp add: SubtypeXH) |
|
173 |
||
174 |
||
175 |
subsection {* Monotonicity *} |
|
176 |
||
177 |
lemma idM: "mono (%X. X)" |
|
178 |
apply (rule monoI) |
|
179 |
apply assumption |
|
180 |
done |
|
181 |
||
182 |
lemma constM: "mono(%X. A)" |
|
183 |
apply (rule monoI) |
|
184 |
apply (rule subset_refl) |
|
185 |
done |
|
186 |
||
187 |
lemma "mono(%X. A(X)) ==> mono(%X.[A(X)])" |
|
188 |
apply (rule subsetI [THEN monoI]) |
|
189 |
apply (drule LiftXH [THEN iffD1]) |
|
190 |
apply (erule disjE) |
|
191 |
apply (erule disjI1 [THEN LiftXH [THEN iffD2]]) |
|
192 |
apply (rule disjI2 [THEN LiftXH [THEN iffD2]]) |
|
193 |
apply (drule (1) monoD) |
|
194 |
apply blast |
|
195 |
done |
|
196 |
||
197 |
lemma SgM: |
|
198 |
"[| mono(%X. A(X)); !!x X. x:A(X) ==> mono(%X. B(X,x)) |] ==> |
|
199 |
mono(%X. Sigma(A(X),B(X)))" |
|
200 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
|
201 |
dest!: monoD [THEN subsetD]) |
|
202 |
||
203 |
lemma PiM: |
|
204 |
"[| !!x. x:A ==> mono(%X. B(X,x)) |] ==> mono(%X. Pi(A,B(X)))" |
|
205 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
|
206 |
dest!: monoD [THEN subsetD]) |
|
207 |
||
208 |
lemma PlusM: |
|
209 |
"[| mono(%X. A(X)); mono(%X. B(X)) |] ==> mono(%X. A(X)+B(X))" |
|
210 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
|
211 |
dest!: monoD [THEN subsetD]) |
|
212 |
||
213 |
||
214 |
subsection {* Recursive types *} |
|
215 |
||
216 |
subsubsection {* Conversion Rules for Fixed Points via monotonicity and Tarski *} |
|
217 |
||
218 |
lemma NatM: "mono(%X. Unit+X)"; |
|
219 |
apply (rule PlusM constM idM)+ |
|
220 |
done |
|
221 |
||
222 |
lemma def_NatB: "Nat = Unit + Nat" |
|
223 |
apply (rule def_lfp_Tarski [OF Nat_def]) |
|
224 |
apply (rule NatM) |
|
225 |
done |
|
226 |
||
227 |
lemma ListM: "mono(%X.(Unit+Sigma(A,%y. X)))" |
|
228 |
apply (rule PlusM SgM constM idM)+ |
|
229 |
done |
|
230 |
||
231 |
lemma def_ListB: "List(A) = Unit + A * List(A)" |
|
232 |
apply (rule def_lfp_Tarski [OF List_def]) |
|
233 |
apply (rule ListM) |
|
234 |
done |
|
235 |
||
236 |
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)" |
|
237 |
apply (rule def_gfp_Tarski [OF Lists_def]) |
|
238 |
apply (rule ListM) |
|
239 |
done |
|
240 |
||
241 |
lemma IListsM: "mono(%X.({} + Sigma(A,%y. X)))" |
|
242 |
apply (rule PlusM SgM constM idM)+ |
|
243 |
done |
|
244 |
||
245 |
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)" |
|
246 |
apply (rule def_gfp_Tarski [OF ILists_def]) |
|
247 |
apply (rule IListsM) |
|
248 |
done |
|
249 |
||
250 |
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB |
|
251 |
||
252 |
||
253 |
subsection {* Exhaustion Rules *} |
|
254 |
||
255 |
lemma NatXH: "a : Nat <-> (a=zero | (EX x:Nat. a=succ(x)))" |
|
256 |
and ListXH: "a : List(A) <-> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))" |
|
257 |
and ListsXH: "a : Lists(A) <-> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))" |
|
258 |
and IListsXH: "a : ILists(A) <-> (EX x:A. EX xs:ILists(A).a=x$xs)" |
|
259 |
unfolding ind_data_defs |
|
260 |
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+ |
|
261 |
||
262 |
lemmas iXHs = NatXH ListXH |
|
263 |
||
264 |
ML {* bind_thms ("icase_rls", XH_to_Es (thms "iXHs")) *} |
|
265 |
||
266 |
||
267 |
subsection {* Type Rules *} |
|
268 |
||
269 |
lemma zeroT: "zero : Nat" |
|
270 |
and succT: "n:Nat ==> succ(n) : Nat" |
|
271 |
and nilT: "[] : List(A)" |
|
272 |
and consT: "[| h:A; t:List(A) |] ==> h$t : List(A)" |
|
273 |
by (blast intro: iXHs [THEN iffD2])+ |
|
274 |
||
275 |
lemmas icanTs = zeroT succT nilT consT |
|
276 |
||
277 |
ML {* |
|
278 |
val incanT_tac = mk_ncanT_tac (the_context ()) [] (thms "icase_rls") (thms "case_rls"); |
|
279 |
||
280 |
bind_thm ("ncaseT", incanT_tac |
|
281 |
"[| n:Nat; n=zero ==> b:C(zero); !!x.[| x:Nat; n=succ(x) |] ==> c(x):C(succ(x)) |] ==> ncase(n,b,c) : C(n)"); |
|
282 |
||
283 |
bind_thm ("lcaseT", incanT_tac |
|
284 |
"[| l:List(A); l=[] ==> b:C([]); !!h t.[| h:A; t:List(A); l=h$t |] ==> c(h,t):C(h$t) |] ==> lcase(l,b,c) : C(l)"); |
|
285 |
*} |
|
286 |
||
287 |
lemmas incanTs = ncaseT lcaseT |
|
288 |
||
289 |
||
290 |
subsection {* Induction Rules *} |
|
291 |
||
292 |
lemmas ind_Ms = NatM ListM |
|
293 |
||
294 |
lemma Nat_ind: "[| n:Nat; P(zero); !!x.[| x:Nat; P(x) |] ==> P(succ(x)) |] ==> P(n)" |
|
295 |
apply (unfold ind_data_defs) |
|
296 |
apply (erule def_induct [OF Nat_def _ NatM]) |
|
297 |
apply (blast intro: canTs elim!: case_rls) |
|
298 |
done |
|
299 |
||
300 |
lemma List_ind: |
|
301 |
"[| l:List(A); P([]); !!x xs.[| x:A; xs:List(A); P(xs) |] ==> P(x$xs) |] ==> P(l)" |
|
302 |
apply (unfold ind_data_defs) |
|
303 |
apply (erule def_induct [OF List_def _ ListM]) |
|
304 |
apply (blast intro: canTs elim!: case_rls) |
|
305 |
done |
|
306 |
||
307 |
lemmas inds = Nat_ind List_ind |
|
308 |
||
309 |
||
310 |
subsection {* Primitive Recursive Rules *} |
|
311 |
||
312 |
lemma nrecT: |
|
313 |
"[| n:Nat; b:C(zero); |
|
314 |
!!x g.[| x:Nat; g:C(x) |] ==> c(x,g):C(succ(x)) |] ==> |
|
315 |
nrec(n,b,c) : C(n)" |
|
316 |
by (erule Nat_ind) auto |
|
317 |
||
318 |
lemma lrecT: |
|
319 |
"[| l:List(A); b:C([]); |
|
320 |
!!x xs g.[| x:A; xs:List(A); g:C(xs) |] ==> c(x,xs,g):C(x$xs) |] ==> |
|
321 |
lrec(l,b,c) : C(l)" |
|
322 |
by (erule List_ind) auto |
|
323 |
||
324 |
lemmas precTs = nrecT lrecT |
|
325 |
||
326 |
||
327 |
subsection {* Theorem proving *} |
|
328 |
||
329 |
lemma SgE2: |
|
330 |
"[| <a,b> : Sigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P" |
|
331 |
unfolding SgXH by blast |
|
332 |
||
333 |
(* General theorem proving ignores non-canonical term-formers, *) |
|
334 |
(* - intro rules are type rules for canonical terms *) |
|
335 |
(* - elim rules are case rules (no non-canonical terms appear) *) |
|
336 |
||
337 |
ML {* bind_thms ("XHEs", XH_to_Es (thms "XHs")) *} |
|
338 |
||
339 |
lemmas [intro!] = SubtypeI canTs icanTs |
|
340 |
and [elim!] = SubtypeE XHEs |
|
341 |
||
342 |
||
343 |
subsection {* Infinite Data Types *} |
|
344 |
||
345 |
lemma lfp_subset_gfp: "mono(f) ==> lfp(f) <= gfp(f)" |
|
346 |
apply (rule lfp_lowerbound [THEN subset_trans]) |
|
347 |
apply (erule gfp_lemma3) |
|
348 |
apply (rule subset_refl) |
|
349 |
done |
|
350 |
||
351 |
lemma gfpI: |
|
352 |
assumes "a:A" |
|
353 |
and "!!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X)" |
|
354 |
shows "t(a) : gfp(B)" |
|
355 |
apply (rule coinduct) |
|
356 |
apply (rule_tac P = "%x. EX y:A. x=t (y)" in CollectI) |
|
357 |
apply (blast intro!: prems)+ |
|
358 |
done |
|
359 |
||
360 |
lemma def_gfpI: |
|
361 |
"[| C==gfp(B); a:A; !!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X) |] ==> |
|
362 |
t(a) : C" |
|
363 |
apply unfold |
|
364 |
apply (erule gfpI) |
|
365 |
apply blast |
|
366 |
done |
|
367 |
||
368 |
(* EG *) |
|
369 |
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)" |
|
370 |
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]]) |
|
371 |
apply (subst letrecB) |
|
372 |
apply (unfold cons_def) |
|
373 |
apply blast |
|
374 |
done |
|
375 |
||
376 |
||
377 |
subsection {* Lemmas and tactics for using the rule @{text |
|
378 |
"coinduct3"} on @{text "[="} and @{text "="} *} |
|
379 |
||
380 |
lemma lfpI: "[| mono(f); a : f(lfp(f)) |] ==> a : lfp(f)" |
|
381 |
apply (erule lfp_Tarski [THEN ssubst]) |
|
382 |
apply assumption |
|
383 |
done |
|
384 |
||
385 |
lemma ssubst_single: "[| a=a'; a' : A |] ==> a : A" |
|
386 |
by simp |
|
387 |
||
388 |
lemma ssubst_pair: "[| a=a'; b=b'; <a',b'> : A |] ==> <a,b> : A" |
|
389 |
by simp |
|
390 |
||
391 |
||
392 |
(***) |
|
393 |
||
394 |
ML {* |
|
395 |
||
396 |
local |
|
397 |
val lfpI = thm "lfpI" |
|
398 |
val coinduct3_mono_lemma = thm "coinduct3_mono_lemma" |
|
399 |
fun mk_thm s = prove_goal (the_context ()) s (fn mono::prems => |
|
400 |
[fast_tac (claset () addIs ((mono RS coinduct3_mono_lemma RS lfpI)::prems)) 1]) |
|
401 |
in |
|
402 |
val ci3_RI = mk_thm "[| mono(Agen); a : R |] ==> a : lfp(%x. Agen(x) Un R Un A)" |
|
403 |
val ci3_AgenI = mk_thm "[| mono(Agen); a : Agen(lfp(%x. Agen(x) Un R Un A)) |] ==> a : lfp(%x. Agen(x) Un R Un A)" |
|
404 |
val ci3_AI = mk_thm "[| mono(Agen); a : A |] ==> a : lfp(%x. Agen(x) Un R Un A)" |
|
405 |
||
406 |
fun mk_genIs thy defs genXH gen_mono s = prove_goalw thy defs s |
|
407 |
(fn prems => [rtac (genXH RS iffD2) 1, |
|
408 |
simp_tac (simpset ()) 1, |
|
409 |
TRY (fast_tac (claset () addIs |
|
410 |
([genXH RS iffD2,gen_mono RS coinduct3_mono_lemma RS lfpI] |
|
411 |
@ prems)) 1)]) |
|
412 |
end; |
|
413 |
||
414 |
bind_thm ("ci3_RI", ci3_RI); |
|
415 |
bind_thm ("ci3_AgenI", ci3_AgenI); |
|
416 |
bind_thm ("ci3_AI", ci3_AI); |
|
417 |
*} |
|
418 |
||
419 |
||
420 |
subsection {* POgen *} |
|
421 |
||
422 |
lemma PO_refl: "<a,a> : PO" |
|
423 |
apply (rule po_refl [THEN PO_iff [THEN iffD1]]) |
|
424 |
done |
|
425 |
||
426 |
ML {* |
|
427 |
||
428 |
val POgenIs = map (mk_genIs (the_context ()) (thms "data_defs") (thm "POgenXH") (thm "POgen_mono")) |
|
429 |
["<true,true> : POgen(R)", |
|
430 |
"<false,false> : POgen(R)", |
|
431 |
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : POgen(R)", |
|
432 |
"[|!!x. <b(x),b'(x)> : R |] ==><lam x. b(x),lam x. b'(x)> : POgen(R)", |
|
433 |
"<one,one> : POgen(R)", |
|
434 |
"<a,a'> : lfp(%x. POgen(x) Un R Un PO) ==> <inl(a),inl(a')> : POgen(lfp(%x. POgen(x) Un R Un PO))", |
|
435 |
"<b,b'> : lfp(%x. POgen(x) Un R Un PO) ==> <inr(b),inr(b')> : POgen(lfp(%x. POgen(x) Un R Un PO))", |
|
436 |
"<zero,zero> : POgen(lfp(%x. POgen(x) Un R Un PO))", |
|
437 |
"<n,n'> : lfp(%x. POgen(x) Un R Un PO) ==> <succ(n),succ(n')> : POgen(lfp(%x. POgen(x) Un R Un PO))", |
|
438 |
"<[],[]> : POgen(lfp(%x. POgen(x) Un R Un PO))", |
|
439 |
"[| <h,h'> : lfp(%x. POgen(x) Un R Un PO); <t,t'> : lfp(%x. POgen(x) Un R Un PO) |] ==> <h$t,h'$t'> : POgen(lfp(%x. POgen(x) Un R Un PO))"]; |
|
440 |
||
441 |
fun POgen_tac (rla,rlb) i = |
|
442 |
SELECT_GOAL (CLASET safe_tac) i THEN |
|
443 |
rtac (rlb RS (rla RS (thm "ssubst_pair"))) i THEN |
|
444 |
(REPEAT (resolve_tac (POgenIs @ [thm "PO_refl" RS (thm "POgen_mono" RS ci3_AI)] @ |
|
445 |
(POgenIs RL [thm "POgen_mono" RS ci3_AgenI]) @ [thm "POgen_mono" RS ci3_RI]) i)); |
|
446 |
||
447 |
*} |
|
448 |
||
449 |
||
450 |
subsection {* EQgen *} |
|
451 |
||
452 |
lemma EQ_refl: "<a,a> : EQ" |
|
453 |
apply (rule refl [THEN EQ_iff [THEN iffD1]]) |
|
454 |
done |
|
455 |
||
456 |
ML {* |
|
457 |
||
458 |
val EQgenIs = map (mk_genIs (the_context ()) (thms "data_defs") (thm "EQgenXH") (thm "EQgen_mono")) |
|
459 |
["<true,true> : EQgen(R)", |
|
460 |
"<false,false> : EQgen(R)", |
|
461 |
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : EQgen(R)", |
|
462 |
"[|!!x. <b(x),b'(x)> : R |] ==> <lam x. b(x),lam x. b'(x)> : EQgen(R)", |
|
463 |
"<one,one> : EQgen(R)", |
|
464 |
"<a,a'> : lfp(%x. EQgen(x) Un R Un EQ) ==> <inl(a),inl(a')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))", |
|
465 |
"<b,b'> : lfp(%x. EQgen(x) Un R Un EQ) ==> <inr(b),inr(b')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))", |
|
466 |
"<zero,zero> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))", |
|
467 |
"<n,n'> : lfp(%x. EQgen(x) Un R Un EQ) ==> <succ(n),succ(n')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))", |
|
468 |
"<[],[]> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))", |
|
469 |
"[| <h,h'> : lfp(%x. EQgen(x) Un R Un EQ); <t,t'> : lfp(%x. EQgen(x) Un R Un EQ) |] ==> <h$t,h'$t'> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"]; |
|
470 |
||
471 |
fun EQgen_raw_tac i = |
|
472 |
(REPEAT (resolve_tac (EQgenIs @ [thm "EQ_refl" RS (thm "EQgen_mono" RS ci3_AI)] @ |
|
473 |
(EQgenIs RL [thm "EQgen_mono" RS ci3_AgenI]) @ [thm "EQgen_mono" RS ci3_RI]) i)) |
|
474 |
||
475 |
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *) |
|
476 |
(* then reduce this to a goal <a',b'> : R (hopefully?) *) |
|
477 |
(* rews are rewrite rules that would cause looping in the simpifier *) |
|
478 |
||
479 |
fun EQgen_tac simp_set rews i = |
|
480 |
SELECT_GOAL |
|
481 |
(TRY (CLASET safe_tac) THEN |
|
482 |
resolve_tac ((rews@[refl]) RL ((rews@[refl]) RL [thm "ssubst_pair"])) i THEN |
|
483 |
ALLGOALS (simp_tac simp_set) THEN |
|
484 |
ALLGOALS EQgen_raw_tac) i |
|
485 |
*} |
|
0 | 486 |
|
487 |
end |