| author | haftmann | 
| Sat, 31 Dec 2016 08:12:31 +0100 | |
| changeset 64715 | 33d5fa0ce6e5 | 
| parent 63612 | 7195acc2fe93 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Transitive_Closure.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | Copyright 1992 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 60758 | 6 | section \<open>Reflexive and Transitive closure of a relation\<close> | 
| 12691 | 7 | |
| 15131 | 8 | theory Transitive_Closure | 
| 63612 | 9 | imports Relation | 
| 15131 | 10 | begin | 
| 12691 | 11 | |
| 48891 | 12 | ML_file "~~/src/Provers/trancl.ML" | 
| 13 | ||
| 60758 | 14 | text \<open> | 
| 61799 | 15 | \<open>rtrancl\<close> is reflexive/transitive closure, | 
| 16 | \<open>trancl\<close> is transitive closure, | |
| 17 | \<open>reflcl\<close> is reflexive closure. | |
| 12691 | 18 | |
| 63612 | 19 | These postfix operators have \<^emph>\<open>maximum priority\<close>, forcing their | 
| 12691 | 20 | operands to be atomic. | 
| 60758 | 21 | \<close> | 
| 10213 | 22 | |
| 63612 | 23 | context notes [[inductive_internals]] | 
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 24 | begin | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 25 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 26 | inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>*)" [1000] 999)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 27 |   for r :: "('a \<times> 'a) set"
 | 
| 63612 | 28 | where | 
| 29 | rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | |
| 30 | | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*" | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 31 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 32 | inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>+)" [1000] 999)
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 33 |   for r :: "('a \<times> 'a) set"
 | 
| 63612 | 34 | where | 
| 35 | r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | |
| 36 | | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" | |
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 37 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 38 | notation | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 39 |   rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 40 |   tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000)
 | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 41 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 42 | declare | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 43 | rtrancl_def [nitpick_unfold del] | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 44 | rtranclp_def [nitpick_unfold del] | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 45 | trancl_def [nitpick_unfold del] | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 46 | tranclp_def [nitpick_unfold del] | 
| 33878 
85102f57b4a8
removed "nitpick_def" attributes from (r)trancl(p), since "Nitpick.thy" overrides these
 blanchet parents: 
33656diff
changeset | 47 | |
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 48 | end | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61424diff
changeset | 49 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 50 | abbreviation reflcl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>=)" [1000] 999)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 51 | where "r\<^sup>= \<equiv> r \<union> Id" | 
| 10213 | 52 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 53 | abbreviation reflclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(_\<^sup>=\<^sup>=)" [1000] 1000)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 54 | where "r\<^sup>=\<^sup>= \<equiv> sup r op =" | 
| 22262 | 55 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 56 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 57 |   rtrancl  ("(_^*)" [1000] 999) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 58 |   trancl  ("(_^+)" [1000] 999) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 59 |   reflcl  ("(_^=)" [1000] 999) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 60 |   rtranclp  ("(_^**)" [1000] 1000) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 61 |   tranclp  ("(_^++)" [1000] 1000) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 62 |   reflclp  ("(_^==)" [1000] 1000)
 | 
| 12691 | 63 | |
| 64 | ||
| 60758 | 65 | subsection \<open>Reflexive closure\<close> | 
| 26271 | 66 | |
| 63404 | 67 | lemma refl_reflcl[simp]: "refl (r\<^sup>=)" | 
| 68 | by (simp add: refl_on_def) | |
| 26271 | 69 | |
| 63404 | 70 | lemma antisym_reflcl[simp]: "antisym (r\<^sup>=) = antisym r" | 
| 71 | by (simp add: antisym_def) | |
| 26271 | 72 | |
| 63404 | 73 | lemma trans_reflclI[simp]: "trans r \<Longrightarrow> trans (r\<^sup>=)" | 
| 74 | unfolding trans_def by blast | |
| 26271 | 75 | |
| 63404 | 76 | lemma reflclp_idemp [simp]: "(P\<^sup>=\<^sup>=)\<^sup>=\<^sup>= = P\<^sup>=\<^sup>=" | 
| 77 | by blast | |
| 78 | ||
| 26271 | 79 | |
| 60758 | 80 | subsection \<open>Reflexive-transitive closure\<close> | 
| 12691 | 81 | |
| 32883 
7cbd93dacef3
inf/sup1/2_iff are mere duplicates of underlying definitions: dropped
 haftmann parents: 
32601diff
changeset | 82 | lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) op =) = (\<lambda>x y. (x, y) \<in> r \<union> Id)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 83 | by (auto simp add: fun_eq_iff) | 
| 22262 | 84 | |
| 63404 | 85 | lemma r_into_rtrancl [intro]: "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>*" | 
| 61799 | 86 | \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> | 
| 12691 | 87 | apply (simp only: split_tupled_all) | 
| 88 | apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl]) | |
| 89 | done | |
| 90 | ||
| 63404 | 91 | lemma r_into_rtranclp [intro]: "r x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" | 
| 61799 | 92 | \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 93 | by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) | 
| 22262 | 94 | |
| 63404 | 95 | lemma rtranclp_mono: "r \<le> s \<Longrightarrow> r\<^sup>*\<^sup>* \<le> s\<^sup>*\<^sup>*" | 
| 61799 | 96 | \<comment> \<open>monotonicity of \<open>rtrancl\<close>\<close> | 
| 22262 | 97 | apply (rule predicate2I) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 98 | apply (erule rtranclp.induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 99 | apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+) | 
| 12691 | 100 | done | 
| 101 | ||
| 63404 | 102 | lemma mono_rtranclp[mono]: "(\<And>a b. x a b \<longrightarrow> y a b) \<Longrightarrow> x\<^sup>*\<^sup>* a b \<longrightarrow> y\<^sup>*\<^sup>* a b" | 
| 60681 | 103 | using rtranclp_mono[of x y] by auto | 
| 104 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 105 | lemmas rtrancl_mono = rtranclp_mono [to_set] | 
| 22262 | 106 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 107 | theorem rtranclp_induct [consumes 1, case_names base step, induct set: rtranclp]: | 
| 63404 | 108 | assumes a: "r\<^sup>*\<^sup>* a b" | 
| 109 | and cases: "P a" "\<And>y z. r\<^sup>*\<^sup>* a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z" | |
| 110 | shows "P b" | |
| 111 | using a by (induct x\<equiv>a b) (rule cases)+ | |
| 12691 | 112 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 113 | lemmas rtrancl_induct [induct set: rtrancl] = rtranclp_induct [to_set] | 
| 22262 | 114 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 115 | lemmas rtranclp_induct2 = | 
| 63404 | 116 | rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, consumes 1, case_names refl step] | 
| 22262 | 117 | |
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 118 | lemmas rtrancl_induct2 = | 
| 63404 | 119 | rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), consumes 1, case_names refl step] | 
| 18372 | 120 | |
| 63404 | 121 | lemma refl_rtrancl: "refl (r\<^sup>*)" | 
| 122 | unfolding refl_on_def by fast | |
| 19228 | 123 | |
| 60758 | 124 | text \<open>Transitivity of transitive closure.\<close> | 
| 63404 | 125 | lemma trans_rtrancl: "trans (r\<^sup>*)" | 
| 12823 | 126 | proof (rule transI) | 
| 127 | fix x y z | |
| 128 | assume "(x, y) \<in> r\<^sup>*" | |
| 129 | assume "(y, z) \<in> r\<^sup>*" | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 130 | then show "(x, z) \<in> r\<^sup>*" | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 131 | proof induct | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 132 | case base | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 133 | show "(x, y) \<in> r\<^sup>*" by fact | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 134 | next | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 135 | case (step u v) | 
| 60758 | 136 | from \<open>(x, u) \<in> r\<^sup>*\<close> and \<open>(u, v) \<in> r\<close> | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 137 | show "(x, v) \<in> r\<^sup>*" .. | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 138 | qed | 
| 12823 | 139 | qed | 
| 12691 | 140 | |
| 45607 | 141 | lemmas rtrancl_trans = trans_rtrancl [THEN transD] | 
| 12691 | 142 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 143 | lemma rtranclp_trans: | 
| 63404 | 144 | assumes "r\<^sup>*\<^sup>* x y" | 
| 145 | and "r\<^sup>*\<^sup>* y z" | |
| 146 | shows "r\<^sup>*\<^sup>* x z" | |
| 147 | using assms(2,1) by induct iprover+ | |
| 22262 | 148 | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 149 | lemma rtranclE [cases set: rtrancl]: | 
| 63404 | 150 | fixes a b :: 'a | 
| 151 | assumes major: "(a, b) \<in> r\<^sup>*" | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 152 | obtains | 
| 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 153 | (base) "a = b" | 
| 63404 | 154 | | (step) y where "(a, y) \<in> r\<^sup>*" and "(y, b) \<in> r" | 
| 61799 | 155 | \<comment> \<open>elimination of \<open>rtrancl\<close> -- by induction on a special formula\<close> | 
| 63404 | 156 | apply (subgoal_tac "a = b \<or> (\<exists>y. (a, y) \<in> r\<^sup>* \<and> (y, b) \<in> r)") | 
| 18372 | 157 | apply (rule_tac [2] major [THEN rtrancl_induct]) | 
| 158 | prefer 2 apply blast | |
| 159 | prefer 2 apply blast | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 160 | apply (erule asm_rl exE disjE conjE base step)+ | 
| 18372 | 161 | done | 
| 12691 | 162 | |
| 63404 | 163 | lemma rtrancl_Int_subset: "Id \<subseteq> s \<Longrightarrow> (r\<^sup>* \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>* \<subseteq> s" | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 164 | apply (rule subsetI) | 
| 61032 
b57df8eecad6
standardized some occurences of ancient "split" alias
 haftmann parents: 
60758diff
changeset | 165 | apply auto | 
| 
b57df8eecad6
standardized some occurences of ancient "split" alias
 haftmann parents: 
60758diff
changeset | 166 | apply (erule rtrancl_induct) | 
| 
b57df8eecad6
standardized some occurences of ancient "split" alias
 haftmann parents: 
60758diff
changeset | 167 | apply auto | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 168 | done | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 169 | |
| 63404 | 170 | lemma converse_rtranclp_into_rtranclp: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 171 | by (rule rtranclp_trans) iprover+ | 
| 22262 | 172 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 173 | lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] | 
| 12691 | 174 | |
| 63404 | 175 | text \<open>\<^medskip> More @{term "r\<^sup>*"} equations and inclusions.\<close>
 | 
| 12691 | 176 | |
| 63404 | 177 | lemma rtranclp_idemp [simp]: "(r\<^sup>*\<^sup>*)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" | 
| 22262 | 178 | apply (auto intro!: order_antisym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 179 | apply (erule rtranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 180 | apply (rule rtranclp.rtrancl_refl) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 181 | apply (blast intro: rtranclp_trans) | 
| 12691 | 182 | done | 
| 183 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 184 | lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] | 
| 22262 | 185 | |
| 63404 | 186 | lemma rtrancl_idemp_self_comp [simp]: "R\<^sup>* O R\<^sup>* = R\<^sup>*" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 187 | apply (rule set_eqI) | 
| 12691 | 188 | apply (simp only: split_tupled_all) | 
| 189 | apply (blast intro: rtrancl_trans) | |
| 190 | done | |
| 191 | ||
| 63404 | 192 | lemma rtrancl_subset_rtrancl: "r \<subseteq> s\<^sup>* \<Longrightarrow> r\<^sup>* \<subseteq> s\<^sup>*" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 193 | apply (drule rtrancl_mono) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 194 | apply simp | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 195 | done | 
| 12691 | 196 | |
| 63404 | 197 | lemma rtranclp_subset: "R \<le> S \<Longrightarrow> S \<le> R\<^sup>*\<^sup>* \<Longrightarrow> S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 198 | apply (drule rtranclp_mono) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 199 | apply (drule rtranclp_mono) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 200 | apply simp | 
| 12691 | 201 | done | 
| 202 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 203 | lemmas rtrancl_subset = rtranclp_subset [to_set] | 
| 22262 | 204 | |
| 63404 | 205 | lemma rtranclp_sup_rtranclp: "(sup (R\<^sup>*\<^sup>*) (S\<^sup>*\<^sup>*))\<^sup>*\<^sup>* = (sup R S)\<^sup>*\<^sup>*" | 
| 206 | by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) | |
| 12691 | 207 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 208 | lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] | 
| 22262 | 209 | |
| 63404 | 210 | lemma rtranclp_reflclp [simp]: "(R\<^sup>=\<^sup>=)\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" | 
| 211 | by (blast intro!: rtranclp_subset) | |
| 22262 | 212 | |
| 50616 | 213 | lemmas rtrancl_reflcl [simp] = rtranclp_reflclp [to_set] | 
| 12691 | 214 | |
| 63404 | 215 | lemma rtrancl_r_diff_Id: "(r - Id)\<^sup>* = r\<^sup>*" | 
| 12691 | 216 | apply (rule sym) | 
| 63612 | 217 | apply (rule rtrancl_subset) | 
| 218 | apply blast | |
| 219 | apply clarify | |
| 12691 | 220 | apply (rename_tac a b) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 221 | apply (case_tac "a = b") | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 222 | apply blast | 
| 44921 | 223 | apply blast | 
| 12691 | 224 | done | 
| 225 | ||
| 63404 | 226 | lemma rtranclp_r_diff_Id: "(inf r op \<noteq>)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" | 
| 22262 | 227 | apply (rule sym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 228 | apply (rule rtranclp_subset) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 229 | apply blast+ | 
| 22262 | 230 | done | 
| 231 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 232 | theorem rtranclp_converseD: | 
| 63404 | 233 | assumes "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y" | 
| 234 | shows "r\<^sup>*\<^sup>* y x" | |
| 235 | using assms by induct (iprover intro: rtranclp_trans dest!: conversepD)+ | |
| 12691 | 236 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 237 | lemmas rtrancl_converseD = rtranclp_converseD [to_set] | 
| 22262 | 238 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 239 | theorem rtranclp_converseI: | 
| 63404 | 240 | assumes "r\<^sup>*\<^sup>* y x" | 
| 241 | shows "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y" | |
| 242 | using assms by induct (iprover intro: rtranclp_trans conversepI)+ | |
| 12691 | 243 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 244 | lemmas rtrancl_converseI = rtranclp_converseI [to_set] | 
| 22262 | 245 | |
| 63404 | 246 | lemma rtrancl_converse: "(r^-1)\<^sup>* = (r\<^sup>*)^-1" | 
| 12691 | 247 | by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) | 
| 248 | ||
| 63404 | 249 | lemma sym_rtrancl: "sym r \<Longrightarrow> sym (r\<^sup>*)" | 
| 19228 | 250 | by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) | 
| 251 | ||
| 34909 
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
 berghofe parents: 
33878diff
changeset | 252 | theorem converse_rtranclp_induct [consumes 1, case_names base step]: | 
| 63404 | 253 | assumes major: "r\<^sup>*\<^sup>* a b" | 
| 254 | and cases: "P b" "\<And>y z. r y z \<Longrightarrow> r\<^sup>*\<^sup>* z b \<Longrightarrow> P z \<Longrightarrow> P y" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 255 | shows "P a" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 256 | using rtranclp_converseI [OF major] | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 257 | by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+ | 
| 12691 | 258 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 259 | lemmas converse_rtrancl_induct = converse_rtranclp_induct [to_set] | 
| 22262 | 260 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 261 | lemmas converse_rtranclp_induct2 = | 
| 63612 | 262 | converse_rtranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names refl step] | 
| 22262 | 263 | |
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 264 | lemmas converse_rtrancl_induct2 = | 
| 63612 | 265 | converse_rtrancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete), | 
| 63404 | 266 | consumes 1, case_names refl step] | 
| 12691 | 267 | |
| 34909 
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
 berghofe parents: 
33878diff
changeset | 268 | lemma converse_rtranclpE [consumes 1, case_names base step]: | 
| 63404 | 269 | assumes major: "r\<^sup>*\<^sup>* x z" | 
| 270 | and cases: "x = z \<Longrightarrow> P" "\<And>y. r x y \<Longrightarrow> r\<^sup>*\<^sup>* y z \<Longrightarrow> P" | |
| 18372 | 271 | shows P | 
| 63404 | 272 | apply (subgoal_tac "x = z \<or> (\<exists>y. r x y \<and> r\<^sup>*\<^sup>* y z)") | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 273 | apply (rule_tac [2] major [THEN converse_rtranclp_induct]) | 
| 18372 | 274 | prefer 2 apply iprover | 
| 275 | prefer 2 apply iprover | |
| 276 | apply (erule asm_rl exE disjE conjE cases)+ | |
| 277 | done | |
| 12691 | 278 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 279 | lemmas converse_rtranclE = converse_rtranclpE [to_set] | 
| 22262 | 280 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 281 | lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule] | 
| 22262 | 282 | |
| 283 | lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule] | |
| 12691 | 284 | |
| 63404 | 285 | lemma r_comp_rtrancl_eq: "r O r\<^sup>* = r\<^sup>* O r" | 
| 12691 | 286 | by (blast elim: rtranclE converse_rtranclE | 
| 63612 | 287 | intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) | 
| 12691 | 288 | |
| 63404 | 289 | lemma rtrancl_unfold: "r\<^sup>* = Id \<union> r\<^sup>* O r" | 
| 15551 | 290 | by (auto intro: rtrancl_into_rtrancl elim: rtranclE) | 
| 291 | ||
| 31690 | 292 | lemma rtrancl_Un_separatorE: | 
| 63404 | 293 | "(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (a, x) \<in> P\<^sup>* \<longrightarrow> (x, y) \<in> Q \<longrightarrow> x = y \<Longrightarrow> (a, b) \<in> P\<^sup>*" | 
| 63612 | 294 | proof (induct rule: rtrancl.induct) | 
| 295 | case rtrancl_refl | |
| 296 | then show ?case by blast | |
| 297 | next | |
| 298 | case rtrancl_into_rtrancl | |
| 299 | then show ?case by (blast intro: rtrancl_trans) | |
| 300 | qed | |
| 31690 | 301 | |
| 302 | lemma rtrancl_Un_separator_converseE: | |
| 63404 | 303 | "(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (x, b) \<in> P\<^sup>* \<longrightarrow> (y, x) \<in> Q \<longrightarrow> y = x \<Longrightarrow> (a, b) \<in> P\<^sup>*" | 
| 63612 | 304 | proof (induct rule: converse_rtrancl_induct) | 
| 305 | case base | |
| 306 | then show ?case by blast | |
| 307 | next | |
| 308 | case step | |
| 309 | then show ?case by (blast intro: rtrancl_trans) | |
| 310 | qed | |
| 31690 | 311 | |
| 34970 | 312 | lemma Image_closed_trancl: | 
| 63404 | 313 | assumes "r `` X \<subseteq> X" | 
| 314 | shows "r\<^sup>* `` X = X" | |
| 34970 | 315 | proof - | 
| 63404 | 316 |   from assms have **: "{y. \<exists>x\<in>X. (x, y) \<in> r} \<subseteq> X"
 | 
| 317 | by auto | |
| 318 | have "x \<in> X" if 1: "(y, x) \<in> r\<^sup>*" and 2: "y \<in> X" for x y | |
| 34970 | 319 | proof - | 
| 63404 | 320 | from 1 show "x \<in> X" | 
| 34970 | 321 | proof induct | 
| 63404 | 322 | case base | 
| 323 | show ?case by (fact 2) | |
| 34970 | 324 | next | 
| 63404 | 325 | case step | 
| 326 | with ** show ?case by auto | |
| 34970 | 327 | qed | 
| 328 | qed | |
| 329 | then show ?thesis by auto | |
| 330 | qed | |
| 331 | ||
| 12691 | 332 | |
| 60758 | 333 | subsection \<open>Transitive closure\<close> | 
| 10331 | 334 | |
| 63404 | 335 | lemma trancl_mono: "\<And>p. p \<in> r\<^sup>+ \<Longrightarrow> r \<subseteq> s \<Longrightarrow> p \<in> s\<^sup>+" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 336 | apply (simp add: split_tupled_all) | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 337 | apply (erule trancl.induct) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 338 | apply (iprover dest: subsetD)+ | 
| 12691 | 339 | done | 
| 340 | ||
| 63404 | 341 | lemma r_into_trancl': "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 342 | by (simp only: split_tupled_all) (erule r_into_trancl) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 343 | |
| 63404 | 344 | text \<open>\<^medskip> Conversions between \<open>trancl\<close> and \<open>rtrancl\<close>.\<close> | 
| 12691 | 345 | |
| 63404 | 346 | lemma tranclp_into_rtranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* a b" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 347 | by (erule tranclp.induct) iprover+ | 
| 12691 | 348 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 349 | lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set] | 
| 22262 | 350 | |
| 63404 | 351 | lemma rtranclp_into_tranclp1: | 
| 352 | assumes "r\<^sup>*\<^sup>* a b" | |
| 353 | shows "r b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" | |
| 354 | using assms by (induct arbitrary: c) iprover+ | |
| 12691 | 355 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 356 | lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] | 
| 22262 | 357 | |
| 63404 | 358 | lemma rtranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" | 
| 61799 | 359 | \<comment> \<open>intro rule from \<open>r\<close> and \<open>rtrancl\<close>\<close> | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 360 | apply (erule rtranclp.cases) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 361 | apply iprover | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 362 | apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1]) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 363 | apply (simp | rule r_into_rtranclp)+ | 
| 12691 | 364 | done | 
| 365 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 366 | lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] | 
| 22262 | 367 | |
| 61799 | 368 | text \<open>Nice induction rule for \<open>trancl\<close>\<close> | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 369 | lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]: | 
| 63404 | 370 | assumes a: "r\<^sup>+\<^sup>+ a b" | 
| 371 | and cases: "\<And>y. r a y \<Longrightarrow> P y" "\<And>y z. r\<^sup>+\<^sup>+ a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z" | |
| 372 | shows "P b" | |
| 373 | using a by (induct x\<equiv>a b) (iprover intro: cases)+ | |
| 12691 | 374 | |
| 25425 
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
 berghofe parents: 
25295diff
changeset | 375 | lemmas trancl_induct [induct set: trancl] = tranclp_induct [to_set] | 
| 22262 | 376 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 377 | lemmas tranclp_induct2 = | 
| 63612 | 378 | tranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names base step] | 
| 22262 | 379 | |
| 22172 | 380 | lemmas trancl_induct2 = | 
| 63612 | 381 | trancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete), | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 382 | consumes 1, case_names base step] | 
| 22172 | 383 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 384 | lemma tranclp_trans_induct: | 
| 63404 | 385 | assumes major: "r\<^sup>+\<^sup>+ x y" | 
| 386 | and cases: "\<And>x y. r x y \<Longrightarrow> P x y" "\<And>x y z. r\<^sup>+\<^sup>+ x y \<Longrightarrow> P x y \<Longrightarrow> r\<^sup>+\<^sup>+ y z \<Longrightarrow> P y z \<Longrightarrow> P x z" | |
| 18372 | 387 | shows "P x y" | 
| 61799 | 388 | \<comment> \<open>Another induction rule for trancl, incorporating transitivity\<close> | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 389 | by (iprover intro: major [THEN tranclp_induct] cases) | 
| 12691 | 390 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 391 | lemmas trancl_trans_induct = tranclp_trans_induct [to_set] | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 392 | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 393 | lemma tranclE [cases set: trancl]: | 
| 63404 | 394 | assumes "(a, b) \<in> r\<^sup>+" | 
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 395 | obtains | 
| 63404 | 396 | (base) "(a, b) \<in> r" | 
| 397 | | (step) c where "(a, c) \<in> r\<^sup>+" and "(c, b) \<in> r" | |
| 26174 
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
 wenzelm parents: 
25425diff
changeset | 398 | using assms by cases simp_all | 
| 10980 | 399 | |
| 63404 | 400 | lemma trancl_Int_subset: "r \<subseteq> s \<Longrightarrow> (r\<^sup>+ \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s" | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 401 | apply (rule subsetI) | 
| 61032 
b57df8eecad6
standardized some occurences of ancient "split" alias
 haftmann parents: 
60758diff
changeset | 402 | apply auto | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 403 | apply (erule trancl_induct) | 
| 63612 | 404 | apply auto | 
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 405 | done | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 406 | |
| 63404 | 407 | lemma trancl_unfold: "r\<^sup>+ = r \<union> r\<^sup>+ O r" | 
| 15551 | 408 | by (auto intro: trancl_into_trancl elim: tranclE) | 
| 409 | ||
| 63404 | 410 | text \<open>Transitivity of @{term "r\<^sup>+"}\<close>
 | 
| 411 | lemma trans_trancl [simp]: "trans (r\<^sup>+)" | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 412 | proof (rule transI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 413 | fix x y z | 
| 63404 | 414 | assume "(x, y) \<in> r\<^sup>+" | 
| 415 | assume "(y, z) \<in> r\<^sup>+" | |
| 416 | then show "(x, z) \<in> r\<^sup>+" | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 417 | proof induct | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 418 | case (base u) | 
| 63404 | 419 | from \<open>(x, y) \<in> r\<^sup>+\<close> and \<open>(y, u) \<in> r\<close> | 
| 420 | show "(x, u) \<in> r\<^sup>+" .. | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 421 | next | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 422 | case (step u v) | 
| 63404 | 423 | from \<open>(x, u) \<in> r\<^sup>+\<close> and \<open>(u, v) \<in> r\<close> | 
| 424 | show "(x, v) \<in> r\<^sup>+" .. | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 425 | qed | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 426 | qed | 
| 12691 | 427 | |
| 45607 | 428 | lemmas trancl_trans = trans_trancl [THEN transD] | 
| 12691 | 429 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 430 | lemma tranclp_trans: | 
| 63404 | 431 | assumes "r\<^sup>+\<^sup>+ x y" | 
| 432 | and "r\<^sup>+\<^sup>+ y z" | |
| 433 | shows "r\<^sup>+\<^sup>+ x z" | |
| 434 | using assms(2,1) by induct iprover+ | |
| 22262 | 435 | |
| 63404 | 436 | lemma trancl_id [simp]: "trans r \<Longrightarrow> r\<^sup>+ = r" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 437 | apply auto | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 438 | apply (erule trancl_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 439 | apply assumption | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 440 | apply (unfold trans_def) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 441 | apply blast | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 442 | done | 
| 19623 | 443 | |
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 444 | lemma rtranclp_tranclp_tranclp: | 
| 63404 | 445 | assumes "r\<^sup>*\<^sup>* x y" | 
| 446 | shows "\<And>z. r\<^sup>+\<^sup>+ y z \<Longrightarrow> r\<^sup>+\<^sup>+ x z" | |
| 447 | using assms by induct (iprover intro: tranclp_trans)+ | |
| 12691 | 448 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 449 | lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set] | 
| 22262 | 450 | |
| 63404 | 451 | lemma tranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>+\<^sup>+ b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 452 | by (erule tranclp_trans [OF tranclp.r_into_trancl]) | 
| 22262 | 453 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 454 | lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] | 
| 12691 | 455 | |
| 63404 | 456 | lemma tranclp_converseI: "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y \<Longrightarrow> (r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" | 
| 22262 | 457 | apply (drule conversepD) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 458 | apply (erule tranclp_induct) | 
| 63612 | 459 | apply (iprover intro: conversepI tranclp_trans)+ | 
| 12691 | 460 | done | 
| 461 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 462 | lemmas trancl_converseI = tranclp_converseI [to_set] | 
| 22262 | 463 | |
| 63404 | 464 | lemma tranclp_converseD: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y \<Longrightarrow> (r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" | 
| 22262 | 465 | apply (rule conversepI) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 466 | apply (erule tranclp_induct) | 
| 63612 | 467 | apply (iprover dest: conversepD intro: tranclp_trans)+ | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 468 | done | 
| 12691 | 469 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 470 | lemmas trancl_converseD = tranclp_converseD [to_set] | 
| 22262 | 471 | |
| 63404 | 472 | lemma tranclp_converse: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ = (r\<^sup>+\<^sup>+)\<inverse>\<inverse>" | 
| 473 | by (fastforce simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD) | |
| 22262 | 474 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 475 | lemmas trancl_converse = tranclp_converse [to_set] | 
| 12691 | 476 | |
| 63404 | 477 | lemma sym_trancl: "sym r \<Longrightarrow> sym (r\<^sup>+)" | 
| 19228 | 478 | by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) | 
| 479 | ||
| 34909 
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
 berghofe parents: 
33878diff
changeset | 480 | lemma converse_tranclp_induct [consumes 1, case_names base step]: | 
| 63404 | 481 | assumes major: "r\<^sup>+\<^sup>+ a b" | 
| 482 | and cases: "\<And>y. r y b \<Longrightarrow> P y" "\<And>y z. r y z \<Longrightarrow> r\<^sup>+\<^sup>+ z b \<Longrightarrow> P z \<Longrightarrow> P y" | |
| 18372 | 483 | shows "P a" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 484 | apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major]) | 
| 18372 | 485 | apply (rule cases) | 
| 22262 | 486 | apply (erule conversepD) | 
| 35216 | 487 | apply (blast intro: assms dest!: tranclp_converseD) | 
| 18372 | 488 | done | 
| 12691 | 489 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 490 | lemmas converse_trancl_induct = converse_tranclp_induct [to_set] | 
| 22262 | 491 | |
| 63404 | 492 | lemma tranclpD: "R\<^sup>+\<^sup>+ x y \<Longrightarrow> \<exists>z. R x z \<and> R\<^sup>*\<^sup>* z y" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 493 | apply (erule converse_tranclp_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 494 | apply auto | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 495 | apply (blast intro: rtranclp_trans) | 
| 12691 | 496 | done | 
| 497 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 498 | lemmas tranclD = tranclpD [to_set] | 
| 22262 | 499 | |
| 31577 | 500 | lemma converse_tranclpE: | 
| 501 | assumes major: "tranclp r x z" | |
| 63404 | 502 | and base: "r x z \<Longrightarrow> P" | 
| 63612 | 503 | and step: "\<And>y. r x y \<Longrightarrow> tranclp r y z \<Longrightarrow> P" | 
| 31577 | 504 | shows P | 
| 505 | proof - | |
| 63404 | 506 | from tranclpD [OF major] obtain y where "r x y" and "rtranclp r y z" | 
| 507 | by iprover | |
| 31577 | 508 | from this(2) show P | 
| 509 | proof (cases rule: rtranclp.cases) | |
| 510 | case rtrancl_refl | |
| 63404 | 511 | with \<open>r x y\<close> base show P | 
| 512 | by iprover | |
| 31577 | 513 | next | 
| 514 | case rtrancl_into_rtrancl | |
| 515 | from this have "tranclp r y z" | |
| 516 | by (iprover intro: rtranclp_into_tranclp1) | |
| 63404 | 517 | with \<open>r x y\<close> step show P | 
| 518 | by iprover | |
| 31577 | 519 | qed | 
| 520 | qed | |
| 521 | ||
| 522 | lemmas converse_tranclE = converse_tranclpE [to_set] | |
| 523 | ||
| 63404 | 524 | lemma tranclD2: "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R" | 
| 25295 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 525 | by (blast elim: tranclE intro: trancl_into_rtrancl) | 
| 
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
 kleing parents: 
23743diff
changeset | 526 | |
| 63404 | 527 | lemma irrefl_tranclI: "r\<inverse> \<inter> r\<^sup>* = {} \<Longrightarrow> (x, x) \<notin> r\<^sup>+"
 | 
| 18372 | 528 | by (blast elim: tranclE dest: trancl_into_rtrancl) | 
| 12691 | 529 | |
| 63404 | 530 | lemma irrefl_trancl_rD: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> x \<noteq> y" | 
| 12691 | 531 | by (blast dest: r_into_trancl) | 
| 532 | ||
| 63404 | 533 | lemma trancl_subset_Sigma_aux: "(a, b) \<in> r\<^sup>* \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> a = b \<or> a \<in> A" | 
| 18372 | 534 | by (induct rule: rtrancl_induct) auto | 
| 12691 | 535 | |
| 63404 | 536 | lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A \<Longrightarrow> r\<^sup>+ \<subseteq> A \<times> A" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 537 | apply (rule subsetI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 538 | apply (simp only: split_tupled_all) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 539 | apply (erule tranclE) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 540 | apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ | 
| 12691 | 541 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 542 | |
| 63404 | 543 | lemma reflclp_tranclp [simp]: "(r\<^sup>+\<^sup>+)\<^sup>=\<^sup>= = r\<^sup>*\<^sup>*" | 
| 22262 | 544 | apply (safe intro!: order_antisym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 545 | apply (erule tranclp_into_rtranclp) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 546 | apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1) | 
| 11084 | 547 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 548 | |
| 50616 | 549 | lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] | 
| 22262 | 550 | |
| 63404 | 551 | lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*" | 
| 11084 | 552 | apply safe | 
| 14208 | 553 | apply (drule trancl_into_rtrancl, simp) | 
| 554 | apply (erule rtranclE, safe) | |
| 555 | apply (rule r_into_trancl, simp) | |
| 11084 | 556 | apply (rule rtrancl_into_trancl1) | 
| 14208 | 557 | apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast) | 
| 11084 | 558 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 559 | |
| 63404 | 560 | lemma rtrancl_trancl_reflcl [code]: "r\<^sup>* = (r\<^sup>+)\<^sup>=" | 
| 45140 | 561 | by simp | 
| 562 | ||
| 63404 | 563 | lemma trancl_empty [simp]: "{}\<^sup>+ = {}"
 | 
| 11084 | 564 | by (auto elim: trancl_induct) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 565 | |
| 63404 | 566 | lemma rtrancl_empty [simp]: "{}\<^sup>* = Id"
 | 
| 11084 | 567 | by (rule subst [OF reflcl_trancl]) simp | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 568 | |
| 63404 | 569 | lemma rtranclpD: "R\<^sup>*\<^sup>* a b \<Longrightarrow> a = b \<or> a \<noteq> b \<and> R\<^sup>+\<^sup>+ a b" | 
| 570 | by (force simp add: reflclp_tranclp [symmetric] simp del: reflclp_tranclp) | |
| 22262 | 571 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 572 | lemmas rtranclD = rtranclpD [to_set] | 
| 11084 | 573 | |
| 63404 | 574 | lemma rtrancl_eq_or_trancl: "(x,y) \<in> R\<^sup>* \<longleftrightarrow> x = y \<or> x \<noteq> y \<and> (x, y) \<in> R\<^sup>+" | 
| 16514 | 575 | by (fast elim: trancl_into_rtrancl dest: rtranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 576 | |
| 63404 | 577 | lemma trancl_unfold_right: "r\<^sup>+ = r\<^sup>* O r" | 
| 578 | by (auto dest: tranclD2 intro: rtrancl_into_trancl1) | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 579 | |
| 63404 | 580 | lemma trancl_unfold_left: "r\<^sup>+ = r O r\<^sup>*" | 
| 581 | by (auto dest: tranclD intro: rtrancl_into_trancl2) | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 582 | |
| 63404 | 583 | lemma trancl_insert: "(insert (y, x) r)\<^sup>+ = r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}"
 | 
| 61799 | 584 | \<comment> \<open>primitive recursion for \<open>trancl\<close> over finite relations\<close> | 
| 57178 | 585 | apply (rule equalityI) | 
| 586 | apply (rule subsetI) | |
| 587 | apply (simp only: split_tupled_all) | |
| 588 | apply (erule trancl_induct, blast) | |
| 589 | apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans) | |
| 590 | apply (rule subsetI) | |
| 591 | apply (blast intro: trancl_mono rtrancl_mono | |
| 63612 | 592 | [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2) | 
| 57178 | 593 | done | 
| 594 | ||
| 595 | lemma trancl_insert2: | |
| 63404 | 596 |   "(insert (a, b) r)\<^sup>+ = r\<^sup>+ \<union> {(x, y). ((x, a) \<in> r\<^sup>+ \<or> x = a) \<and> ((b, y) \<in> r\<^sup>+ \<or> y = b)}"
 | 
| 597 | by (auto simp add: trancl_insert rtrancl_eq_or_trancl) | |
| 57178 | 598 | |
| 63404 | 599 | lemma rtrancl_insert: "(insert (a,b) r)\<^sup>* = r\<^sup>* \<union> {(x, y). (x, a) \<in> r\<^sup>* \<and> (b, y) \<in> r\<^sup>*}"
 | 
| 600 | using trancl_insert[of a b r] | |
| 601 | by (simp add: rtrancl_trancl_reflcl del: reflcl_trancl) blast | |
| 57178 | 602 | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 603 | |
| 60758 | 604 | text \<open>Simplifying nested closures\<close> | 
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 605 | |
| 63404 | 606 | lemma rtrancl_trancl_absorb[simp]: "(R\<^sup>*)\<^sup>+ = R\<^sup>*" | 
| 607 | by (simp add: trans_rtrancl) | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 608 | |
| 63404 | 609 | lemma trancl_rtrancl_absorb[simp]: "(R\<^sup>+)\<^sup>* = R\<^sup>*" | 
| 610 | by (subst reflcl_trancl[symmetric]) simp | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 611 | |
| 63404 | 612 | lemma rtrancl_reflcl_absorb[simp]: "(R\<^sup>*)\<^sup>= = R\<^sup>*" | 
| 613 | by auto | |
| 33656 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 614 | |
| 
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
 krauss parents: 
32901diff
changeset | 615 | |
| 61799 | 616 | text \<open>\<open>Domain\<close> and \<open>Range\<close>\<close> | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 617 | |
| 63404 | 618 | lemma Domain_rtrancl [simp]: "Domain (R\<^sup>*) = UNIV" | 
| 11084 | 619 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 620 | |
| 63404 | 621 | lemma Range_rtrancl [simp]: "Range (R\<^sup>*) = UNIV" | 
| 11084 | 622 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 623 | |
| 63404 | 624 | lemma rtrancl_Un_subset: "(R\<^sup>* \<union> S\<^sup>*) \<subseteq> (R \<union> S)\<^sup>*" | 
| 11084 | 625 | by (rule rtrancl_Un_rtrancl [THEN subst]) fast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 626 | |
| 63404 | 627 | lemma in_rtrancl_UnI: "x \<in> R\<^sup>* \<or> x \<in> S\<^sup>* \<Longrightarrow> x \<in> (R \<union> S)\<^sup>*" | 
| 11084 | 628 | by (blast intro: subsetD [OF rtrancl_Un_subset]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 629 | |
| 63404 | 630 | lemma trancl_domain [simp]: "Domain (r\<^sup>+) = Domain r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46664diff
changeset | 631 | by (unfold Domain_unfold) (blast dest: tranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 632 | |
| 63404 | 633 | lemma trancl_range [simp]: "Range (r\<^sup>+) = Range r" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
46664diff
changeset | 634 | unfolding Domain_converse [symmetric] by (simp add: trancl_converse [symmetric]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 635 | |
| 63404 | 636 | lemma Not_Domain_rtrancl: "x \<notin> Domain R \<Longrightarrow> (x, y) \<in> R\<^sup>* \<longleftrightarrow> x = y" | 
| 12691 | 637 | apply auto | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 638 | apply (erule rev_mp) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 639 | apply (erule rtrancl_induct) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 640 | apply auto | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 641 | done | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 642 | |
| 63404 | 643 | lemma trancl_subset_Field2: "r\<^sup>+ \<subseteq> Field r \<times> Field r" | 
| 29609 | 644 | apply clarify | 
| 645 | apply (erule trancl_induct) | |
| 646 | apply (auto simp add: Field_def) | |
| 647 | done | |
| 648 | ||
| 63404 | 649 | lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r" | 
| 29609 | 650 | apply auto | 
| 651 | prefer 2 | |
| 652 | apply (rule trancl_subset_Field2 [THEN finite_subset]) | |
| 653 | apply (rule finite_SigmaI) | |
| 654 | prefer 3 | |
| 655 | apply (blast intro: r_into_trancl' finite_subset) | |
| 656 | apply (auto simp add: finite_Field) | |
| 657 | done | |
| 658 | ||
| 61799 | 659 | text \<open>More about converse \<open>rtrancl\<close> and \<open>trancl\<close>, should | 
| 60758 | 660 | be merged with main body.\<close> | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 661 | |
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 662 | lemma single_valued_confluent: | 
| 63404 | 663 | "single_valued r \<Longrightarrow> (x, y) \<in> r\<^sup>* \<Longrightarrow> (x, z) \<in> r\<^sup>* \<Longrightarrow> (y, z) \<in> r\<^sup>* \<or> (z, y) \<in> r\<^sup>*" | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 664 | apply (erule rtrancl_induct) | 
| 63612 | 665 | apply simp | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 666 | apply (erule disjE) | 
| 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 667 | apply (blast elim:converse_rtranclE dest:single_valuedD) | 
| 63612 | 668 | apply (blast intro:rtrancl_trans) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 669 | done | 
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 670 | |
| 63404 | 671 | lemma r_r_into_trancl: "(a, b) \<in> R \<Longrightarrow> (b, c) \<in> R \<Longrightarrow> (a, c) \<in> R\<^sup>+" | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 672 | by (fast intro: trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 673 | |
| 63404 | 674 | lemma trancl_into_trancl: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" | 
| 63612 | 675 | by (induct rule: trancl_induct) (fast intro: r_r_into_trancl trancl_trans)+ | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 676 | |
| 63404 | 677 | lemma tranclp_rtranclp_tranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 678 | apply (drule tranclpD) | 
| 26179 
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
 wenzelm parents: 
26174diff
changeset | 679 | apply (elim exE conjE) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 680 | apply (drule rtranclp_trans, assumption) | 
| 63612 | 681 | apply (drule (2) rtranclp_into_tranclp2) | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 682 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 683 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 684 | lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set] | 
| 22262 | 685 | |
| 12691 | 686 | lemmas transitive_closure_trans [trans] = | 
| 687 | r_r_into_trancl trancl_trans rtrancl_trans | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 688 | trancl.trancl_into_trancl trancl_into_trancl2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 689 | rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl | 
| 12691 | 690 | rtrancl_trancl_trancl trancl_rtrancl_trancl | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 691 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 692 | lemmas transitive_closurep_trans' [trans] = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 693 | tranclp_trans rtranclp_trans | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 694 | tranclp.trancl_into_trancl tranclp_into_tranclp2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 695 | rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 696 | rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp | 
| 22262 | 697 | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 698 | declare trancl_into_rtrancl [elim] | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 699 | |
| 63404 | 700 | |
| 60758 | 701 | subsection \<open>The power operation on relations\<close> | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 702 | |
| 63404 | 703 | text \<open>\<open>R ^^ n = R O \<dots> O R\<close>, the n-fold composition of \<open>R\<close>\<close> | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 704 | |
| 30971 | 705 | overloading | 
| 63404 | 706 |   relpow \<equiv> "compow :: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | 
| 707 |   relpowp \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | |
| 30971 | 708 | begin | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 709 | |
| 63404 | 710 | primrec relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | 
| 63612 | 711 | where | 
| 712 | "relpow 0 R = Id" | |
| 713 | | "relpow (Suc n) R = (R ^^ n) O R" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 714 | |
| 63404 | 715 | primrec relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 63612 | 716 | where | 
| 717 | "relpowp 0 R = HOL.eq" | |
| 718 | | "relpowp (Suc n) R = (R ^^ n) OO R" | |
| 47202 | 719 | |
| 30971 | 720 | end | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 721 | |
| 47202 | 722 | lemma relpowp_relpow_eq [pred_set_conv]: | 
| 63404 | 723 | "(\<lambda>x y. (x, y) \<in> R) ^^ n = (\<lambda>x y. (x, y) \<in> R ^^ n)" for R :: "'a rel" | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 724 | by (induct n) (simp_all add: relcompp_relcomp_eq) | 
| 47202 | 725 | |
| 63404 | 726 | text \<open>For code generation:\<close> | 
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 727 | |
| 63404 | 728 | definition relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | 
| 729 | where relpow_code_def [code_abbrev]: "relpow = compow" | |
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 730 | |
| 63404 | 731 | definition relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 732 | where relpowp_code_def [code_abbrev]: "relpowp = compow" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 733 | |
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 734 | lemma [code]: | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 735 | "relpow (Suc n) R = (relpow n R) O R" | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 736 | "relpow 0 R = Id" | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 737 | by (simp_all add: relpow_code_def) | 
| 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 738 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 739 | lemma [code]: | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 740 | "relpowp (Suc n) R = (R ^^ n) OO R" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 741 | "relpowp 0 R = HOL.eq" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 742 | by (simp_all add: relpowp_code_def) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 743 | |
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 744 | hide_const (open) relpow | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 745 | hide_const (open) relpowp | 
| 46360 
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
 bulwahn parents: 
46347diff
changeset | 746 | |
| 63612 | 747 | lemma relpow_1 [simp]: "R ^^ 1 = R" | 
| 748 |   for R :: "('a \<times> 'a) set"
 | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 749 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 750 | |
| 63612 | 751 | lemma relpowp_1 [simp]: "P ^^ 1 = P" | 
| 752 | for P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 753 | by (fact relpow_1 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 754 | |
| 63404 | 755 | lemma relpow_0_I: "(x, x) \<in> R ^^ 0" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 756 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 757 | |
| 63404 | 758 | lemma relpowp_0_I: "(P ^^ 0) x x" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 759 | by (fact relpow_0_I [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 760 | |
| 63404 | 761 | lemma relpow_Suc_I: "(x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 762 | by auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 763 | |
| 63404 | 764 | lemma relpowp_Suc_I: "(P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> (P ^^ Suc n) x z" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 765 | by (fact relpow_Suc_I [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 766 | |
| 63404 | 767 | lemma relpow_Suc_I2: "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
43596diff
changeset | 768 | by (induct n arbitrary: z) (simp, fastforce) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 769 | |
| 63404 | 770 | lemma relpowp_Suc_I2: "P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> (P ^^ Suc n) x z" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 771 | by (fact relpow_Suc_I2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 772 | |
| 63404 | 773 | lemma relpow_0_E: "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 774 | by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 775 | |
| 63404 | 776 | lemma relpowp_0_E: "(P ^^ 0) x y \<Longrightarrow> (x = y \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 777 | by (fact relpow_0_E [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 778 | |
| 63404 | 779 | lemma relpow_Suc_E: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 780 | by auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 781 | |
| 63404 | 782 | lemma relpowp_Suc_E: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. (P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 783 | by (fact relpow_Suc_E [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 784 | |
| 46362 | 785 | lemma relpow_E: | 
| 63612 | 786 | "(x, z) \<in> R ^^ n \<Longrightarrow> | 
| 787 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) \<Longrightarrow> | |
| 788 | (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 789 | by (cases n) auto | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 790 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 791 | lemma relpowp_E: | 
| 63612 | 792 | "(P ^^ n) x z \<Longrightarrow> | 
| 793 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow> | |
| 794 | (\<And>y m. n = Suc m \<Longrightarrow> (P ^^ m) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 795 | by (fact relpow_E [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 796 | |
| 63404 | 797 | lemma relpow_Suc_D2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)" | 
| 63612 | 798 | by (induct n arbitrary: x z) | 
| 799 | (blast intro: relpow_0_I relpow_Suc_I elim: relpow_0_E relpow_Suc_E)+ | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 800 | |
| 63404 | 801 | lemma relpowp_Suc_D2: "(P ^^ Suc n) x z \<Longrightarrow> \<exists>y. P x y \<and> (P ^^ n) y z" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 802 | by (fact relpow_Suc_D2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 803 | |
| 63404 | 804 | lemma relpow_Suc_E2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> P) \<Longrightarrow> P" | 
| 46362 | 805 | by (blast dest: relpow_Suc_D2) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 806 | |
| 63404 | 807 | lemma relpowp_Suc_E2: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 808 | by (fact relpow_Suc_E2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 809 | |
| 63404 | 810 | lemma relpow_Suc_D2': "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 811 | by (induct n) (simp_all, blast) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 812 | |
| 63404 | 813 | lemma relpowp_Suc_D2': "\<forall>x y z. (P ^^ n) x y \<and> P y z \<longrightarrow> (\<exists>w. P x w \<and> (P ^^ n) w z)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 814 | by (fact relpow_Suc_D2' [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 815 | |
| 46362 | 816 | lemma relpow_E2: | 
| 63612 | 817 | "(x, z) \<in> R ^^ n \<Longrightarrow> | 
| 818 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) \<Longrightarrow> | |
| 819 | (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P) \<Longrightarrow> P" | |
| 820 | apply (cases n) | |
| 821 | apply simp | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
54412diff
changeset | 822 | apply (rename_tac nat) | 
| 63612 | 823 | apply (cut_tac n=nat and R=R in relpow_Suc_D2') | 
| 824 | apply simp | |
| 825 | apply blast | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 826 | done | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 827 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 828 | lemma relpowp_E2: | 
| 63612 | 829 | "(P ^^ n) x z \<Longrightarrow> | 
| 830 | (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow> | |
| 831 | (\<And>y m. n = Suc m \<Longrightarrow> P x y \<Longrightarrow> (P ^^ m) y z \<Longrightarrow> Q) \<Longrightarrow> Q" | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 832 | by (fact relpow_E2 [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 833 | |
| 63404 | 834 | lemma relpow_add: "R ^^ (m + n) = R^^m O R^^n" | 
| 45976 | 835 | by (induct n) auto | 
| 31351 | 836 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 837 | lemma relpowp_add: "P ^^ (m + n) = P ^^ m OO P ^^ n" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 838 | by (fact relpow_add [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 839 | |
| 46362 | 840 | lemma relpow_commute: "R O R ^^ n = R ^^ n O R" | 
| 63404 | 841 | by (induct n) (simp_all add: O_assoc [symmetric]) | 
| 31970 
ccaadfcf6941
move rel_pow_commute: "R O R ^^ n = R ^^ n O R" to Transitive_Closure
 krauss parents: 
31690diff
changeset | 842 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 843 | lemma relpowp_commute: "P OO P ^^ n = P ^^ n OO P" | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 844 | by (fact relpow_commute [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 845 | |
| 63404 | 846 | lemma relpow_empty: "0 < n \<Longrightarrow> ({} :: ('a \<times> 'a) set) ^^ n = {}"
 | 
| 45153 | 847 | by (cases n) auto | 
| 45116 
f947eeef6b6f
adding lemma about rel_pow in Transitive_Closure for executable equation of the (refl) transitive closure
 bulwahn parents: 
44921diff
changeset | 848 | |
| 63404 | 849 | lemma relpowp_bot: "0 < n \<Longrightarrow> (\<bottom> :: 'a \<Rightarrow> 'a \<Rightarrow> bool) ^^ n = \<bottom>" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 850 | by (fact relpow_empty [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 851 | |
| 46362 | 852 | lemma rtrancl_imp_UN_relpow: | 
| 63404 | 853 | assumes "p \<in> R\<^sup>*" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 854 | shows "p \<in> (\<Union>n. R ^^ n)" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 855 | proof (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 856 | case (Pair x y) | 
| 63404 | 857 | with assms have "(x, y) \<in> R\<^sup>*" by simp | 
| 63612 | 858 | then have "(x, y) \<in> (\<Union>n. R ^^ n)" | 
| 859 | proof induct | |
| 63404 | 860 | case base | 
| 861 | show ?case by (blast intro: relpow_0_I) | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 862 | next | 
| 63404 | 863 | case step | 
| 864 | then show ?case by (blast intro: relpow_Suc_I) | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 865 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 866 | with Pair show ?thesis by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 867 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 868 | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 869 | lemma rtranclp_imp_Sup_relpowp: | 
| 63404 | 870 | assumes "(P\<^sup>*\<^sup>*) x y" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 871 | shows "(\<Squnion>n. P ^^ n) x y" | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 872 | using assms and rtrancl_imp_UN_relpow [of "(x, y)", to_pred] by simp | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 873 | |
| 46362 | 874 | lemma relpow_imp_rtrancl: | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 875 | assumes "p \<in> R ^^ n" | 
| 63404 | 876 | shows "p \<in> R\<^sup>*" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 877 | proof (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 878 | case (Pair x y) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 879 | with assms have "(x, y) \<in> R ^^ n" by simp | 
| 63612 | 880 | then have "(x, y) \<in> R\<^sup>*" | 
| 881 | proof (induct n arbitrary: x y) | |
| 63404 | 882 | case 0 | 
| 883 | then show ?case by simp | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 884 | next | 
| 63404 | 885 | case Suc | 
| 886 | then show ?case | |
| 46362 | 887 | by (blast elim: relpow_Suc_E intro: rtrancl_into_rtrancl) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 888 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 889 | with Pair show ?thesis by simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 890 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 891 | |
| 63404 | 892 | lemma relpowp_imp_rtranclp: "(P ^^ n) x y \<Longrightarrow> (P\<^sup>*\<^sup>*) x y" | 
| 893 | using relpow_imp_rtrancl [of "(x, y)", to_pred] by simp | |
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 894 | |
| 63404 | 895 | lemma rtrancl_is_UN_relpow: "R\<^sup>* = (\<Union>n. R ^^ n)" | 
| 46362 | 896 | by (blast intro: rtrancl_imp_UN_relpow relpow_imp_rtrancl) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 897 | |
| 63404 | 898 | lemma rtranclp_is_Sup_relpowp: "P\<^sup>*\<^sup>* = (\<Squnion>n. P ^^ n)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 899 | using rtrancl_is_UN_relpow [to_pred, of P] by auto | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 900 | |
| 63404 | 901 | lemma rtrancl_power: "p \<in> R\<^sup>* \<longleftrightarrow> (\<exists>n. p \<in> R ^^ n)" | 
| 46362 | 902 | by (simp add: rtrancl_is_UN_relpow) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 903 | |
| 63404 | 904 | lemma rtranclp_power: "(P\<^sup>*\<^sup>*) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 905 | by (simp add: rtranclp_is_Sup_relpowp) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 906 | |
| 63404 | 907 | lemma trancl_power: "p \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 908 | apply (cases p) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 909 | apply simp | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 910 | apply (rule iffI) | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 911 | apply (drule tranclD2) | 
| 46362 | 912 | apply (clarsimp simp: rtrancl_is_UN_relpow) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62093diff
changeset | 913 | apply (rule_tac x="Suc x" in exI) | 
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 914 | apply (clarsimp simp: relcomp_unfold) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
43596diff
changeset | 915 | apply fastforce | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 916 | apply clarsimp | 
| 63612 | 917 | apply (case_tac n) | 
| 918 | apply simp | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 919 | apply clarsimp | 
| 46362 | 920 | apply (drule relpow_imp_rtrancl) | 
| 63612 | 921 | apply (drule rtrancl_into_trancl1) | 
| 922 | apply auto | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 923 | done | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 924 | |
| 63404 | 925 | lemma tranclp_power: "(P\<^sup>+\<^sup>+) x y \<longleftrightarrow> (\<exists>n > 0. (P ^^ n) x y)" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 926 | using trancl_power [to_pred, of P "(x, y)"] by simp | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 927 | |
| 63404 | 928 | lemma rtrancl_imp_relpow: "p \<in> R\<^sup>* \<Longrightarrow> \<exists>n. p \<in> R ^^ n" | 
| 46362 | 929 | by (auto dest: rtrancl_imp_UN_relpow) | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 930 | |
| 63404 | 931 | lemma rtranclp_imp_relpowp: "(P\<^sup>*\<^sup>*) x y \<Longrightarrow> \<exists>n. (P ^^ n) x y" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 932 | by (auto dest: rtranclp_imp_Sup_relpowp) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 933 | |
| 63404 | 934 | text \<open>By Sternagel/Thiemann:\<close> | 
| 935 | lemma relpow_fun_conv: "(a, b) \<in> R ^^ n \<longleftrightarrow> (\<exists>f. f 0 = a \<and> f n = b \<and> (\<forall>i<n. (f i, f (Suc i)) \<in> R))" | |
| 41987 | 936 | proof (induct n arbitrary: b) | 
| 63404 | 937 | case 0 | 
| 938 | show ?case by auto | |
| 41987 | 939 | next | 
| 940 | case (Suc n) | |
| 941 | show ?case | |
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 942 | proof (simp add: relcomp_unfold Suc) | 
| 63404 | 943 | show "(\<exists>y. (\<exists>f. f 0 = a \<and> f n = y \<and> (\<forall>i<n. (f i,f(Suc i)) \<in> R)) \<and> (y,b) \<in> R) \<longleftrightarrow> | 
| 944 | (\<exists>f. f 0 = a \<and> f(Suc n) = b \<and> (\<forall>i<Suc n. (f i, f (Suc i)) \<in> R))" | |
| 41987 | 945 | (is "?l = ?r") | 
| 946 | proof | |
| 947 | assume ?l | |
| 63404 | 948 | then obtain c f | 
| 949 | where 1: "f 0 = a" "f n = c" "\<And>i. i < n \<Longrightarrow> (f i, f (Suc i)) \<in> R" "(c,b) \<in> R" | |
| 950 | by auto | |
| 41987 | 951 | let ?g = "\<lambda> m. if m = Suc n then b else f m" | 
| 63404 | 952 | show ?r by (rule exI[of _ ?g]) (simp add: 1) | 
| 41987 | 953 | next | 
| 954 | assume ?r | |
| 63404 | 955 | then obtain f where 1: "f 0 = a" "b = f (Suc n)" "\<And>i. i < Suc n \<Longrightarrow> (f i, f (Suc i)) \<in> R" | 
| 956 | by auto | |
| 41987 | 957 | show ?l by (rule exI[of _ "f n"], rule conjI, rule exI[of _ f], insert 1, auto) | 
| 958 | qed | |
| 959 | qed | |
| 960 | qed | |
| 961 | ||
| 63404 | 962 | lemma relpowp_fun_conv: "(P ^^ n) x y \<longleftrightarrow> (\<exists>f. f 0 = x \<and> f n = y \<and> (\<forall>i<n. P (f i) (f (Suc i))))" | 
| 47492 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 963 | by (fact relpow_fun_conv [to_pred]) | 
| 
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
 Christian Sternagel parents: 
47433diff
changeset | 964 | |
| 46362 | 965 | lemma relpow_finite_bounded1: | 
| 63404 | 966 |   fixes R :: "('a \<times> 'a) set"
 | 
| 967 | assumes "finite R" and "k > 0" | |
| 63612 | 968 |   shows "R^^k \<subseteq> (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)"
 | 
| 969 | (is "_ \<subseteq> ?r") | |
| 63404 | 970 | proof - | 
| 971 | have "(a, b) \<in> R^^(Suc k) \<Longrightarrow> \<exists>n. 0 < n \<and> n \<le> card R \<and> (a, b) \<in> R^^n" for a b k | |
| 972 | proof (induct k arbitrary: b) | |
| 973 | case 0 | |
| 974 |     then have "R \<noteq> {}" by auto
 | |
| 975 | with card_0_eq[OF \<open>finite R\<close>] have "card R \<ge> Suc 0" by auto | |
| 976 | then show ?case using 0 by force | |
| 977 | next | |
| 978 | case (Suc k) | |
| 979 | then obtain a' where "(a, a') \<in> R^^(Suc k)" and "(a', b) \<in> R" | |
| 980 | by auto | |
| 981 | from Suc(1)[OF \<open>(a, a') \<in> R^^(Suc k)\<close>] obtain n where "n \<le> card R" and "(a, a') \<in> R ^^ n" | |
| 982 | by auto | |
| 983 | have "(a, b) \<in> R^^(Suc n)" | |
| 984 | using \<open>(a, a') \<in> R^^n\<close> and \<open>(a', b)\<in> R\<close> by auto | |
| 985 | from \<open>n \<le> card R\<close> consider "n < card R" | "n = card R" by force | |
| 986 | then show ?case | |
| 987 | proof cases | |
| 988 | case 1 | |
| 989 | then show ?thesis | |
| 990 | using \<open>(a, b) \<in> R^^(Suc n)\<close> Suc_leI[OF \<open>n < card R\<close>] by blast | |
| 41987 | 991 | next | 
| 63404 | 992 | case 2 | 
| 993 | from \<open>(a, b) \<in> R ^^ (Suc n)\<close> [unfolded relpow_fun_conv] | |
| 994 | obtain f where "f 0 = a" and "f (Suc n) = b" | |
| 995 | and steps: "\<And>i. i \<le> n \<Longrightarrow> (f i, f (Suc i)) \<in> R" by auto | |
| 996 | let ?p = "\<lambda>i. (f i, f(Suc i))" | |
| 997 |       let ?N = "{i. i \<le> n}"
 | |
| 998 | have "?p ` ?N \<subseteq> R" | |
| 999 | using steps by auto | |
| 1000 | from card_mono[OF assms(1) this] have "card (?p ` ?N) \<le> card R" . | |
| 1001 | also have "\<dots> < card ?N" | |
| 1002 | using \<open>n = card R\<close> by simp | |
| 1003 | finally have "\<not> inj_on ?p ?N" | |
| 1004 | by (rule pigeonhole) | |
| 1005 | then obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i \<noteq> j" and pij: "?p i = ?p j" | |
| 1006 | by (auto simp: inj_on_def) | |
| 1007 | let ?i = "min i j" | |
| 1008 | let ?j = "max i j" | |
| 1009 | have i: "?i \<le> n" and j: "?j \<le> n" and pij: "?p ?i = ?p ?j" and ij: "?i < ?j" | |
| 1010 | using i j ij pij unfolding min_def max_def by auto | |
| 1011 | from i j pij ij obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i < j" | |
| 1012 | and pij: "?p i = ?p j" | |
| 1013 | by blast | |
| 1014 | let ?g = "\<lambda>l. if l \<le> i then f l else f (l + (j - i))" | |
| 1015 | let ?n = "Suc (n - (j - i))" | |
| 1016 | have abl: "(a, b) \<in> R ^^ ?n" | |
| 1017 | unfolding relpow_fun_conv | |
| 1018 | proof (rule exI[of _ ?g], intro conjI impI allI) | |
| 1019 | show "?g ?n = b" | |
| 1020 | using \<open>f(Suc n) = b\<close> j ij by auto | |
| 1021 | next | |
| 1022 | fix k | |
| 1023 | assume "k < ?n" | |
| 1024 | show "(?g k, ?g (Suc k)) \<in> R" | |
| 1025 | proof (cases "k < i") | |
| 1026 | case True | |
| 1027 | with i have "k \<le> n" | |
| 1028 | by auto | |
| 1029 | from steps[OF this] show ?thesis | |
| 1030 | using True by simp | |
| 41987 | 1031 | next | 
| 63404 | 1032 | case False | 
| 1033 | then have "i \<le> k" by auto | |
| 1034 | show ?thesis | |
| 1035 | proof (cases "k = i") | |
| 41987 | 1036 | case True | 
| 63404 | 1037 | then show ?thesis | 
| 1038 | using ij pij steps[OF i] by simp | |
| 41987 | 1039 | next | 
| 1040 | case False | |
| 63404 | 1041 | with \<open>i \<le> k\<close> have "i < k" by auto | 
| 1042 | then have small: "k + (j - i) \<le> n" | |
| 1043 | using \<open>k<?n\<close> by arith | |
| 41987 | 1044 | show ?thesis | 
| 63404 | 1045 | using steps[OF small] \<open>i<k\<close> by auto | 
| 41987 | 1046 | qed | 
| 63404 | 1047 | qed | 
| 1048 | qed (simp add: \<open>f 0 = a\<close>) | |
| 1049 | moreover have "?n \<le> n" | |
| 1050 | using i j ij by arith | |
| 1051 | ultimately show ?thesis | |
| 1052 | using \<open>n = card R\<close> by blast | |
| 41987 | 1053 | qed | 
| 63404 | 1054 | qed | 
| 1055 | then show ?thesis | |
| 1056 | using gr0_implies_Suc[OF \<open>k > 0\<close>] by auto | |
| 41987 | 1057 | qed | 
| 1058 | ||
| 46362 | 1059 | lemma relpow_finite_bounded: | 
| 63404 | 1060 |   fixes R :: "('a \<times> 'a) set"
 | 
| 1061 | assumes "finite R" | |
| 1062 |   shows "R^^k \<subseteq> (UN n:{n. n \<le> card R}. R^^n)"
 | |
| 1063 | apply (cases k) | |
| 1064 | apply force | |
| 63612 | 1065 | apply (use relpow_finite_bounded1[OF assms, of k] in auto) | 
| 63404 | 1066 | done | 
| 41987 | 1067 | |
| 63404 | 1068 | lemma rtrancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>* = (\<Union>n\<in>{n. n \<le> card R}. R^^n)"
 | 
| 1069 | by (fastforce simp: rtrancl_power dest: relpow_finite_bounded) | |
| 41987 | 1070 | |
| 63404 | 1071 | lemma trancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>+ = (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)"
 | 
| 1072 | apply (auto simp: trancl_power) | |
| 1073 | apply (auto dest: relpow_finite_bounded1) | |
| 1074 | done | |
| 41987 | 1075 | |
| 47433 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 griff parents: 
47202diff
changeset | 1076 | lemma finite_relcomp[simp,intro]: | 
| 63404 | 1077 | assumes "finite R" and "finite S" | 
| 1078 | shows "finite (R O S)" | |
| 41987 | 1079 | proof- | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62093diff
changeset | 1080 |   have "R O S = (\<Union>(x, y)\<in>R. \<Union>(u, v)\<in>S. if u = y then {(x, v)} else {})"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62093diff
changeset | 1081 | by (force simp add: split_def image_constant_conv split: if_splits) | 
| 63404 | 1082 | then show ?thesis | 
| 1083 | using assms by clarsimp | |
| 41987 | 1084 | qed | 
| 1085 | ||
| 63404 | 1086 | lemma finite_relpow [simp, intro]: | 
| 1087 |   fixes R :: "('a \<times> 'a) set"
 | |
| 1088 | assumes "finite R" | |
| 1089 | shows "n > 0 \<Longrightarrow> finite (R^^n)" | |
| 63612 | 1090 | proof (induct n) | 
| 1091 | case 0 | |
| 1092 | then show ?case by simp | |
| 1093 | next | |
| 1094 | case (Suc n) | |
| 1095 | then show ?case by (cases n) (use assms in simp_all) | |
| 1096 | qed | |
| 41987 | 1097 | |
| 46362 | 1098 | lemma single_valued_relpow: | 
| 63404 | 1099 |   fixes R :: "('a \<times> 'a) set"
 | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30549diff
changeset | 1100 | shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)" | 
| 63612 | 1101 | proof (induct n arbitrary: R) | 
| 1102 | case 0 | |
| 1103 | then show ?case by simp | |
| 1104 | next | |
| 1105 | case (Suc n) | |
| 1106 | show ?case | |
| 1107 | by (rule single_valuedI) | |
| 1108 | (use Suc in \<open>fast dest: single_valuedD elim: relpow_Suc_E\<close>) | |
| 1109 | qed | |
| 15551 | 1110 | |
| 45140 | 1111 | |
| 60758 | 1112 | subsection \<open>Bounded transitive closure\<close> | 
| 45140 | 1113 | |
| 1114 | definition ntrancl :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
 | |
| 63404 | 1115 |   where "ntrancl n R = (\<Union>i\<in>{i. 0 < i \<and> i \<le> Suc n}. R ^^ i)"
 | 
| 45140 | 1116 | |
| 63404 | 1117 | lemma ntrancl_Zero [simp, code]: "ntrancl 0 R = R" | 
| 45140 | 1118 | proof | 
| 1119 | show "R \<subseteq> ntrancl 0 R" | |
| 1120 | unfolding ntrancl_def by fastforce | |
| 63404 | 1121 | have "0 < i \<and> i \<le> Suc 0 \<longleftrightarrow> i = 1" for i | 
| 1122 | by auto | |
| 1123 | then show "ntrancl 0 R \<le> R" | |
| 45140 | 1124 | unfolding ntrancl_def by auto | 
| 1125 | qed | |
| 1126 | ||
| 63404 | 1127 | lemma ntrancl_Suc [simp]: "ntrancl (Suc n) R = ntrancl n R O (Id \<union> R)" | 
| 45140 | 1128 | proof | 
| 63612 | 1129 | have "(a, b) \<in> ntrancl n R O (Id \<union> R)" if "(a, b) \<in> ntrancl (Suc n) R" for a b | 
| 1130 | proof - | |
| 1131 | from that obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i" | |
| 45140 | 1132 | unfolding ntrancl_def by auto | 
| 63612 | 1133 | show ?thesis | 
| 45140 | 1134 | proof (cases "i = 1") | 
| 1135 | case True | |
| 60758 | 1136 | from this \<open>(a, b) \<in> R ^^ i\<close> show ?thesis | 
| 63612 | 1137 | by (auto simp: ntrancl_def) | 
| 45140 | 1138 | next | 
| 1139 | case False | |
| 63612 | 1140 | with \<open>0 < i\<close> obtain j where j: "i = Suc j" "0 < j" | 
| 45140 | 1141 | by (cases i) auto | 
| 63612 | 1142 | with \<open>(a, b) \<in> R ^^ i\<close> obtain c where c1: "(a, c) \<in> R ^^ j" and c2: "(c, b) \<in> R" | 
| 45140 | 1143 | by auto | 
| 60758 | 1144 | from c1 j \<open>i \<le> Suc (Suc n)\<close> have "(a, c) \<in> ntrancl n R" | 
| 63612 | 1145 | by (fastforce simp: ntrancl_def) | 
| 1146 | with c2 show ?thesis by fastforce | |
| 45140 | 1147 | qed | 
| 63612 | 1148 | qed | 
| 63404 | 1149 | then show "ntrancl (Suc n) R \<subseteq> ntrancl n R O (Id \<union> R)" | 
| 45140 | 1150 | by auto | 
| 1151 | show "ntrancl n R O (Id \<union> R) \<subseteq> ntrancl (Suc n) R" | |
| 63612 | 1152 | by (fastforce simp: ntrancl_def) | 
| 45140 | 1153 | qed | 
| 1154 | ||
| 63404 | 1155 | lemma [code]: "ntrancl (Suc n) r = (let r' = ntrancl n r in r' \<union> r' O r)" | 
| 1156 | by (auto simp: Let_def) | |
| 46347 
54870ad19af4
new code equation for ntrancl that allows computation of the transitive closure of sets on infinite types as well
 bulwahn parents: 
46127diff
changeset | 1157 | |
| 63404 | 1158 | lemma finite_trancl_ntranl: "finite R \<Longrightarrow> trancl R = ntrancl (card R - 1) R" | 
| 46362 | 1159 | by (cases "card R") (auto simp add: trancl_finite_eq_relpow relpow_empty ntrancl_def) | 
| 45140 | 1160 | |
| 1161 | ||
| 60758 | 1162 | subsection \<open>Acyclic relations\<close> | 
| 45139 | 1163 | |
| 63404 | 1164 | definition acyclic :: "('a \<times> 'a) set \<Rightarrow> bool"
 | 
| 1165 | where "acyclic r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r\<^sup>+)" | |
| 45139 | 1166 | |
| 63404 | 1167 | abbreviation acyclicP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 1168 |   where "acyclicP r \<equiv> acyclic {(x, y). r x y}"
 | |
| 45139 | 1169 | |
| 63404 | 1170 | lemma acyclic_irrefl [code]: "acyclic r \<longleftrightarrow> irrefl (r\<^sup>+)" | 
| 45139 | 1171 | by (simp add: acyclic_def irrefl_def) | 
| 1172 | ||
| 63404 | 1173 | lemma acyclicI: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> acyclic r" | 
| 45139 | 1174 | by (simp add: acyclic_def) | 
| 1175 | ||
| 54412 | 1176 | lemma (in order) acyclicI_order: | 
| 1177 | assumes *: "\<And>a b. (a, b) \<in> r \<Longrightarrow> f b < f a" | |
| 1178 | shows "acyclic r" | |
| 1179 | proof - | |
| 63404 | 1180 | have "f b < f a" if "(a, b) \<in> r\<^sup>+" for a b | 
| 1181 | using that by induct (auto intro: * less_trans) | |
| 54412 | 1182 | then show ?thesis | 
| 1183 | by (auto intro!: acyclicI) | |
| 1184 | qed | |
| 1185 | ||
| 63404 | 1186 | lemma acyclic_insert [iff]: "acyclic (insert (y, x) r) \<longleftrightarrow> acyclic r \<and> (x, y) \<notin> r\<^sup>*" | 
| 63612 | 1187 | by (simp add: acyclic_def trancl_insert) (blast intro: rtrancl_trans) | 
| 45139 | 1188 | |
| 63404 | 1189 | lemma acyclic_converse [iff]: "acyclic (r\<inverse>) \<longleftrightarrow> acyclic r" | 
| 1190 | by (simp add: acyclic_def trancl_converse) | |
| 45139 | 1191 | |
| 1192 | lemmas acyclicP_converse [iff] = acyclic_converse [to_pred] | |
| 1193 | ||
| 63404 | 1194 | lemma acyclic_impl_antisym_rtrancl: "acyclic r \<Longrightarrow> antisym (r\<^sup>*)" | 
| 63612 | 1195 | by (simp add: acyclic_def antisym_def) | 
| 1196 | (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl) | |
| 45139 | 1197 | |
| 1198 | (* Other direction: | |
| 1199 | acyclic = no loops | |
| 1200 | antisym = only self loops | |
| 63404 | 1201 | Goalw [acyclic_def,antisym_def] "antisym( r\<^sup>* ) \<Longrightarrow> acyclic(r - Id) | 
| 1202 | \<Longrightarrow> antisym( r\<^sup>* ) = acyclic(r - Id)"; | |
| 45139 | 1203 | *) | 
| 1204 | ||
| 63404 | 1205 | lemma acyclic_subset: "acyclic s \<Longrightarrow> r \<subseteq> s \<Longrightarrow> acyclic r" | 
| 1206 | unfolding acyclic_def by (blast intro: trancl_mono) | |
| 45139 | 1207 | |
| 1208 | ||
| 60758 | 1209 | subsection \<open>Setup of transitivity reasoner\<close> | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1210 | |
| 60758 | 1211 | ML \<open> | 
| 32215 | 1212 | structure Trancl_Tac = Trancl_Tac | 
| 1213 | ( | |
| 1214 |   val r_into_trancl = @{thm trancl.r_into_trancl};
 | |
| 1215 |   val trancl_trans  = @{thm trancl_trans};
 | |
| 1216 |   val rtrancl_refl = @{thm rtrancl.rtrancl_refl};
 | |
| 1217 |   val r_into_rtrancl = @{thm r_into_rtrancl};
 | |
| 1218 |   val trancl_into_rtrancl = @{thm trancl_into_rtrancl};
 | |
| 1219 |   val rtrancl_trancl_trancl = @{thm rtrancl_trancl_trancl};
 | |
| 1220 |   val trancl_rtrancl_trancl = @{thm trancl_rtrancl_trancl};
 | |
| 1221 |   val rtrancl_trans = @{thm rtrancl_trans};
 | |
| 15096 | 1222 | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 1223 |   fun decomp (@{const Trueprop} $ t) =
 | 
| 63404 | 1224 | let | 
| 1225 |           fun dec (Const (@{const_name Set.member}, _) $ (Const (@{const_name Pair}, _) $ a $ b) $ rel) =
 | |
| 1226 | let | |
| 1227 |                 fun decr (Const (@{const_name rtrancl}, _ ) $ r) = (r,"r*")
 | |
| 1228 |                   | decr (Const (@{const_name trancl}, _ ) $ r)  = (r,"r+")
 | |
| 1229 | | decr r = (r,"r"); | |
| 1230 | val (rel,r) = decr (Envir.beta_eta_contract rel); | |
| 1231 | in SOME (a,b,rel,r) end | |
| 1232 | | dec _ = NONE | |
| 1233 | in dec t end | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 1234 | | decomp _ = NONE; | 
| 32215 | 1235 | ); | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1236 | |
| 32215 | 1237 | structure Tranclp_Tac = Trancl_Tac | 
| 1238 | ( | |
| 1239 |   val r_into_trancl = @{thm tranclp.r_into_trancl};
 | |
| 1240 |   val trancl_trans  = @{thm tranclp_trans};
 | |
| 1241 |   val rtrancl_refl = @{thm rtranclp.rtrancl_refl};
 | |
| 1242 |   val r_into_rtrancl = @{thm r_into_rtranclp};
 | |
| 1243 |   val trancl_into_rtrancl = @{thm tranclp_into_rtranclp};
 | |
| 1244 |   val rtrancl_trancl_trancl = @{thm rtranclp_tranclp_tranclp};
 | |
| 1245 |   val trancl_rtrancl_trancl = @{thm tranclp_rtranclp_tranclp};
 | |
| 1246 |   val rtrancl_trans = @{thm rtranclp_trans};
 | |
| 22262 | 1247 | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 1248 |   fun decomp (@{const Trueprop} $ t) =
 | 
| 63404 | 1249 | let | 
| 1250 | fun dec (rel $ a $ b) = | |
| 1251 | let | |
| 1252 |               fun decr (Const (@{const_name rtranclp}, _ ) $ r) = (r,"r*")
 | |
| 1253 |                 | decr (Const (@{const_name tranclp}, _ ) $ r)  = (r,"r+")
 | |
| 1254 | | decr r = (r,"r"); | |
| 1255 | val (rel,r) = decr rel; | |
| 1256 | in SOME (a, b, rel, r) end | |
| 1257 | | dec _ = NONE | |
| 1258 | in dec t end | |
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29609diff
changeset | 1259 | | decomp _ = NONE; | 
| 32215 | 1260 | ); | 
| 60758 | 1261 | \<close> | 
| 22262 | 1262 | |
| 60758 | 1263 | setup \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1264 | map_theory_simpset (fn ctxt => ctxt | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1265 | addSolver (mk_solver "Trancl" Trancl_Tac.trancl_tac) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1266 | addSolver (mk_solver "Rtrancl" Trancl_Tac.rtrancl_tac) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1267 | addSolver (mk_solver "Tranclp" Tranclp_Tac.trancl_tac) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
50616diff
changeset | 1268 | addSolver (mk_solver "Rtranclp" Tranclp_Tac.rtrancl_tac)) | 
| 60758 | 1269 | \<close> | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1270 | |
| 32215 | 1271 | |
| 60758 | 1272 | text \<open>Optional methods.\<close> | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1273 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1274 | method_setup trancl = | 
| 60758 | 1275 | \<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.trancl_tac)\<close> | 
| 1276 | \<open>simple transitivity reasoner\<close> | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1277 | method_setup rtrancl = | 
| 60758 | 1278 | \<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.rtrancl_tac)\<close> | 
| 1279 | \<open>simple transitivity reasoner\<close> | |
| 22262 | 1280 | method_setup tranclp = | 
| 60758 | 1281 | \<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.trancl_tac)\<close> | 
| 1282 | \<open>simple transitivity reasoner (predicate version)\<close> | |
| 22262 | 1283 | method_setup rtranclp = | 
| 60758 | 1284 | \<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.rtrancl_tac)\<close> | 
| 1285 | \<open>simple transitivity reasoner (predicate version)\<close> | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 1286 | |
| 10213 | 1287 | end |