| author | paulson | 
| Thu, 01 Oct 1998 18:25:56 +0200 | |
| changeset 5593 | 33bca87deae5 | 
| parent 14 | 1c0926788772 | 
| permissions | -rw-r--r-- | 
| 0 | 1 | (* Title: ZF/fixedpt.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1992 University of Cambridge | |
| 5 | ||
| 6 | For fixedpt.thy. Least and greatest fixed points; the Knaster-Tarski Theorem | |
| 7 | ||
| 8 | Proved in the lattice of subsets of D, namely Pow(D), with Inter as glb | |
| 9 | *) | |
| 10 | ||
| 11 | open Fixedpt; | |
| 12 | ||
| 13 | (*** Monotone operators ***) | |
| 14 | ||
| 15 | val prems = goalw Fixedpt.thy [bnd_mono_def] | |
| 16 | "[| h(D)<=D; \ | |
| 17 | \ !!W X. [| W<=D; X<=D; W<=X |] ==> h(W) <= h(X) \ | |
| 18 | \ |] ==> bnd_mono(D,h)"; | |
| 19 | by (REPEAT (ares_tac (prems@[conjI,allI,impI]) 1 | |
| 20 | ORELSE etac subset_trans 1)); | |
| 21 | val bnd_monoI = result(); | |
| 22 | ||
| 23 | val [major] = goalw Fixedpt.thy [bnd_mono_def] "bnd_mono(D,h) ==> h(D) <= D"; | |
| 24 | by (rtac (major RS conjunct1) 1); | |
| 25 | val bnd_monoD1 = result(); | |
| 26 | ||
| 27 | val major::prems = goalw Fixedpt.thy [bnd_mono_def] | |
| 28 | "[| bnd_mono(D,h); W<=X; X<=D |] ==> h(W) <= h(X)"; | |
| 29 | by (rtac (major RS conjunct2 RS spec RS spec RS mp RS mp) 1); | |
| 30 | by (REPEAT (resolve_tac prems 1)); | |
| 31 | val bnd_monoD2 = result(); | |
| 32 | ||
| 33 | val [major,minor] = goal Fixedpt.thy | |
| 34 | "[| bnd_mono(D,h); X<=D |] ==> h(X) <= D"; | |
| 35 | by (rtac (major RS bnd_monoD2 RS subset_trans) 1); | |
| 36 | by (rtac (major RS bnd_monoD1) 3); | |
| 37 | by (rtac minor 1); | |
| 38 | by (rtac subset_refl 1); | |
| 39 | val bnd_mono_subset = result(); | |
| 40 | ||
| 41 | goal Fixedpt.thy "!!A B. [| bnd_mono(D,h); A <= D; B <= D |] ==> \ | |
| 42 | \ h(A) Un h(B) <= h(A Un B)"; | |
| 43 | by (REPEAT (ares_tac [Un_upper1, Un_upper2, Un_least] 1 | |
| 44 | ORELSE etac bnd_monoD2 1)); | |
| 45 | val bnd_mono_Un = result(); | |
| 46 | ||
| 47 | (*Useful??*) | |
| 48 | goal Fixedpt.thy "!!A B. [| bnd_mono(D,h); A <= D; B <= D |] ==> \ | |
| 49 | \ h(A Int B) <= h(A) Int h(B)"; | |
| 50 | by (REPEAT (ares_tac [Int_lower1, Int_lower2, Int_greatest] 1 | |
| 51 | ORELSE etac bnd_monoD2 1)); | |
| 52 | val bnd_mono_Int = result(); | |
| 53 | ||
| 54 | (**** Proof of Knaster-Tarski Theorem for the lfp ****) | |
| 55 | ||
| 56 | (*lfp is contained in each pre-fixedpoint*) | |
| 57 | val prems = goalw Fixedpt.thy [lfp_def] | |
| 58 | "[| h(A) <= A; A<=D |] ==> lfp(D,h) <= A"; | |
| 59 | by (rtac (PowI RS CollectI RS Inter_lower) 1); | |
| 60 | by (REPEAT (resolve_tac prems 1)); | |
| 61 | val lfp_lowerbound = result(); | |
| 62 | ||
| 63 | (*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*) | |
| 64 | goalw Fixedpt.thy [lfp_def,Inter_def] "lfp(D,h) <= D"; | |
| 65 | by (fast_tac ZF_cs 1); | |
| 66 | val lfp_subset = result(); | |
| 67 | ||
| 68 | (*Used in datatype package*) | |
| 69 | val [rew] = goal Fixedpt.thy "A==lfp(D,h) ==> A <= D"; | |
| 70 | by (rewtac rew); | |
| 71 | by (rtac lfp_subset 1); | |
| 72 | val def_lfp_subset = result(); | |
| 73 | ||
| 74 | val subset0_cs = FOL_cs | |
| 75 | addSIs [ballI, InterI, CollectI, PowI, empty_subsetI] | |
| 76 | addIs [bexI, UnionI, ReplaceI, RepFunI] | |
| 77 | addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE, | |
| 78 | CollectE, emptyE] | |
| 79 | addEs [rev_ballE, InterD, make_elim InterD, subsetD]; | |
| 80 | ||
| 81 | val subset_cs = subset0_cs | |
| 82 | addSIs [subset_refl,cons_subsetI,subset_consI,Union_least,UN_least,Un_least, | |
| 83 | Inter_greatest,Int_greatest,RepFun_subset] | |
| 84 | addSIs [Un_upper1,Un_upper2,Int_lower1,Int_lower2] | |
| 85 | addIs [Union_upper,Inter_lower] | |
| 86 | addSEs [cons_subsetE]; | |
| 87 | ||
| 88 | val prems = goalw Fixedpt.thy [lfp_def] | |
| 89 | "[| h(D) <= D; !!X. [| h(X) <= X; X<=D |] ==> A<=X |] ==> \ | |
| 90 | \ A <= lfp(D,h)"; | |
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 91 | by (rtac (Pow_top RS CollectI RS Inter_greatest) 1); | 
| 0 | 92 | by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [CollectE,PowD] 1)); | 
| 93 | val lfp_greatest = result(); | |
| 94 | ||
| 95 | val hmono::prems = goal Fixedpt.thy | |
| 96 | "[| bnd_mono(D,h); h(A)<=A; A<=D |] ==> h(lfp(D,h)) <= A"; | |
| 97 | by (rtac (hmono RS bnd_monoD2 RS subset_trans) 1); | |
| 98 | by (rtac lfp_lowerbound 1); | |
| 99 | by (REPEAT (resolve_tac prems 1)); | |
| 100 | val lfp_lemma1 = result(); | |
| 101 | ||
| 102 | val [hmono] = goal Fixedpt.thy | |
| 103 | "bnd_mono(D,h) ==> h(lfp(D,h)) <= lfp(D,h)"; | |
| 104 | by (rtac (bnd_monoD1 RS lfp_greatest) 1); | |
| 105 | by (rtac lfp_lemma1 2); | |
| 106 | by (REPEAT (ares_tac [hmono] 1)); | |
| 107 | val lfp_lemma2 = result(); | |
| 108 | ||
| 109 | val [hmono] = goal Fixedpt.thy | |
| 110 | "bnd_mono(D,h) ==> lfp(D,h) <= h(lfp(D,h))"; | |
| 111 | by (rtac lfp_lowerbound 1); | |
| 112 | by (rtac (hmono RS bnd_monoD2) 1); | |
| 113 | by (rtac (hmono RS lfp_lemma2) 1); | |
| 114 | by (rtac (hmono RS bnd_mono_subset) 2); | |
| 115 | by (REPEAT (rtac lfp_subset 1)); | |
| 116 | val lfp_lemma3 = result(); | |
| 117 | ||
| 118 | val prems = goal Fixedpt.thy | |
| 119 | "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))"; | |
| 120 | by (REPEAT (resolve_tac (prems@[equalityI,lfp_lemma2,lfp_lemma3]) 1)); | |
| 121 | val lfp_Tarski = result(); | |
| 122 | ||
| 123 | (*Definition form, to control unfolding*) | |
| 124 | val [rew,mono] = goal Fixedpt.thy | |
| 125 | "[| A==lfp(D,h); bnd_mono(D,h) |] ==> A = h(A)"; | |
| 126 | by (rewtac rew); | |
| 127 | by (rtac (mono RS lfp_Tarski) 1); | |
| 128 | val def_lfp_Tarski = result(); | |
| 129 | ||
| 130 | (*** General induction rule for least fixedpoints ***) | |
| 131 | ||
| 132 | val [hmono,indstep] = goal Fixedpt.thy | |
| 133 | "[| bnd_mono(D,h); !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \ | |
| 134 | \ |] ==> h(Collect(lfp(D,h),P)) <= Collect(lfp(D,h),P)"; | |
| 135 | by (rtac subsetI 1); | |
| 136 | by (rtac CollectI 1); | |
| 137 | by (etac indstep 2); | |
| 138 | by (rtac (hmono RS lfp_lemma2 RS subsetD) 1); | |
| 139 | by (rtac (hmono RS bnd_monoD2 RS subsetD) 1); | |
| 140 | by (REPEAT (ares_tac [Collect_subset, lfp_subset] 1)); | |
| 141 | val Collect_is_pre_fixedpt = result(); | |
| 142 | ||
| 143 | (*This rule yields an induction hypothesis in which the components of a | |
| 144 | data structure may be assumed to be elements of lfp(D,h)*) | |
| 145 | val prems = goal Fixedpt.thy | |
| 146 | "[| bnd_mono(D,h); a : lfp(D,h); \ | |
| 147 | \ !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \ | |
| 148 | \ |] ==> P(a)"; | |
| 149 | by (rtac (Collect_is_pre_fixedpt RS lfp_lowerbound RS subsetD RS CollectD2) 1); | |
| 150 | by (rtac (lfp_subset RS (Collect_subset RS subset_trans)) 3); | |
| 151 | by (REPEAT (ares_tac prems 1)); | |
| 152 | val induct = result(); | |
| 153 | ||
| 154 | (*Definition form, to control unfolding*) | |
| 155 | val rew::prems = goal Fixedpt.thy | |
| 156 | "[| A == lfp(D,h); bnd_mono(D,h); a:A; \ | |
| 157 | \ !!x. x : h(Collect(A,P)) ==> P(x) \ | |
| 158 | \ |] ==> P(a)"; | |
| 159 | by (rtac induct 1); | |
| 160 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1)); | |
| 161 | val def_induct = result(); | |
| 162 | ||
| 163 | (*This version is useful when "A" is not a subset of D; | |
| 164 | second premise could simply be h(D Int A) <= D or !!X. X<=D ==> h(X)<=D *) | |
| 165 | val [hsub,hmono] = goal Fixedpt.thy | |
| 166 | "[| h(D Int A) <= A; bnd_mono(D,h) |] ==> lfp(D,h) <= A"; | |
| 167 | by (rtac (lfp_lowerbound RS subset_trans) 1); | |
| 168 | by (rtac (hmono RS bnd_mono_subset RS Int_greatest) 1); | |
| 169 | by (REPEAT (resolve_tac [hsub,Int_lower1,Int_lower2] 1)); | |
| 170 | val lfp_Int_lowerbound = result(); | |
| 171 | ||
| 172 | (*Monotonicity of lfp, where h precedes i under a domain-like partial order | |
| 173 | monotonicity of h is not strictly necessary; h must be bounded by D*) | |
| 174 | val [hmono,imono,subhi] = goal Fixedpt.thy | |
| 175 | "[| bnd_mono(D,h); bnd_mono(E,i); \ | |
| 176 | \ !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(E,i)"; | |
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 177 | by (rtac (bnd_monoD1 RS lfp_greatest) 1); | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 178 | by (rtac imono 1); | 
| 0 | 179 | by (rtac (hmono RSN (2, lfp_Int_lowerbound)) 1); | 
| 180 | by (rtac (Int_lower1 RS subhi RS subset_trans) 1); | |
| 181 | by (rtac (imono RS bnd_monoD2 RS subset_trans) 1); | |
| 182 | by (REPEAT (ares_tac [Int_lower2] 1)); | |
| 183 | val lfp_mono = result(); | |
| 184 | ||
| 185 | (*This (unused) version illustrates that monotonicity is not really needed, | |
| 186 | but both lfp's must be over the SAME set D; Inter is anti-monotonic!*) | |
| 187 | val [isubD,subhi] = goal Fixedpt.thy | |
| 188 | "[| i(D) <= D; !!X. X<=D ==> h(X) <= i(X) |] ==> lfp(D,h) <= lfp(D,i)"; | |
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 189 | by (rtac lfp_greatest 1); | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 190 | by (rtac isubD 1); | 
| 0 | 191 | by (rtac lfp_lowerbound 1); | 
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 192 | by (etac (subhi RS subset_trans) 1); | 
| 0 | 193 | by (REPEAT (assume_tac 1)); | 
| 194 | val lfp_mono2 = result(); | |
| 195 | ||
| 196 | ||
| 197 | (**** Proof of Knaster-Tarski Theorem for the gfp ****) | |
| 198 | ||
| 199 | (*gfp contains each post-fixedpoint that is contained in D*) | |
| 200 | val prems = goalw Fixedpt.thy [gfp_def] | |
| 201 | "[| A <= h(A); A<=D |] ==> A <= gfp(D,h)"; | |
| 202 | by (rtac (PowI RS CollectI RS Union_upper) 1); | |
| 203 | by (REPEAT (resolve_tac prems 1)); | |
| 204 | val gfp_upperbound = result(); | |
| 205 | ||
| 206 | goalw Fixedpt.thy [gfp_def] "gfp(D,h) <= D"; | |
| 207 | by (fast_tac ZF_cs 1); | |
| 208 | val gfp_subset = result(); | |
| 209 | ||
| 210 | (*Used in datatype package*) | |
| 211 | val [rew] = goal Fixedpt.thy "A==gfp(D,h) ==> A <= D"; | |
| 212 | by (rewtac rew); | |
| 213 | by (rtac gfp_subset 1); | |
| 214 | val def_gfp_subset = result(); | |
| 215 | ||
| 216 | val hmono::prems = goalw Fixedpt.thy [gfp_def] | |
| 217 | "[| bnd_mono(D,h); !!X. [| X <= h(X); X<=D |] ==> X<=A |] ==> \ | |
| 218 | \ gfp(D,h) <= A"; | |
| 219 | by (fast_tac (subset_cs addIs ((hmono RS bnd_monoD1)::prems)) 1); | |
| 220 | val gfp_least = result(); | |
| 221 | ||
| 222 | val hmono::prems = goal Fixedpt.thy | |
| 223 | "[| bnd_mono(D,h); A<=h(A); A<=D |] ==> A <= h(gfp(D,h))"; | |
| 224 | by (rtac (hmono RS bnd_monoD2 RSN (2,subset_trans)) 1); | |
| 225 | by (rtac gfp_subset 3); | |
| 226 | by (rtac gfp_upperbound 2); | |
| 227 | by (REPEAT (resolve_tac prems 1)); | |
| 228 | val gfp_lemma1 = result(); | |
| 229 | ||
| 230 | val [hmono] = goal Fixedpt.thy | |
| 231 | "bnd_mono(D,h) ==> gfp(D,h) <= h(gfp(D,h))"; | |
| 232 | by (rtac gfp_least 1); | |
| 233 | by (rtac gfp_lemma1 2); | |
| 234 | by (REPEAT (ares_tac [hmono] 1)); | |
| 235 | val gfp_lemma2 = result(); | |
| 236 | ||
| 237 | val [hmono] = goal Fixedpt.thy | |
| 238 | "bnd_mono(D,h) ==> h(gfp(D,h)) <= gfp(D,h)"; | |
| 239 | by (rtac gfp_upperbound 1); | |
| 240 | by (rtac (hmono RS bnd_monoD2) 1); | |
| 241 | by (rtac (hmono RS gfp_lemma2) 1); | |
| 242 | by (REPEAT (rtac ([hmono, gfp_subset] MRS bnd_mono_subset) 1)); | |
| 243 | val gfp_lemma3 = result(); | |
| 244 | ||
| 245 | val prems = goal Fixedpt.thy | |
| 246 | "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))"; | |
| 247 | by (REPEAT (resolve_tac (prems@[equalityI,gfp_lemma2,gfp_lemma3]) 1)); | |
| 248 | val gfp_Tarski = result(); | |
| 249 | ||
| 250 | (*Definition form, to control unfolding*) | |
| 251 | val [rew,mono] = goal Fixedpt.thy | |
| 252 | "[| A==gfp(D,h); bnd_mono(D,h) |] ==> A = h(A)"; | |
| 253 | by (rewtac rew); | |
| 254 | by (rtac (mono RS gfp_Tarski) 1); | |
| 255 | val def_gfp_Tarski = result(); | |
| 256 | ||
| 257 | ||
| 258 | (*** Coinduction rules for greatest fixed points ***) | |
| 259 | ||
| 260 | (*weak version*) | |
| 261 | goal Fixedpt.thy "!!X h. [| a: X; X <= h(X); X <= D |] ==> a : gfp(D,h)"; | |
| 262 | by (REPEAT (ares_tac [gfp_upperbound RS subsetD] 1)); | |
| 263 | val weak_coinduct = result(); | |
| 264 | ||
| 265 | val [subs_h,subs_D,mono] = goal Fixedpt.thy | |
| 266 | "[| X <= h(X Un gfp(D,h)); X <= D; bnd_mono(D,h) |] ==> \ | |
| 267 | \ X Un gfp(D,h) <= h(X Un gfp(D,h))"; | |
| 268 | by (rtac (subs_h RS Un_least) 1); | |
| 269 | by (rtac (mono RS gfp_lemma2 RS subset_trans) 1); | |
| 270 | by (rtac (Un_upper2 RS subset_trans) 1); | |
| 271 | by (rtac ([mono, subs_D, gfp_subset] MRS bnd_mono_Un) 1); | |
| 272 | val coinduct_lemma = result(); | |
| 273 | ||
| 274 | (*strong version*) | |
| 275 | goal Fixedpt.thy | |
| 276 | "!!X D. [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D |] ==> \ | |
| 277 | \ a : gfp(D,h)"; | |
| 278 | by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1); | |
| 279 | by (REPEAT (ares_tac [gfp_subset, UnI1, Un_least] 1)); | |
| 280 | val coinduct = result(); | |
| 281 | ||
| 282 | (*Definition form, to control unfolding*) | |
| 283 | val rew::prems = goal Fixedpt.thy | |
| 284 | "[| A == gfp(D,h); bnd_mono(D,h); a: X; X <= h(X Un A); X <= D |] ==> \ | |
| 285 | \ a : A"; | |
| 286 | by (rewtac rew); | |
| 287 | by (rtac coinduct 1); | |
| 288 | by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1)); | |
| 289 | val def_coinduct = result(); | |
| 290 | ||
| 291 | (*Lemma used immediately below!*) | |
| 292 | val [subsA,XimpP] = goal ZF.thy | |
| 293 | "[| X <= A; !!z. z:X ==> P(z) |] ==> X <= Collect(A,P)"; | |
| 294 | by (rtac (subsA RS subsetD RS CollectI RS subsetI) 1); | |
| 295 | by (assume_tac 1); | |
| 296 | by (etac XimpP 1); | |
| 297 | val subset_Collect = result(); | |
| 298 | ||
| 299 | (*The version used in the induction/coinduction package*) | |
| 300 | val prems = goal Fixedpt.thy | |
| 301 | "[| A == gfp(D, %w. Collect(D,P(w))); bnd_mono(D, %w. Collect(D,P(w))); \ | |
| 302 | \ a: X; X <= D; !!z. z: X ==> P(X Un A, z) |] ==> \ | |
| 303 | \ a : A"; | |
| 304 | by (rtac def_coinduct 1); | |
| 305 | by (REPEAT (ares_tac (subset_Collect::prems) 1)); | |
| 306 | val def_Collect_coinduct = result(); | |
| 307 | ||
| 308 | (*Monotonicity of gfp!*) | |
| 309 | val [hmono,subde,subhi] = goal Fixedpt.thy | |
| 310 | "[| bnd_mono(D,h); D <= E; \ | |
| 311 | \ !!X. X<=D ==> h(X) <= i(X) |] ==> gfp(D,h) <= gfp(E,i)"; | |
| 312 | by (rtac gfp_upperbound 1); | |
| 313 | by (rtac (hmono RS gfp_lemma2 RS subset_trans) 1); | |
| 314 | by (rtac (gfp_subset RS subhi) 1); | |
| 315 | by (rtac ([gfp_subset, subde] MRS subset_trans) 1); | |
| 316 | val gfp_mono = result(); | |
| 317 |