| author | wenzelm | 
| Fri, 22 Apr 2022 10:11:06 +0200 | |
| changeset 75444 | 331f96a67924 | 
| parent 74337 | 9c1ad2f04660 | 
| child 75669 | 43f5dfb7fa35 | 
| permissions | -rw-r--r-- | 
| 63575 | 1 | (* Title: HOL/Complete_Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | Author: Lawrence C Paulson | |
| 4 | Author: Markus Wenzel | |
| 5 | Author: Florian Haftmann | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 6 | Author: Viorel Preoteasa (Complete Distributive Lattices) | 
| 63575 | 7 | *) | 
| 11979 | 8 | |
| 60758 | 9 | section \<open>Complete lattices\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 10 | |
| 44860 
56101fa00193
renamed theory Complete_Lattice to Complete_Lattices, in accordance with Lattices, Orderings etc.
 haftmann parents: 
44845diff
changeset | 11 | theory Complete_Lattices | 
| 63575 | 12 | imports Fun | 
| 32139 | 13 | begin | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 14 | |
| 60758 | 15 | subsection \<open>Syntactic infimum and supremum operations\<close> | 
| 32879 | 16 | |
| 17 | class Inf = | |
| 74337 | 18 |   fixes Inf :: "'a set \<Rightarrow> 'a"  ("\<Sqinter> _" [900] 900)
 | 
| 32879 | 19 | |
| 20 | class Sup = | |
| 74337 | 21 |   fixes Sup :: "'a set \<Rightarrow> 'a"  ("\<Squnion> _" [900] 900)
 | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 22 | |
| 68801 
c898c2b1fd58
deprecation of ASCII syntax for indexed big operators
 haftmann parents: 
68797diff
changeset | 23 | syntax | 
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 24 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
 | 
| 68801 
c898c2b1fd58
deprecation of ASCII syntax for indexed big operators
 haftmann parents: 
68797diff
changeset | 25 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _\<in>_./ _)" [0, 0, 10] 10)
 | 
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 26 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | 
| 68801 
c898c2b1fd58
deprecation of ASCII syntax for indexed big operators
 haftmann parents: 
68797diff
changeset | 27 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _\<in>_./ _)" [0, 0, 10] 10)
 | 
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 28 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 29 | syntax | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 30 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 31 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 32 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 33 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 34 | |
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
54147diff
changeset | 35 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 36 | "\<Sqinter>x y. f" \<rightleftharpoons> "\<Sqinter>x. \<Sqinter>y. f" | 
| 69745 | 37 | "\<Sqinter>x. f" \<rightleftharpoons> "\<Sqinter>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 38 | "\<Sqinter>x\<in>A. f" \<rightleftharpoons> "CONST Inf ((\<lambda>x. f) ` A)" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 39 | "\<Squnion>x y. f" \<rightleftharpoons> "\<Squnion>x. \<Squnion>y. f" | 
| 69745 | 40 | "\<Squnion>x. f" \<rightleftharpoons> "\<Squnion>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 41 | "\<Squnion>x\<in>A. f" \<rightleftharpoons> "CONST Sup ((\<lambda>x. f) ` A)" | 
| 46691 | 42 | |
| 68797 | 43 | context Inf | 
| 44 | begin | |
| 45 | ||
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 46 | lemma INF_image: "\<Sqinter> (g ` f ` A) = \<Sqinter> ((g \<circ> f) ` A)" | 
| 68797 | 47 | by (simp add: image_comp) | 
| 48 | ||
| 49 | lemma INF_identity_eq [simp]: "(\<Sqinter>x\<in>A. x) = \<Sqinter>A" | |
| 50 | by simp | |
| 51 | ||
| 52 | lemma INF_id_eq [simp]: "\<Sqinter>(id ` A) = \<Sqinter>A" | |
| 53 | by simp | |
| 54 | ||
| 55 | lemma INF_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> \<Sqinter>(C ` A) = \<Sqinter>(D ` B)" | |
| 56 | by (simp add: image_def) | |
| 57 | ||
| 69768 | 58 | lemma INF_cong_simp: | 
| 68797 | 59 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> \<Sqinter>(C ` A) = \<Sqinter>(D ` B)" | 
| 60 | unfolding simp_implies_def by (fact INF_cong) | |
| 61 | ||
| 62 | end | |
| 63 | ||
| 64 | context Sup | |
| 65 | begin | |
| 66 | ||
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 67 | lemma SUP_image: "\<Squnion> (g ` f ` A) = \<Squnion> ((g \<circ> f) ` A)" | 
| 69164 | 68 | by(fact Inf.INF_image) | 
| 68797 | 69 | |
| 70 | lemma SUP_identity_eq [simp]: "(\<Squnion>x\<in>A. x) = \<Squnion>A" | |
| 69164 | 71 | by(fact Inf.INF_identity_eq) | 
| 68797 | 72 | |
| 73 | lemma SUP_id_eq [simp]: "\<Squnion>(id ` A) = \<Squnion>A" | |
| 69164 | 74 | by(fact Inf.INF_id_eq) | 
| 68797 | 75 | |
| 76 | lemma SUP_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> \<Squnion>(C ` A) = \<Squnion>(D ` B)" | |
| 69164 | 77 | by (fact Inf.INF_cong) | 
| 68797 | 78 | |
| 69768 | 79 | lemma SUP_cong_simp: | 
| 68797 | 80 | "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> \<Squnion>(C ` A) = \<Squnion>(D ` B)" | 
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69275diff
changeset | 81 | by (fact Inf.INF_cong_simp) | 
| 68797 | 82 | |
| 83 | end | |
| 84 | ||
| 62048 
fefd79f6b232
retain ASCII syntax for output, when HOL/Library/Lattice_Syntax is not present (amending e96292f32c3c);
 wenzelm parents: 
61955diff
changeset | 85 | |
| 60758 | 86 | subsection \<open>Abstract complete lattices\<close> | 
| 32139 | 87 | |
| 60758 | 88 | text \<open>A complete lattice always has a bottom and a top, | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 89 | so we include them into the following type class, | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 90 | along with assumptions that define bottom and top | 
| 60758 | 91 | in terms of infimum and supremum.\<close> | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 92 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 93 | class complete_lattice = lattice + Inf + Sup + bot + top + | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 94 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<le> x" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 95 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> \<Sqinter>A" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 96 | and Sup_upper: "x \<in> A \<Longrightarrow> x \<le> \<Squnion>A" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 97 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> z) \<Longrightarrow> \<Squnion>A \<le> z" | 
| 63575 | 98 |     and Inf_empty [simp]: "\<Sqinter>{} = \<top>"
 | 
| 99 |     and Sup_empty [simp]: "\<Squnion>{} = \<bottom>"
 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 100 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 101 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 102 | subclass bounded_lattice | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 103 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 104 | fix a | 
| 63575 | 105 | show "\<bottom> \<le> a" | 
| 106 | by (auto intro: Sup_least simp only: Sup_empty [symmetric]) | |
| 107 | show "a \<le> \<top>" | |
| 108 | by (auto intro: Inf_greatest simp only: Inf_empty [symmetric]) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 109 | qed | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 110 | |
| 67399 | 111 | lemma dual_complete_lattice: "class.complete_lattice Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>" | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 112 | by (auto intro!: class.complete_lattice.intro dual_lattice) | 
| 63575 | 113 | (unfold_locales, (fact Inf_empty Sup_empty Sup_upper Sup_least Inf_lower Inf_greatest)+) | 
| 32678 | 114 | |
| 44040 | 115 | end | 
| 116 | ||
| 117 | context complete_lattice | |
| 118 | begin | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 119 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 120 | lemma Sup_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 121 | "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x" | 
| 73411 | 122 | by (blast intro: order.antisym Sup_least Sup_upper) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 123 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 124 | lemma Inf_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 125 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x" | 
| 73411 | 126 | by (blast intro: order.antisym Inf_greatest Inf_lower) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 127 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 128 | lemma SUP_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 129 | "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x" | 
| 56166 | 130 | using Sup_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 131 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 132 | lemma INF_eqI: | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 133 | "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x" | 
| 56166 | 134 | using Inf_eqI [of "f ` A" x] by auto | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 135 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 136 | lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> f i" | 
| 56166 | 137 | using Inf_lower [of _ "f ` A"] by simp | 
| 44040 | 138 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 139 | lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<le> f i) \<Longrightarrow> u \<le> (\<Sqinter>i\<in>A. f i)" | 
| 56166 | 140 | using Inf_greatest [of "f ` A"] by auto | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 141 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 142 | lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<le> (\<Squnion>i\<in>A. f i)" | 
| 56166 | 143 | using Sup_upper [of _ "f ` A"] by simp | 
| 44040 | 144 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 145 | lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<le> u" | 
| 56166 | 146 | using Sup_least [of "f ` A"] by auto | 
| 44040 | 147 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 148 | lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<le> v \<Longrightarrow> \<Sqinter>A \<le> v" | 
| 44040 | 149 | using Inf_lower [of u A] by auto | 
| 150 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 151 | lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<le> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> u" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 152 | using INF_lower [of i A f] by auto | 
| 44040 | 153 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 154 | lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<le> u \<Longrightarrow> v \<le> \<Squnion>A" | 
| 44040 | 155 | using Sup_upper [of u A] by auto | 
| 156 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 157 | lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<le> f i \<Longrightarrow> u \<le> (\<Squnion>i\<in>A. f i)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 158 | using SUP_upper [of i A f] by auto | 
| 44040 | 159 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 160 | lemma le_Inf_iff: "b \<le> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<le> a)" | 
| 44040 | 161 | by (auto intro: Inf_greatest dest: Inf_lower) | 
| 162 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 163 | lemma le_INF_iff: "u \<le> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<le> f i)" | 
| 56166 | 164 | using le_Inf_iff [of _ "f ` A"] by simp | 
| 44040 | 165 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 166 | lemma Sup_le_iff: "\<Squnion>A \<le> b \<longleftrightarrow> (\<forall>a\<in>A. a \<le> b)" | 
| 44040 | 167 | by (auto intro: Sup_least dest: Sup_upper) | 
| 168 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 169 | lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<le> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<le> u)" | 
| 56166 | 170 | using Sup_le_iff [of "f ` A"] by simp | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 171 | |
| 69745 | 172 | lemma Inf_insert [simp]: "\<Sqinter>(insert a A) = a \<sqinter> \<Sqinter>A" | 
| 73411 | 173 | by (auto intro: le_infI le_infI1 le_infI2 order.antisym Inf_greatest Inf_lower) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 174 | |
| 71238 | 175 | lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> \<Sqinter>(f ` A)" | 
| 176 | by simp | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 177 | |
| 69745 | 178 | lemma Sup_insert [simp]: "\<Squnion>(insert a A) = a \<squnion> \<Squnion>A" | 
| 73411 | 179 | by (auto intro: le_supI le_supI1 le_supI2 order.antisym Sup_least Sup_upper) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52141diff
changeset | 180 | |
| 71238 | 181 | lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> \<Squnion>(f ` A)" | 
| 182 | by simp | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 183 | |
| 71238 | 184 | lemma INF_empty: "(\<Sqinter>x\<in>{}. f x) = \<top>"
 | 
| 185 | by simp | |
| 44040 | 186 | |
| 71238 | 187 | lemma SUP_empty: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
 | 
| 188 | by simp | |
| 44040 | 189 | |
| 63575 | 190 | lemma Inf_UNIV [simp]: "\<Sqinter>UNIV = \<bottom>" | 
| 73411 | 191 | by (auto intro!: order.antisym Inf_lower) | 
| 41080 | 192 | |
| 63575 | 193 | lemma Sup_UNIV [simp]: "\<Squnion>UNIV = \<top>" | 
| 73411 | 194 | by (auto intro!: order.antisym Sup_upper) | 
| 41080 | 195 | |
| 70949 
581083959358
renamed because of duplicateion to avoid very long qualified names
 nipkow parents: 
70337diff
changeset | 196 | lemma Inf_eq_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 73411 | 197 | by (auto intro: order.antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 44040 | 198 | |
| 70949 
581083959358
renamed because of duplicateion to avoid very long qualified names
 nipkow parents: 
70337diff
changeset | 199 | lemma Sup_eq_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 73411 | 200 | by (auto intro: order.antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 44040 | 201 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 202 | lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<le> \<Sqinter>B" | 
| 43899 | 203 | by (auto intro: Inf_greatest Inf_lower) | 
| 204 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 205 | lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<le> \<Squnion>B" | 
| 43899 | 206 | by (auto intro: Sup_least Sup_upper) | 
| 207 | ||
| 38705 | 208 | lemma Inf_mono: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 209 | assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 210 | shows "\<Sqinter>A \<le> \<Sqinter>B" | 
| 38705 | 211 | proof (rule Inf_greatest) | 
| 212 | fix b assume "b \<in> B" | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 213 | with assms obtain a where "a \<in> A" and "a \<le> b" by blast | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 214 | from \<open>a \<in> A\<close> have "\<Sqinter>A \<le> a" by (rule Inf_lower) | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 215 | with \<open>a \<le> b\<close> show "\<Sqinter>A \<le> b" by auto | 
| 38705 | 216 | qed | 
| 217 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 218 | lemma INF_mono: "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<le> (\<Sqinter>n\<in>B. g n)" | 
| 56166 | 219 | using Inf_mono [of "g ` B" "f ` A"] by auto | 
| 44041 | 220 | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 221 | lemma INF_mono': "(\<And>x. f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>A. g x)" | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 222 | by (rule INF_mono) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 223 | |
| 41082 | 224 | lemma Sup_mono: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 225 | assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<le> b" | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 226 | shows "\<Squnion>A \<le> \<Squnion>B" | 
| 41082 | 227 | proof (rule Sup_least) | 
| 228 | fix a assume "a \<in> A" | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 229 | with assms obtain b where "b \<in> B" and "a \<le> b" by blast | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 230 | from \<open>b \<in> B\<close> have "b \<le> \<Squnion>B" by (rule Sup_upper) | 
| 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 231 | with \<open>a \<le> b\<close> show "a \<le> \<Squnion>B" by auto | 
| 41082 | 232 | qed | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 233 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 234 | lemma SUP_mono: "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<le> (\<Squnion>n\<in>B. g n)" | 
| 56166 | 235 | using Sup_mono [of "f ` A" "g ` B"] by auto | 
| 44041 | 236 | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 237 | lemma SUP_mono': "(\<And>x. f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>A. g x)" | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 238 | by (rule SUP_mono) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68802diff
changeset | 239 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 240 | lemma INF_superset_mono: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>B. g x)" | 
| 61799 | 241 | \<comment> \<open>The last inclusion is POSITIVE!\<close> | 
| 44041 | 242 | by (blast intro: INF_mono dest: subsetD) | 
| 243 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 244 | lemma SUP_subset_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>B. g x)" | 
| 44041 | 245 | by (blast intro: SUP_mono dest: subsetD) | 
| 246 | ||
| 43868 | 247 | lemma Inf_less_eq: | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 248 | assumes "\<And>v. v \<in> A \<Longrightarrow> v \<le> u" | 
| 43868 | 249 |     and "A \<noteq> {}"
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 250 | shows "\<Sqinter>A \<le> u" | 
| 43868 | 251 | proof - | 
| 60758 | 252 |   from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 253 | moreover from \<open>v \<in> A\<close> assms(1) have "v \<le> u" by blast | 
| 43868 | 254 | ultimately show ?thesis by (rule Inf_lower2) | 
| 255 | qed | |
| 256 | ||
| 257 | lemma less_eq_Sup: | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 258 | assumes "\<And>v. v \<in> A \<Longrightarrow> u \<le> v" | 
| 43868 | 259 |     and "A \<noteq> {}"
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 260 | shows "u \<le> \<Squnion>A" | 
| 43868 | 261 | proof - | 
| 60758 | 262 |   from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
 | 
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 263 | moreover from \<open>v \<in> A\<close> assms(1) have "u \<le> v" by blast | 
| 43868 | 264 | ultimately show ?thesis by (rule Sup_upper2) | 
| 265 | qed | |
| 266 | ||
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 267 | lemma INF_eq: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 268 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j" | 
| 63575 | 269 | and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i" | 
| 68797 | 270 | shows "\<Sqinter>(f ` A) = \<Sqinter>(g ` B)" | 
| 73411 | 271 | by (intro order.antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+ | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 272 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 273 | lemma SUP_eq: | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 274 | assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j" | 
| 63575 | 275 | and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i" | 
| 68797 | 276 | shows "\<Squnion>(f ` A) = \<Squnion>(g ` B)" | 
| 73411 | 277 | by (intro order.antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+ | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 278 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 279 | lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<le> \<Sqinter>(A \<inter> B)" | 
| 43868 | 280 | by (auto intro: Inf_greatest Inf_lower) | 
| 281 | ||
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 282 | lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<le> \<Squnion>A \<sqinter> \<Squnion>B " | 
| 43868 | 283 | by (auto intro: Sup_least Sup_upper) | 
| 284 | ||
| 285 | lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B" | |
| 73411 | 286 | by (rule order.antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2) | 
| 43868 | 287 | |
| 63575 | 288 | lemma INF_union: "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)" | 
| 73411 | 289 | by (auto intro!: order.antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower) | 
| 44041 | 290 | |
| 43868 | 291 | lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B" | 
| 73411 | 292 | by (rule order.antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2) | 
| 43868 | 293 | |
| 63575 | 294 | lemma SUP_union: "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)" | 
| 73411 | 295 | by (auto intro!: order.antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper) | 
| 44041 | 296 | |
| 297 | lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)" | |
| 73411 | 298 | by (rule order.antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono) | 
| 44041 | 299 | |
| 63575 | 300 | lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)" | 
| 301 | (is "?L = ?R") | |
| 73411 | 302 | proof (rule order.antisym) | 
| 63575 | 303 | show "?L \<le> ?R" | 
| 304 | by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono) | |
| 305 | show "?R \<le> ?L" | |
| 306 | by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper) | |
| 44918 | 307 | qed | 
| 44041 | 308 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 309 | lemma Inf_top_conv [simp]: | 
| 43868 | 310 | "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | 
| 311 | "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 312 | proof - | |
| 313 | show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" | |
| 314 | proof | |
| 315 | assume "\<forall>x\<in>A. x = \<top>" | |
| 316 |     then have "A = {} \<or> A = {\<top>}" by auto
 | |
| 44919 | 317 | then show "\<Sqinter>A = \<top>" by auto | 
| 43868 | 318 | next | 
| 319 | assume "\<Sqinter>A = \<top>" | |
| 320 | show "\<forall>x\<in>A. x = \<top>" | |
| 321 | proof (rule ccontr) | |
| 322 | assume "\<not> (\<forall>x\<in>A. x = \<top>)" | |
| 323 | then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast | |
| 324 | then obtain B where "A = insert x B" by blast | |
| 60758 | 325 | with \<open>\<Sqinter>A = \<top>\<close> \<open>x \<noteq> \<top>\<close> show False by simp | 
| 43868 | 326 | qed | 
| 327 | qed | |
| 328 | then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto | |
| 329 | qed | |
| 330 | ||
| 44918 | 331 | lemma INF_top_conv [simp]: | 
| 56166 | 332 | "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | 
| 333 | "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)" | |
| 334 | using Inf_top_conv [of "B ` A"] by simp_all | |
| 44041 | 335 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 336 | lemma Sup_bot_conv [simp]: | 
| 63575 | 337 | "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" | 
| 338 | "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" | |
| 44920 | 339 | using dual_complete_lattice | 
| 340 | by (rule complete_lattice.Inf_top_conv)+ | |
| 43868 | 341 | |
| 44918 | 342 | lemma SUP_bot_conv [simp]: | 
| 63575 | 343 | "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | 
| 344 | "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)" | |
| 56166 | 345 | using Sup_bot_conv [of "B ` A"] by simp_all | 
| 44041 | 346 | |
| 73411 | 347 | lemma INF_constant: "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
 | 
| 348 | by (auto intro: order.antisym INF_lower INF_greatest) | |
| 349 | ||
| 350 | lemma SUP_constant: "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
 | |
| 351 | by (auto intro: order.antisym SUP_upper SUP_least) | |
| 352 | ||
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 353 | lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
 | 
| 73411 | 354 | by (simp add: INF_constant) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 355 | |
| 43870 | 356 | lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
 | 
| 73411 | 357 | by (simp add: SUP_constant) | 
| 43870 | 358 | |
| 44918 | 359 | lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>" | 
| 44921 | 360 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 361 | |
| 44918 | 362 | lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>" | 
| 44921 | 363 |   by (cases "A = {}") simp_all
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 364 | |
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 365 | lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)" | 
| 73411 | 366 | by (iprover intro: INF_lower INF_greatest order_trans order.antisym) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 367 | |
| 43870 | 368 | lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)" | 
| 73411 | 369 | by (iprover intro: SUP_upper SUP_least order_trans order.antisym) | 
| 43870 | 370 | |
| 43871 | 371 | lemma INF_absorb: | 
| 43868 | 372 | assumes "k \<in> I" | 
| 373 | shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)" | |
| 374 | proof - | |
| 375 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 376 | then show ?thesis by simp | 
| 43868 | 377 | qed | 
| 378 | ||
| 43871 | 379 | lemma SUP_absorb: | 
| 380 | assumes "k \<in> I" | |
| 381 | shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)" | |
| 382 | proof - | |
| 383 | from assms obtain J where "I = insert k J" by blast | |
| 56166 | 384 | then show ?thesis by simp | 
| 43871 | 385 | qed | 
| 386 | ||
| 67613 | 387 | lemma INF_inf_const1: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. inf x (f i)) = inf x (\<Sqinter>i\<in>I. f i)"
 | 
| 73411 | 388 | by (intro order.antisym INF_greatest inf_mono order_refl INF_lower) | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 389 | (auto intro: INF_lower2 le_infI2 intro!: INF_mono) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 390 | |
| 67613 | 391 | lemma INF_inf_const2: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. inf (f i) x) = inf (\<Sqinter>i\<in>I. f i) x"
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 392 | using INF_inf_const1[of I x f] by (simp add: inf_commute) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57197diff
changeset | 393 | |
| 43943 | 394 | lemma less_INF_D: | 
| 63575 | 395 | assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" | 
| 396 | shows "y < f i" | |
| 43943 | 397 | proof - | 
| 60758 | 398 | note \<open>y < (\<Sqinter>i\<in>A. f i)\<close> | 
| 399 | also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using \<open>i \<in> A\<close> | |
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 400 | by (rule INF_lower) | 
| 43943 | 401 | finally show "y < f i" . | 
| 402 | qed | |
| 403 | ||
| 404 | lemma SUP_lessD: | |
| 63575 | 405 | assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" | 
| 406 | shows "f i < y" | |
| 43943 | 407 | proof - | 
| 63575 | 408 | have "f i \<le> (\<Squnion>i\<in>A. f i)" | 
| 409 | using \<open>i \<in> A\<close> by (rule SUP_upper) | |
| 60758 | 410 | also note \<open>(\<Squnion>i\<in>A. f i) < y\<close> | 
| 43943 | 411 | finally show "f i < y" . | 
| 412 | qed | |
| 413 | ||
| 63575 | 414 | lemma INF_UNIV_bool_expand: "(\<Sqinter>b. A b) = A True \<sqinter> A False" | 
| 56166 | 415 | by (simp add: UNIV_bool inf_commute) | 
| 43868 | 416 | |
| 63575 | 417 | lemma SUP_UNIV_bool_expand: "(\<Squnion>b. A b) = A True \<squnion> A False" | 
| 56166 | 418 | by (simp add: UNIV_bool sup_commute) | 
| 43871 | 419 | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 420 | lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
 | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 421 | by (blast intro: Sup_upper2 Inf_lower ex_in_conv) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 422 | |
| 68797 | 423 | lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> \<Sqinter>(f ` A) \<le> \<Squnion>(f ` A)"
 | 
| 56166 | 424 | using Inf_le_Sup [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 425 | |
| 68797 | 426 | lemma INF_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> \<Sqinter>(f ` I) = x"
 | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 427 | by (auto intro: INF_eqI) | 
| 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 428 | |
| 68797 | 429 | lemma SUP_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> \<Squnion>(f ` I) = x"
 | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 430 | by (auto intro: SUP_eqI) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 431 | |
| 68797 | 432 | lemma INF_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> \<Sqinter>(f ` I) = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 73411 | 433 | by (auto intro: INF_eq_const INF_lower order.antisym) | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 434 | |
| 68797 | 435 | lemma SUP_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> \<Squnion>(f ` I) = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
 | 
| 73411 | 436 | by (auto intro: SUP_eq_const SUP_upper order.antisym) | 
| 54414 
72949fae4f81
add equalities for SUP and INF over constant functions
 hoelzl parents: 
54259diff
changeset | 437 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 438 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 439 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 440 | context complete_lattice | 
| 44024 | 441 | begin | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 442 | lemma Sup_Inf_le: "Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)}) \<le> Inf (Sup ` A)"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 443 | by (rule SUP_least, clarify, rule INF_greatest, simp add: INF_lower2 Sup_upper) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 444 | end | 
| 44039 | 445 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 446 | class complete_distrib_lattice = complete_lattice + | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 447 |   assumes Inf_Sup_le: "Inf (Sup ` A) \<le> Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 448 | begin | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 449 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 450 | lemma Inf_Sup: "Inf (Sup ` A) = Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
 | 
| 73411 | 451 | by (rule order.antisym, rule Inf_Sup_le, rule Sup_Inf_le) | 
| 44024 | 452 | |
| 63575 | 453 | subclass distrib_lattice | 
| 454 | proof | |
| 44024 | 455 | fix a b c | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 456 | show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" | 
| 73411 | 457 | proof (rule order.antisym, simp_all, safe) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 458 | show "b \<sqinter> c \<le> a \<squnion> b" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 459 | by (rule le_infI1, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 460 | show "b \<sqinter> c \<le> a \<squnion> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 461 | by (rule le_infI2, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 462 | have [simp]: "a \<sqinter> c \<le> a \<squnion> b \<sqinter> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 463 | by (rule le_infI1, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 464 | have [simp]: "b \<sqinter> a \<le> a \<squnion> b \<sqinter> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 465 | by (rule le_infI2, simp) | 
| 68797 | 466 |     have "\<Sqinter>(Sup ` {{a, b}, {a, c}}) =
 | 
| 467 |       \<Squnion>(Inf ` {f ` {{a, b}, {a, c}} | f. \<forall>Y\<in>{{a, b}, {a, c}}. f Y \<in> Y})"
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 468 | by (rule Inf_Sup) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 469 | from this show "(a \<squnion> b) \<sqinter> (a \<squnion> c) \<le> a \<squnion> b \<sqinter> c" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 470 | apply simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 471 | by (rule SUP_least, safe, simp_all) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 472 | qed | 
| 44024 | 473 | qed | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 474 | end | 
| 44039 | 475 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 476 | context complete_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 477 | begin | 
| 56074 | 478 | context | 
| 479 | fixes f :: "'a \<Rightarrow> 'b::complete_lattice" | |
| 480 | assumes "mono f" | |
| 481 | begin | |
| 482 | ||
| 63575 | 483 | lemma mono_Inf: "f (\<Sqinter>A) \<le> (\<Sqinter>x\<in>A. f x)" | 
| 60758 | 484 | using \<open>mono f\<close> by (auto intro: complete_lattice_class.INF_greatest Inf_lower dest: monoD) | 
| 56074 | 485 | |
| 63575 | 486 | lemma mono_Sup: "(\<Squnion>x\<in>A. f x) \<le> f (\<Squnion>A)" | 
| 60758 | 487 | using \<open>mono f\<close> by (auto intro: complete_lattice_class.SUP_least Sup_upper dest: monoD) | 
| 56074 | 488 | |
| 67613 | 489 | lemma mono_INF: "f (\<Sqinter>i\<in>I. A i) \<le> (\<Sqinter>x\<in>I. f (A x))" | 
| 60758 | 490 | by (intro complete_lattice_class.INF_greatest monoD[OF \<open>mono f\<close>] INF_lower) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58889diff
changeset | 491 | |
| 67613 | 492 | lemma mono_SUP: "(\<Squnion>x\<in>I. f (A x)) \<le> f (\<Squnion>i\<in>I. A i)" | 
| 60758 | 493 | by (intro complete_lattice_class.SUP_least monoD[OF \<open>mono f\<close>] SUP_upper) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58889diff
changeset | 494 | |
| 56074 | 495 | end | 
| 496 | ||
| 44024 | 497 | end | 
| 498 | ||
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 499 | class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice | 
| 43873 | 500 | begin | 
| 501 | ||
| 63575 | 502 | lemma uminus_Inf: "- (\<Sqinter>A) = \<Squnion>(uminus ` A)" | 
| 73411 | 503 | proof (rule order.antisym) | 
| 43873 | 504 | show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)" | 
| 505 | by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp | |
| 506 | show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A" | |
| 507 | by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto | |
| 508 | qed | |
| 509 | ||
| 44041 | 510 | lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 511 | by (simp add: uminus_Inf image_image) | 
| 44041 | 512 | |
| 63575 | 513 | lemma uminus_Sup: "- (\<Squnion>A) = \<Sqinter>(uminus ` A)" | 
| 43873 | 514 | proof - | 
| 63575 | 515 | have "\<Squnion>A = - \<Sqinter>(uminus ` A)" | 
| 516 | by (simp add: image_image uminus_INF) | |
| 43873 | 517 | then show ?thesis by simp | 
| 518 | qed | |
| 63575 | 519 | |
| 43873 | 520 | lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 521 | by (simp add: uminus_Sup image_image) | 
| 43873 | 522 | |
| 523 | end | |
| 524 | ||
| 43940 | 525 | class complete_linorder = linorder + complete_lattice | 
| 526 | begin | |
| 527 | ||
| 43943 | 528 | lemma dual_complete_linorder: | 
| 67399 | 529 | "class.complete_linorder Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>" | 
| 43943 | 530 | by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder) | 
| 531 | ||
| 51386 | 532 | lemma complete_linorder_inf_min: "inf = min" | 
| 73411 | 533 | by (auto intro: order.antisym simp add: min_def fun_eq_iff) | 
| 51386 | 534 | |
| 535 | lemma complete_linorder_sup_max: "sup = max" | |
| 73411 | 536 | by (auto intro: order.antisym simp add: max_def fun_eq_iff) | 
| 51386 | 537 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 538 | lemma Inf_less_iff: "\<Sqinter>S < a \<longleftrightarrow> (\<exists>x\<in>S. x < a)" | 
| 63172 | 539 | by (simp add: not_le [symmetric] le_Inf_iff) | 
| 43940 | 540 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 541 | lemma INF_less_iff: "(\<Sqinter>i\<in>A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)" | 
| 63172 | 542 | by (simp add: Inf_less_iff [of "f ` A"]) | 
| 44041 | 543 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 544 | lemma less_Sup_iff: "a < \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a < x)" | 
| 63172 | 545 | by (simp add: not_le [symmetric] Sup_le_iff) | 
| 43940 | 546 | |
| 63820 
9f004fbf9d5c
discontinued theory-local special syntax for lattice orderings
 haftmann parents: 
63576diff
changeset | 547 | lemma less_SUP_iff: "a < (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)" | 
| 63172 | 548 | by (simp add: less_Sup_iff [of _ "f ` A"]) | 
| 43940 | 549 | |
| 63575 | 550 | lemma Sup_eq_top_iff [simp]: "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 43943 | 551 | proof | 
| 552 | assume *: "\<Squnion>A = \<top>" | |
| 63575 | 553 | show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" | 
| 554 | unfolding * [symmetric] | |
| 43943 | 555 | proof (intro allI impI) | 
| 63575 | 556 | fix x | 
| 557 | assume "x < \<Squnion>A" | |
| 558 | then show "\<exists>i\<in>A. x < i" | |
| 63172 | 559 | by (simp add: less_Sup_iff) | 
| 43943 | 560 | qed | 
| 561 | next | |
| 562 | assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i" | |
| 563 | show "\<Squnion>A = \<top>" | |
| 564 | proof (rule ccontr) | |
| 565 | assume "\<Squnion>A \<noteq> \<top>" | |
| 63575 | 566 | with top_greatest [of "\<Squnion>A"] have "\<Squnion>A < \<top>" | 
| 567 | unfolding le_less by auto | |
| 568 | with * have "\<Squnion>A < \<Squnion>A" | |
| 569 | unfolding less_Sup_iff by auto | |
| 43943 | 570 | then show False by auto | 
| 571 | qed | |
| 572 | qed | |
| 573 | ||
| 63575 | 574 | lemma SUP_eq_top_iff [simp]: "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)" | 
| 56166 | 575 | using Sup_eq_top_iff [of "f ` A"] by simp | 
| 44041 | 576 | |
| 63575 | 577 | lemma Inf_eq_bot_iff [simp]: "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)" | 
| 44920 | 578 | using dual_complete_linorder | 
| 579 | by (rule complete_linorder.Sup_eq_top_iff) | |
| 43943 | 580 | |
| 63575 | 581 | lemma INF_eq_bot_iff [simp]: "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)" | 
| 56166 | 582 | using Inf_eq_bot_iff [of "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 583 | |
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 584 | lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 585 | proof safe | 
| 63575 | 586 | fix y | 
| 587 | assume "x \<ge> \<Sqinter>A" "y > x" | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 588 | then have "y > \<Sqinter>A" by auto | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 589 | then show "\<exists>a\<in>A. y > a" | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 590 | unfolding Inf_less_iff . | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 591 | qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower) | 
| 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 592 | |
| 68802 | 593 | lemma INF_le_iff: "\<Sqinter>(f ` A) \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)" | 
| 56166 | 594 | using Inf_le_iff [of "f ` A"] by simp | 
| 595 | ||
| 596 | lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)" | |
| 597 | proof safe | |
| 63575 | 598 | fix y | 
| 599 | assume "x \<le> \<Squnion>A" "y < x" | |
| 56166 | 600 | then have "y < \<Squnion>A" by auto | 
| 601 | then show "\<exists>a\<in>A. y < a" | |
| 602 | unfolding less_Sup_iff . | |
| 603 | qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper) | |
| 604 | ||
| 68802 | 605 | lemma le_SUP_iff: "x \<le> \<Squnion>(f ` A) \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)" | 
| 56166 | 606 | using le_Sup_iff [of _ "f ` A"] by simp | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
49905diff
changeset | 607 | |
| 43940 | 608 | end | 
| 609 | ||
| 69593 | 610 | subsection \<open>Complete lattice on \<^typ>\<open>bool\<close>\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 611 | |
| 44024 | 612 | instantiation bool :: complete_lattice | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 613 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 614 | |
| 63575 | 615 | definition [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 616 | |
| 63575 | 617 | definition [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 618 | |
| 63575 | 619 | instance | 
| 620 | by standard (auto intro: bool_induct) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 621 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 622 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 623 | |
| 63575 | 624 | lemma not_False_in_image_Ball [simp]: "False \<notin> P ` A \<longleftrightarrow> Ball A P" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 625 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 626 | |
| 63575 | 627 | lemma True_in_image_Bex [simp]: "True \<in> P ` A \<longleftrightarrow> Bex A P" | 
| 49905 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 628 | by auto | 
| 
a81f95693c68
simp results for simplification results of Inf/Sup expressions on bool;
 haftmann parents: 
46884diff
changeset | 629 | |
| 68802 | 630 | lemma INF_bool_eq [simp]: "(\<lambda>A f. \<Sqinter>(f ` A)) = Ball" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 631 | by (simp add: fun_eq_iff) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 632 | |
| 68802 | 633 | lemma SUP_bool_eq [simp]: "(\<lambda>A f. \<Squnion>(f ` A)) = Bex" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 634 | by (simp add: fun_eq_iff) | 
| 32120 
53a21a5e6889
attempt for more concise setup of non-etacontracting binders
 haftmann parents: 
32117diff
changeset | 635 | |
| 63575 | 636 | instance bool :: complete_boolean_algebra | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 637 | by (standard, fastforce) | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 638 | |
| 69593 | 639 | subsection \<open>Complete lattice on \<^typ>\<open>_ \<Rightarrow> _\<close>\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 640 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 641 | instantiation "fun" :: (type, Inf) Inf | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 642 | begin | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 643 | |
| 63575 | 644 | definition "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)" | 
| 41080 | 645 | |
| 63575 | 646 | lemma Inf_apply [simp, code]: "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)" | 
| 41080 | 647 | by (simp add: Inf_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 648 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 649 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 650 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 651 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 652 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 653 | instantiation "fun" :: (type, Sup) Sup | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 654 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 655 | |
| 63575 | 656 | definition "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)" | 
| 41080 | 657 | |
| 63575 | 658 | lemma Sup_apply [simp, code]: "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)" | 
| 41080 | 659 | by (simp add: Sup_fun_def) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 660 | |
| 57197 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 661 | instance .. | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 662 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 663 | end | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 664 | |
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 665 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 666 | begin | 
| 
4cf607675df8
Sup/Inf on functions decoupled from complete_lattice.
 nipkow parents: 
56742diff
changeset | 667 | |
| 63575 | 668 | instance | 
| 669 | by standard (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least) | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 670 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 671 | end | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 672 | |
| 63575 | 673 | lemma INF_apply [simp]: "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 674 | by (simp add: image_comp) | 
| 38705 | 675 | |
| 63575 | 676 | lemma SUP_apply [simp]: "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 677 | by (simp add: image_comp) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 678 | |
| 60758 | 679 | subsection \<open>Complete lattice on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 680 | |
| 63575 | 681 | lemma Inf1_I: "(\<And>P. P \<in> A \<Longrightarrow> P a) \<Longrightarrow> (\<Sqinter>A) a" | 
| 46884 | 682 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 683 | |
| 63575 | 684 | lemma INF1_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 685 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 686 | |
| 63575 | 687 | lemma INF2_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 688 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 689 | |
| 63575 | 690 | lemma Inf2_I: "(\<And>r. r \<in> A \<Longrightarrow> r a b) \<Longrightarrow> (\<Sqinter>A) a b" | 
| 46884 | 691 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 692 | |
| 63575 | 693 | lemma Inf1_D: "(\<Sqinter>A) a \<Longrightarrow> P \<in> A \<Longrightarrow> P a" | 
| 46884 | 694 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 695 | |
| 63575 | 696 | lemma INF1_D: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 697 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 698 | |
| 63575 | 699 | lemma Inf2_D: "(\<Sqinter>A) a b \<Longrightarrow> r \<in> A \<Longrightarrow> r a b" | 
| 46884 | 700 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 701 | |
| 63575 | 702 | lemma INF2_D: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 703 | by simp | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 704 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 705 | lemma Inf1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 706 | assumes "(\<Sqinter>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 707 | obtains "P a" | "P \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 708 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 709 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 710 | lemma INF1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 711 | assumes "(\<Sqinter>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 712 | obtains "B a b" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 713 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 714 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 715 | lemma Inf2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 716 | assumes "(\<Sqinter>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 717 | obtains "r a b" | "r \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 718 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 719 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 720 | lemma INF2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 721 | assumes "(\<Sqinter>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 722 | obtains "B a b c" | "a \<notin> A" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 723 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 724 | |
| 63575 | 725 | lemma Sup1_I: "P \<in> A \<Longrightarrow> P a \<Longrightarrow> (\<Squnion>A) a" | 
| 46884 | 726 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 727 | |
| 63575 | 728 | lemma SUP1_I: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 729 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 730 | |
| 63575 | 731 | lemma Sup2_I: "r \<in> A \<Longrightarrow> r a b \<Longrightarrow> (\<Squnion>A) a b" | 
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 732 | by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 733 | |
| 63575 | 734 | lemma SUP2_I: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c" | 
| 46884 | 735 | by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 736 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 737 | lemma Sup1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 738 | assumes "(\<Squnion>A) a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 739 | obtains P where "P \<in> A" and "P a" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 740 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 741 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 742 | lemma SUP1_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 743 | assumes "(\<Squnion>x\<in>A. B x) b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 744 | obtains x where "x \<in> A" and "B x b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 745 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 746 | |
| 56742 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 747 | lemma Sup2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 748 | assumes "(\<Squnion>A) a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 749 | obtains r where "r \<in> A" "r a b" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 750 | using assms by auto | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 751 | |
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 752 | lemma SUP2_E: | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 753 | assumes "(\<Squnion>x\<in>A. B x) b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 754 | obtains x where "x \<in> A" "B x b c" | 
| 
678a52e676b6
more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
 haftmann parents: 
56741diff
changeset | 755 | using assms by auto | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 756 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 757 | |
| 69593 | 758 | subsection \<open>Complete lattice on \<^typ>\<open>_ set\<close>\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 759 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 760 | instantiation "set" :: (type) complete_lattice | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 761 | begin | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 762 | |
| 63575 | 763 | definition "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 764 | |
| 63575 | 765 | definition "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 766 | |
| 63575 | 767 | instance | 
| 768 | by standard (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def) | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 769 | |
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 770 | end | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 771 | |
| 60758 | 772 | subsubsection \<open>Inter\<close> | 
| 41082 | 773 | |
| 69745 | 774 | abbreviation Inter :: "'a set set \<Rightarrow> 'a set"  ("\<Inter>")
 | 
| 61952 | 775 | where "\<Inter>S \<equiv> \<Sqinter>S" | 
| 63575 | 776 | |
| 777 | lemma Inter_eq: "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 41082 | 778 | proof (rule set_eqI) | 
| 779 | fix x | |
| 780 |   have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
 | |
| 781 | by auto | |
| 782 |   then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
 | |
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 783 | by (simp add: Inf_set_def image_def) | 
| 41082 | 784 | qed | 
| 785 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 786 | lemma Inter_iff [simp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)" | 
| 41082 | 787 | by (unfold Inter_eq) blast | 
| 788 | ||
| 43741 | 789 | lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C" | 
| 41082 | 790 | by (simp add: Inter_eq) | 
| 791 | ||
| 60758 | 792 | text \<open> | 
| 69593 | 793 | \<^medskip> A ``destruct'' rule -- every \<^term>\<open>X\<close> in \<^term>\<open>C\<close> | 
| 794 | contains \<^term>\<open>A\<close> as an element, but \<^prop>\<open>A \<in> X\<close> can hold when | |
| 795 | \<^prop>\<open>X \<in> C\<close> does not! This rule is analogous to \<open>spec\<close>. | |
| 60758 | 796 | \<close> | 
| 41082 | 797 | |
| 43741 | 798 | lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X" | 
| 41082 | 799 | by auto | 
| 800 | ||
| 43741 | 801 | lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R" | 
| 61799 | 802 | \<comment> \<open>``Classical'' elimination rule -- does not require proving | 
| 69593 | 803 | \<^prop>\<open>X \<in> C\<close>.\<close> | 
| 63575 | 804 | unfolding Inter_eq by blast | 
| 41082 | 805 | |
| 43741 | 806 | lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B" | 
| 43740 | 807 | by (fact Inf_lower) | 
| 808 | ||
| 63575 | 809 | lemma Inter_subset: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
 | 
| 43740 | 810 | by (fact Inf_less_eq) | 
| 41082 | 811 | |
| 61952 | 812 | lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> \<Inter>A" | 
| 43740 | 813 | by (fact Inf_greatest) | 
| 41082 | 814 | |
| 44067 | 815 | lemma Inter_empty: "\<Inter>{} = UNIV"
 | 
| 816 | by (fact Inf_empty) (* already simp *) | |
| 41082 | 817 | |
| 44067 | 818 | lemma Inter_UNIV: "\<Inter>UNIV = {}"
 | 
| 819 | by (fact Inf_UNIV) (* already simp *) | |
| 41082 | 820 | |
| 44920 | 821 | lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 822 | by (fact Inf_insert) (* already simp *) | |
| 41082 | 823 | |
| 824 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | |
| 43899 | 825 | by (fact less_eq_Inf_inter) | 
| 41082 | 826 | |
| 827 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | |
| 43756 | 828 | by (fact Inf_union_distrib) | 
| 829 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 830 | lemma Inter_UNIV_conv [simp]: | 
| 43741 | 831 | "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | 
| 832 | "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)" | |
| 43801 | 833 | by (fact Inf_top_conv)+ | 
| 41082 | 834 | |
| 43741 | 835 | lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B" | 
| 43899 | 836 | by (fact Inf_superset_mono) | 
| 41082 | 837 | |
| 838 | ||
| 60758 | 839 | subsubsection \<open>Intersections of families\<close> | 
| 41082 | 840 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 841 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 842 |   "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           ("(3INT _./ _)" [0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 843 |   "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
 | 
| 41082 | 844 | |
| 69274 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 845 | syntax | 
| 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 846 |   "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
 | 
| 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 847 |   "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 848 | |
| 41082 | 849 | syntax (latex output) | 
| 62789 | 850 |   "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           ("(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 851 |   "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  ("(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 852 | |
| 41082 | 853 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 854 | "\<Inter>x y. f" \<rightleftharpoons> "\<Inter>x. \<Inter>y. f" | 
| 69745 | 855 | "\<Inter>x. f" \<rightleftharpoons> "\<Inter>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 856 | "\<Inter>x\<in>A. f" \<rightleftharpoons> "CONST Inter ((\<lambda>x. f) ` A)" | 
| 41082 | 857 | |
| 63575 | 858 | lemma INTER_eq: "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
 | 
| 56166 | 859 | by (auto intro!: INF_eqI) | 
| 41082 | 860 | |
| 43817 | 861 | lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)" | 
| 56166 | 862 | using Inter_iff [of _ "B ` A"] by simp | 
| 41082 | 863 | |
| 43817 | 864 | lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 865 | by auto | 
| 41082 | 866 | |
| 43852 | 867 | lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a" | 
| 41082 | 868 | by auto | 
| 869 | ||
| 43852 | 870 | lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 69593 | 871 | \<comment> \<open>"Classical" elimination -- by the Excluded Middle on \<^prop>\<open>a\<in>A\<close>.\<close> | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 872 | by auto | 
| 41082 | 873 | |
| 874 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | |
| 875 | by blast | |
| 876 | ||
| 877 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | |
| 878 | by blast | |
| 879 | ||
| 43817 | 880 | lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 881 | by (fact INF_lower) | 
| 41082 | 882 | |
| 43817 | 883 | lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 884 | by (fact INF_greatest) | 
| 41082 | 885 | |
| 44067 | 886 | lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 887 | by (fact INF_empty) | 
| 43854 | 888 | |
| 43817 | 889 | lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 43872 | 890 | by (fact INF_absorb) | 
| 41082 | 891 | |
| 43854 | 892 | lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 41082 | 893 | by (fact le_INF_iff) | 
| 894 | ||
| 69275 | 895 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> \<Inter> (B ` A)" | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 896 | by (fact INF_insert) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 897 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 898 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 899 | by (fact INF_union) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 900 | |
| 63575 | 901 | lemma INT_insert_distrib: "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 902 | by blast | 
| 43854 | 903 | |
| 41082 | 904 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 905 | by (fact INF_constant) | 
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 906 | |
| 44920 | 907 | lemma INTER_UNIV_conv: | 
| 63575 | 908 | "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 909 | "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 44920 | 910 | by (fact INF_top_conv)+ (* already simp *) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 911 | |
| 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 912 | lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False" | 
| 43873 | 913 | by (fact INF_UNIV_bool_expand) | 
| 43865 
db18f4d0cc7d
further generalization from sets to complete lattices
 haftmann parents: 
43854diff
changeset | 914 | |
| 63575 | 915 | lemma INT_anti_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 61799 | 916 | \<comment> \<open>The last inclusion is POSITIVE!\<close> | 
| 43940 | 917 | by (fact INF_superset_mono) | 
| 41082 | 918 | |
| 919 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | |
| 920 | by blast | |
| 921 | ||
| 43817 | 922 | lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)" | 
| 41082 | 923 | by blast | 
| 924 | ||
| 925 | ||
| 60758 | 926 | subsubsection \<open>Union\<close> | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 927 | |
| 69745 | 928 | abbreviation Union :: "'a set set \<Rightarrow> 'a set"  ("\<Union>")
 | 
| 61952 | 929 | where "\<Union>S \<equiv> \<Squnion>S" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 930 | |
| 63575 | 931 | lemma Union_eq: "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
38705diff
changeset | 932 | proof (rule set_eqI) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 933 | fix x | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 934 |   have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
 | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 935 | by auto | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 936 |   then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
 | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 937 | by (simp add: Sup_set_def image_def) | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 938 | qed | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 939 | |
| 63575 | 940 | lemma Union_iff [simp]: "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 941 | by (unfold Union_eq) blast | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 942 | |
| 63575 | 943 | lemma UnionI [intro]: "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C" | 
| 69593 | 944 | \<comment> \<open>The order of the premises presupposes that \<^term>\<open>C\<close> is rigid; | 
| 945 | \<^term>\<open>A\<close> may be flexible.\<close> | |
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 946 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 947 | |
| 63575 | 948 | lemma UnionE [elim!]: "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R" | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 949 | by auto | 
| 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 950 | |
| 43817 | 951 | lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A" | 
| 43901 | 952 | by (fact Sup_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 953 | |
| 43817 | 954 | lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C" | 
| 43901 | 955 | by (fact Sup_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 956 | |
| 44920 | 957 | lemma Union_empty: "\<Union>{} = {}"
 | 
| 958 | by (fact Sup_empty) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 959 | |
| 44920 | 960 | lemma Union_UNIV: "\<Union>UNIV = UNIV" | 
| 961 | by (fact Sup_UNIV) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 962 | |
| 69745 | 963 | lemma Union_insert: "\<Union>(insert a B) = a \<union> \<Union>B" | 
| 44920 | 964 | by (fact Sup_insert) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 965 | |
| 43817 | 966 | lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B" | 
| 43901 | 967 | by (fact Sup_union_distrib) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 968 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 969 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 43901 | 970 | by (fact Sup_inter_less_eq) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 971 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 972 | lemma Union_empty_conv: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 973 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 974 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 975 | lemma empty_Union_conv: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
 | 
| 44920 | 976 | by (fact Sup_bot_conv) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 977 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 978 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 979 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 980 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 981 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 982 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 983 | |
| 43817 | 984 | lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 43901 | 985 | by (fact Sup_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 986 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63365diff
changeset | 987 | lemma Union_subsetI: "(\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> B \<and> x \<subseteq> y) \<Longrightarrow> \<Union>A \<subseteq> \<Union>B" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63365diff
changeset | 988 | by blast | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
32082diff
changeset | 989 | |
| 63879 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 990 | lemma disjnt_inj_on_iff: | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 991 | "\<lbrakk>inj_on f (\<Union>\<A>); X \<in> \<A>; Y \<in> \<A>\<rbrakk> \<Longrightarrow> disjnt (f ` X) (f ` Y) \<longleftrightarrow> disjnt X Y" | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 992 | apply (auto simp: disjnt_def) | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 993 | using inj_on_eq_iff by fastforce | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63820diff
changeset | 994 | |
| 69986 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 995 | lemma disjnt_Union1 [simp]: "disjnt (\<Union>\<A>) B \<longleftrightarrow> (\<forall>A \<in> \<A>. disjnt A B)" | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 996 | by (auto simp: disjnt_def) | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 997 | |
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 998 | lemma disjnt_Union2 [simp]: "disjnt B (\<Union>\<A>) \<longleftrightarrow> (\<forall>A \<in> \<A>. disjnt B A)" | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 999 | by (auto simp: disjnt_def) | 
| 
f2d327275065
generalised homotopic_with to topologies; homotopic_with_canon is the old version
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1000 | |
| 63575 | 1001 | |
| 60758 | 1002 | subsubsection \<open>Unions of families\<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1003 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1004 | syntax (ASCII) | 
| 35115 | 1005 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
 | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
35828diff
changeset | 1006 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
 | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1007 | |
| 69274 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 1008 | syntax | 
| 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 1009 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
 | 
| 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 1010 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ff7e6751a1a7
clarified status of ancient ASCII syntax for big union and inter
 haftmann parents: 
69260diff
changeset | 1011 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1012 | syntax (latex output) | 
| 62789 | 1013 |   "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 1014 |   "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1015 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1016 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 1017 | "\<Union>x y. f" \<rightleftharpoons> "\<Union>x. \<Union>y. f" | 
| 69745 | 1018 | "\<Union>x. f" \<rightleftharpoons> "\<Union>(CONST range (\<lambda>x. f))" | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 1019 | "\<Union>x\<in>A. f" \<rightleftharpoons> "CONST Union ((\<lambda>x. f) ` A)" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1020 | |
| 60758 | 1021 | text \<open> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61952diff
changeset | 1022 | Note the difference between ordinary syntax of indexed | 
| 61799 | 1023 | unions and intersections (e.g.\ \<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>) | 
| 69593 | 1024 | and their \LaTeX\ rendition: \<^term>\<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>. | 
| 60758 | 1025 | \<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1026 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1027 | lemma disjoint_UN_iff: "disjnt A (\<Union>i\<in>I. B i) \<longleftrightarrow> (\<forall>i\<in>I. disjnt A (B i))" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1028 | by (auto simp: disjnt_def) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1029 | |
| 63575 | 1030 | lemma UNION_eq: "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
 | 
| 56166 | 1031 | by (auto intro!: SUP_eqI) | 
| 44920 | 1032 | |
| 69275 | 1033 | lemma bind_UNION [code]: "Set.bind A f = \<Union>(f ` A)" | 
| 45960 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1034 | by (simp add: bind_def UNION_eq) | 
| 
e1b09bfb52f1
lattice type class instances for `set`; added code lemma for Set.bind
 haftmann parents: 
45013diff
changeset | 1035 | |
| 69275 | 1036 | lemma member_bind [simp]: "x \<in> Set.bind A f \<longleftrightarrow> x \<in> \<Union>(f ` A)" | 
| 46036 | 1037 | by (simp add: bind_UNION) | 
| 1038 | ||
| 60585 | 1039 | lemma Union_SetCompr_eq: "\<Union>{f x| x. P x} = {a. \<exists>x. P x \<and> a \<in> f x}"
 | 
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 1040 | by blast | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 1041 | |
| 46036 | 1042 | lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)" | 
| 56166 | 1043 | using Union_iff [of _ "B ` A"] by simp | 
| 11979 | 1044 | |
| 43852 | 1045 | lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)" | 
| 69593 | 1046 | \<comment> \<open>The order of the premises presupposes that \<^term>\<open>A\<close> is rigid; | 
| 1047 | \<^term>\<open>b\<close> may be flexible.\<close> | |
| 11979 | 1048 | by auto | 
| 1049 | ||
| 43852 | 1050 | lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1051 | by auto | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1052 | |
| 43817 | 1053 | lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1054 | by (fact SUP_upper) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1055 | |
| 43817 | 1056 | lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 44103 
cedaca00789f
more uniform naming scheme for Inf/INF and Sup/SUP lemmas
 haftmann parents: 
44085diff
changeset | 1057 | by (fact SUP_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1058 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1059 | lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1060 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1061 | |
| 43817 | 1062 | lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1063 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1064 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1065 | lemma UN_empty: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1066 | by (fact SUP_empty) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1067 | |
| 44920 | 1068 | lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
 | 
| 1069 | by (fact SUP_bot) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1070 | |
| 43817 | 1071 | lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1072 | by (fact SUP_absorb) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1073 | |
| 69275 | 1074 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> \<Union>(B ` A)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1075 | by (fact SUP_insert) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1076 | |
| 44085 
a65e26f1427b
move legacy candiates to bottom; marked candidates for default simp rules
 haftmann parents: 
44084diff
changeset | 1077 | lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1078 | by (fact SUP_union) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1079 | |
| 43967 | 1080 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1081 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1082 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1083 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 35629 | 1084 | by (fact SUP_le_iff) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1085 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1086 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1087 | by (fact SUP_constant) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1088 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1089 | lemma UNION_singleton_eq_range: "(\<Union>x\<in>A. {f x}) = f ` A"
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1090 | by blast | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 1091 | |
| 43944 | 1092 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1093 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1094 | |
| 44920 | 1095 | lemma UNION_empty_conv: | 
| 43817 | 1096 |   "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | 
| 1097 |   "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
 | |
| 44920 | 1098 | by (fact SUP_bot_conv)+ (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1099 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1100 | lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1101 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1102 | |
| 69275 | 1103 | lemma ball_UN: "(\<forall>z \<in> \<Union>(B ` A). P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1104 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1105 | |
| 69275 | 1106 | lemma bex_UN: "(\<exists>z \<in> \<Union>(B ` A). P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1107 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1108 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1109 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 62390 | 1110 | by safe (auto simp add: if_split_mem2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1111 | |
| 43817 | 1112 | lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)" | 
| 43900 
7162691e740b
generalization; various notation and proof tuning
 haftmann parents: 
43899diff
changeset | 1113 | by (fact SUP_UNIV_bool_expand) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1114 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1115 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1116 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1117 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1118 | lemma UN_mono: | 
| 43817 | 1119 | "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1120 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 43940 | 1121 | by (fact SUP_subset_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1122 | |
| 43817 | 1123 | lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1124 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1125 | |
| 43817 | 1126 | lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1127 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1128 | |
| 43817 | 1129 | lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
 | 
| 61799 | 1130 | \<comment> \<open>NOT suitable for rewriting\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1131 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1132 | |
| 69275 | 1133 | lemma image_UN: "f ` \<Union>(B ` A) = (\<Union>x\<in>A. f ` B x)" | 
| 43817 | 1134 | by blast | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1135 | |
| 45013 | 1136 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 1137 | by blast | |
| 1138 | ||
| 67399 | 1139 | lemma inj_on_image: "inj_on f (\<Union>A) \<Longrightarrow> inj_on ((`) f) A" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
62789diff
changeset | 1140 | unfolding inj_on_def by blast | 
| 11979 | 1141 | |
| 63575 | 1142 | |
| 60758 | 1143 | subsubsection \<open>Distributive laws\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1144 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1145 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1146 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1147 | |
| 44039 | 1148 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1149 | by blast | 
| 44039 | 1150 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1151 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1152 | by blast | 
| 44039 | 1153 | |
| 1154 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | |
| 1155 | by (rule sym) (rule INF_inf_distrib) | |
| 1156 | ||
| 1157 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | |
| 1158 | by (rule sym) (rule SUP_sup_distrib) | |
| 1159 | ||
| 63575 | 1160 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)" (* FIXME drop *) | 
| 56166 | 1161 | by (simp add: INT_Int_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1162 | |
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1163 | lemma Int_Inter_eq: "A \<inter> \<Inter>\<B> = (if \<B>={} then A else (\<Inter>B\<in>\<B>. A \<inter> B))"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1164 |                     "\<Inter>\<B> \<inter> A = (if \<B>={} then A else (\<Inter>B\<in>\<B>. B \<inter> A))"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1165 | by auto | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68980diff
changeset | 1166 | |
| 63575 | 1167 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)" (* FIXME drop *) | 
| 61799 | 1168 | \<comment> \<open>Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:\<close> | 
| 1169 | \<comment> \<open>Union of a family of unions\<close> | |
| 56166 | 1170 | by (simp add: UN_Un_distrib) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1171 | |
| 44039 | 1172 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1173 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1174 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1175 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 61799 | 1176 | \<comment> \<open>Halmos, Naive Set Theory, page 35.\<close> | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1177 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1178 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1179 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1180 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1181 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1182 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1183 | by blast | 
| 44039 | 1184 | |
| 1185 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1186 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1187 | |
| 67613 | 1188 | lemma SUP_UNION: "(\<Squnion>x\<in>(\<Union>y\<in>A. g y). f x) = (\<Squnion>y\<in>A. \<Squnion>x\<in>g y. f x :: _ :: complete_lattice)" | 
| 63575 | 1189 | by (rule order_antisym) (blast intro: SUP_least SUP_upper2)+ | 
| 1190 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1191 | |
| 60758 | 1192 | subsection \<open>Injections and bijections\<close> | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1193 | |
| 63575 | 1194 | lemma inj_on_Inter: "S \<noteq> {} \<Longrightarrow> (\<And>A. A \<in> S \<Longrightarrow> inj_on f A) \<Longrightarrow> inj_on f (\<Inter>S)"
 | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1195 | unfolding inj_on_def by blast | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1196 | |
| 63575 | 1197 | lemma inj_on_INTER: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)) \<Longrightarrow> inj_on f (\<Inter>i \<in> I. A i)"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1198 | unfolding inj_on_def by safe simp | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1199 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1200 | lemma inj_on_UNION_chain: | 
| 63575 | 1201 | assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" | 
| 1202 | and inj: "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)" | |
| 60585 | 1203 | shows "inj_on f (\<Union>i \<in> I. A i)" | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1204 | proof - | 
| 63575 | 1205 | have "x = y" | 
| 1206 | if *: "i \<in> I" "j \<in> I" | |
| 1207 | and **: "x \<in> A i" "y \<in> A j" | |
| 1208 | and ***: "f x = f y" | |
| 1209 | for i j x y | |
| 1210 | using chain [OF *] | |
| 1211 | proof | |
| 1212 | assume "A i \<le> A j" | |
| 1213 | with ** have "x \<in> A j" by auto | |
| 1214 | with inj * ** *** show ?thesis | |
| 1215 | by (auto simp add: inj_on_def) | |
| 1216 | next | |
| 1217 | assume "A j \<le> A i" | |
| 1218 | with ** have "y \<in> A i" by auto | |
| 1219 | with inj * ** *** show ?thesis | |
| 1220 | by (auto simp add: inj_on_def) | |
| 1221 | qed | |
| 1222 | then show ?thesis | |
| 1223 | by (unfold inj_on_def UNION_eq) auto | |
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1224 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1225 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1226 | lemma bij_betw_UNION_chain: | 
| 63575 | 1227 | assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" | 
| 1228 | and bij: "\<And>i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" | |
| 60585 | 1229 | shows "bij_betw f (\<Union>i \<in> I. A i) (\<Union>i \<in> I. A' i)" | 
| 63575 | 1230 | unfolding bij_betw_def | 
| 63576 | 1231 | proof safe | 
| 63575 | 1232 | have "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 1233 | using bij bij_betw_def[of f] by auto | |
| 69275 | 1234 | then show "inj_on f (\<Union>(A ` I))" | 
| 63575 | 1235 | using chain inj_on_UNION_chain[of I A f] by auto | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1236 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1237 | fix i x | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1238 | assume *: "i \<in> I" "x \<in> A i" | 
| 63576 | 1239 | with bij have "f x \<in> A' i" | 
| 1240 | by (auto simp: bij_betw_def) | |
| 69275 | 1241 | with * show "f x \<in> \<Union>(A' ` I)" by blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1242 | next | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1243 | fix i x' | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1244 | assume *: "i \<in> I" "x' \<in> A' i" | 
| 63576 | 1245 | with bij have "\<exists>x \<in> A i. x' = f x" | 
| 1246 | unfolding bij_betw_def by blast | |
| 63575 | 1247 | with * have "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" | 
| 1248 | by blast | |
| 69275 | 1249 | then show "x' \<in> f ` \<Union>(A ` I)" | 
| 63575 | 1250 | by blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1251 | qed | 
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1252 | |
| 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1253 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | 
| 69275 | 1254 | lemma image_INT: "inj_on f C \<Longrightarrow> \<forall>x\<in>A. B x \<subseteq> C \<Longrightarrow> j \<in> A \<Longrightarrow> f ` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. f ` B x)" | 
| 63575 | 1255 | by (auto simp add: inj_on_def) blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1256 | |
| 69275 | 1257 | lemma bij_image_INT: "bij f \<Longrightarrow> f ` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. f ` B x)" | 
| 64966 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 wenzelm parents: 
63879diff
changeset | 1258 | by (auto simp: bij_def inj_def surj_def) blast | 
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1259 | |
| 69275 | 1260 | lemma UNION_fun_upd: "\<Union>(A(i := B) ` J) = \<Union>(A ` (J - {i})) \<union> (if i \<in> J then B else {})"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62048diff
changeset | 1261 | by (auto simp add: set_eq_iff) | 
| 63365 | 1262 | |
| 1263 | lemma bij_betw_Pow: | |
| 1264 | assumes "bij_betw f A B" | |
| 1265 | shows "bij_betw (image f) (Pow A) (Pow B)" | |
| 1266 | proof - | |
| 1267 | from assms have "inj_on f A" | |
| 1268 | by (rule bij_betw_imp_inj_on) | |
| 69745 | 1269 | then have "inj_on f (\<Union>(Pow A))" | 
| 63365 | 1270 | by simp | 
| 1271 | then have "inj_on (image f) (Pow A)" | |
| 1272 | by (rule inj_on_image) | |
| 1273 | then have "bij_betw (image f) (Pow A) (image f ` Pow A)" | |
| 1274 | by (rule inj_on_imp_bij_betw) | |
| 1275 | moreover from assms have "f ` A = B" | |
| 1276 | by (rule bij_betw_imp_surj_on) | |
| 1277 | then have "image f ` Pow A = Pow B" | |
| 1278 | by (rule image_Pow_surj) | |
| 1279 | ultimately show ?thesis by simp | |
| 1280 | qed | |
| 1281 | ||
| 56015 
57e2cfba9c6e
bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
 haftmann parents: 
54414diff
changeset | 1282 | |
| 60758 | 1283 | subsubsection \<open>Complement\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1284 | |
| 43873 | 1285 | lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1286 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1287 | |
| 43873 | 1288 | lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1289 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1290 | |
| 60758 | 1291 | subsubsection \<open>Miniscoping and maxiscoping\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1292 | |
| 63575 | 1293 | text \<open>\<^medskip> Miniscoping: pushing in quantifiers and big Unions and Intersections.\<close> | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1294 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1295 | lemma UN_simps [simp]: | 
| 43817 | 1296 |   "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1297 |   "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
 | 
| 43852 | 1298 |   "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1299 | "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)" | 
| 43852 | 1300 | "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))" | 
| 1301 | "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)" | |
| 1302 | "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))" | |
| 1303 | "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)" | |
| 69275 | 1304 | "\<And>A B C. (\<Union>z\<in>(\<Union>(B ` A)). C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)" | 
| 43831 | 1305 | "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1306 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1307 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1308 | lemma INT_simps [simp]: | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1309 |   "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
 | 
| 43831 | 1310 |   "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
 | 
| 43852 | 1311 |   "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
 | 
| 1312 |   "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
 | |
| 43817 | 1313 | "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)" | 
| 43852 | 1314 | "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)" | 
| 1315 | "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))" | |
| 1316 | "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)" | |
| 69275 | 1317 | "\<And>A B C. (\<Inter>z\<in>(\<Union>(B ` A)). C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)" | 
| 43852 | 1318 | "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1319 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1320 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1321 | lemma UN_ball_bex_simps [simp]: | 
| 43852 | 1322 | "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)" | 
| 69275 | 1323 | "\<And>A B P. (\<forall>x\<in>(\<Union>(B ` A)). P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)" | 
| 43852 | 1324 | "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)" | 
| 69275 | 1325 | "\<And>A B P. (\<exists>x\<in>(\<Union>(B ` A)). P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1326 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1327 | |
| 43943 | 1328 | |
| 63575 | 1329 | text \<open>\<^medskip> Maxiscoping: pulling out big Unions and Intersections.\<close> | 
| 13860 | 1330 | |
| 1331 | lemma UN_extend_simps: | |
| 43817 | 1332 |   "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
 | 
| 44032 
cb768f4ceaf9
solving duality problem for complete_distrib_lattice; tuned
 haftmann parents: 
44029diff
changeset | 1333 |   "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
 | 
| 43852 | 1334 |   "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
 | 
| 1335 | "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)" | |
| 1336 | "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)" | |
| 43817 | 1337 | "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)" | 
| 1338 | "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)" | |
| 43852 | 1339 | "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)" | 
| 69275 | 1340 | "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>(\<Union>(B ` A)). C z)" | 
| 43831 | 1341 | "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)" | 
| 13860 | 1342 | by auto | 
| 1343 | ||
| 1344 | lemma INT_extend_simps: | |
| 43852 | 1345 |   "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
 | 
| 1346 |   "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
 | |
| 1347 |   "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
 | |
| 1348 |   "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
 | |
| 43817 | 1349 | "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))" | 
| 43852 | 1350 | "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)" | 
| 1351 | "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)" | |
| 1352 | "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)" | |
| 69275 | 1353 | "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>(\<Union>(B ` A)). C z)" | 
| 43852 | 1354 | "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)" | 
| 13860 | 1355 | by auto | 
| 1356 | ||
| 60758 | 1357 | text \<open>Finally\<close> | 
| 43872 | 1358 | |
| 30596 | 1359 | lemmas mem_simps = | 
| 1360 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 1361 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 61799 | 1362 | \<comment> \<open>Each of these has ALREADY been added \<open>[simp]\<close> above.\<close> | 
| 21669 | 1363 | |
| 11979 | 1364 | end |