author | nipkow |
Fri, 02 Aug 2024 18:25:18 +0200 | |
changeset 80630 | 362d750f5788 |
parent 75669 | 43f5dfb7fa35 |
permissions | -rw-r--r-- |
23465 | 1 |
(* Title: HOL/Presburger.thy |
2 |
Author: Amine Chaieb, TU Muenchen |
|
3 |
*) |
|
4 |
||
60758 | 5 |
section \<open>Decision Procedure for Presburger Arithmetic\<close> |
23472 | 6 |
|
23465 | 7 |
theory Presburger |
63962
83a625d06e91
use argo as additional SAT solver with models but no proofs, since the proof trace formats are not easily translatable
boehmes
parents:
63961
diff
changeset
|
8 |
imports Groebner_Basis Set_Interval |
58925 | 9 |
keywords "try0" :: diag |
23465 | 10 |
begin |
11 |
||
69605 | 12 |
ML_file \<open>Tools/Qelim/qelim.ML\<close> |
13 |
ML_file \<open>Tools/Qelim/cooper_procedure.ML\<close> |
|
48891 | 14 |
|
61799 | 15 |
subsection\<open>The \<open>-\<infinity>\<close> and \<open>+\<infinity>\<close> Properties\<close> |
23465 | 16 |
|
17 |
lemma minf: |
|
18 |
"\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> |
|
19 |
\<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)" |
|
20 |
"\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> |
|
21 |
\<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)" |
|
22 |
"\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False" |
|
23 |
"\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True" |
|
24 |
"\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True" |
|
25 |
"\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True" |
|
26 |
"\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False" |
|
27 |
"\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False" |
|
45425 | 28 |
"\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})<z. (d dvd x + s) = (d dvd x + s)" |
29 |
"\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)" |
|
23465 | 30 |
"\<exists>z.\<forall>x<z. F = F" |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
31 |
proof safe |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
32 |
fix z1 z2 |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
33 |
assume "\<forall>x<z1. P x = P' x" and "\<forall>x<z2. Q x = Q' x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
34 |
then have "\<forall>x < min z1 z2. (P x \<and> Q x) = (P' x \<and> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
35 |
by simp |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
36 |
then show "\<exists>z. \<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
37 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
38 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
39 |
fix z1 z2 |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
40 |
assume "\<forall>x<z1. P x = P' x" and "\<forall>x<z2. Q x = Q' x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
41 |
then have "\<forall>x < min z1 z2. (P x \<or> Q x) = (P' x \<or> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
42 |
by simp |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
43 |
then show "\<exists>z. \<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
44 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
45 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
46 |
have "\<forall>x<t. x \<le> t" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
47 |
by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
48 |
then show "\<exists>z. \<forall>x<z. (x \<le> t) = True" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
49 |
by auto |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
50 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
51 |
have "\<forall>x<t. \<not> t < x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
52 |
by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
53 |
then show "\<exists>z. \<forall>x<z. (t < x) = False" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
54 |
by auto |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
55 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
56 |
have "\<forall>x<t. \<not> t \<le> x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
57 |
by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
58 |
then show "\<exists>z. \<forall>x<z. (t \<le> x) = False" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
59 |
by auto |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
60 |
qed auto |
23465 | 61 |
|
62 |
lemma pinf: |
|
63 |
"\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> |
|
64 |
\<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)" |
|
65 |
"\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> |
|
66 |
\<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)" |
|
67 |
"\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False" |
|
68 |
"\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True" |
|
69 |
"\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False" |
|
70 |
"\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False" |
|
71 |
"\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True" |
|
72 |
"\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True" |
|
45425 | 73 |
"\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})>z. (d dvd x + s) = (d dvd x + s)" |
74 |
"\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)" |
|
23465 | 75 |
"\<exists>z.\<forall>x>z. F = F" |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
76 |
proof safe |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
77 |
fix z1 z2 |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
78 |
assume "\<forall>x>z1. P x = P' x" and "\<forall>x>z2. Q x = Q' x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
79 |
then have "\<forall>x > max z1 z2. (P x \<and> Q x) = (P' x \<and> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
80 |
by simp |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
81 |
then show "\<exists>z. \<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
82 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
83 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
84 |
fix z1 z2 |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
85 |
assume "\<forall>x>z1. P x = P' x" and "\<forall>x>z2. Q x = Q' x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
86 |
then have "\<forall>x > max z1 z2. (P x \<or> Q x) = (P' x \<or> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
87 |
by simp |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
88 |
then show "\<exists>z. \<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
89 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
90 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
91 |
have "\<forall>x>t. \<not> x < t" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
92 |
by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
93 |
then show "\<exists>z. \<forall>x>z. x < t = False" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
94 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
95 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
96 |
have "\<forall>x>t. \<not> x \<le> t" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
97 |
by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
98 |
then show "\<exists>z. \<forall>x>z. x \<le> t = False" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
99 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
100 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
101 |
have "\<forall>x>t. t \<le> x" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
102 |
by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
103 |
then show "\<exists>z. \<forall>x>z. t \<le> x = True" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
104 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
105 |
qed auto |
23465 | 106 |
|
107 |
lemma inf_period: |
|
108 |
"\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> |
|
109 |
\<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))" |
|
110 |
"\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> |
|
111 |
\<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))" |
|
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
33318
diff
changeset
|
112 |
"(d::'a::{comm_ring,Rings.dvd}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)" |
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
33318
diff
changeset
|
113 |
"(d::'a::{comm_ring,Rings.dvd}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)" |
23465 | 114 |
"\<forall>x k. F = F" |
29667 | 115 |
apply (auto elim!: dvdE simp add: algebra_simps) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56850
diff
changeset
|
116 |
unfolding mult.assoc [symmetric] distrib_right [symmetric] left_diff_distrib [symmetric] |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56850
diff
changeset
|
117 |
unfolding dvd_def mult.commute [of d] |
27668 | 118 |
by auto |
23465 | 119 |
|
60758 | 120 |
subsection\<open>The A and B sets\<close> |
23465 | 121 |
lemma bset: |
122 |
"\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ; |
|
123 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> |
|
124 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))" |
|
125 |
"\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ; |
|
126 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> |
|
127 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))" |
|
128 |
"\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" |
|
129 |
"\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" |
|
130 |
"D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" |
|
131 |
"D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))" |
|
132 |
"\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))" |
|
133 |
"\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))" |
|
134 |
"d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))" |
|
135 |
"d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))" |
|
136 |
"\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F" |
|
137 |
proof (blast, blast) |
|
138 |
assume dp: "D > 0" and tB: "t - 1\<in> B" |
|
139 |
show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" |
|
27668 | 140 |
apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"]) |
141 |
apply algebra using dp tB by simp_all |
|
23465 | 142 |
next |
143 |
assume dp: "D > 0" and tB: "t \<in> B" |
|
144 |
show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" |
|
145 |
apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) |
|
27668 | 146 |
apply algebra |
23465 | 147 |
using dp tB by simp_all |
148 |
next |
|
149 |
assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith |
|
150 |
next |
|
151 |
assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith |
|
152 |
next |
|
153 |
assume dp: "D > 0" and tB:"t \<in> B" |
|
154 |
{fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t" |
|
155 |
hence "x -t \<le> D" and "1 \<le> x - t" by simp+ |
|
156 |
hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto |
|
29667 | 157 |
hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: algebra_simps) |
23465 | 158 |
with nob tB have "False" by simp} |
159 |
thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast |
|
160 |
next |
|
161 |
assume dp: "D > 0" and tB:"t - 1\<in> B" |
|
162 |
{fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t" |
|
163 |
hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+ |
|
164 |
hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto |
|
29667 | 165 |
hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: algebra_simps) |
23465 | 166 |
with nob tB have "False" by simp} |
167 |
thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast |
|
168 |
next |
|
169 |
assume d: "d dvd D" |
|
27668 | 170 |
{fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t" by algebra} |
23465 | 171 |
thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp |
172 |
next |
|
173 |
assume d: "d dvd D" |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27540
diff
changeset
|
174 |
{fix x assume H: "\<not>(d dvd x + t)" with d have "\<not> d dvd (x - D) + t" |
29667 | 175 |
by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: algebra_simps)} |
23465 | 176 |
thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto |
177 |
qed blast |
|
178 |
||
179 |
lemma aset: |
|
180 |
"\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ; |
|
181 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> |
|
182 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))" |
|
183 |
"\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ; |
|
184 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> |
|
185 |
\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))" |
|
186 |
"\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" |
|
187 |
"\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" |
|
188 |
"\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))" |
|
189 |
"\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))" |
|
190 |
"D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" |
|
191 |
"D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))" |
|
192 |
"d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))" |
|
193 |
"d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))" |
|
194 |
"\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F" |
|
195 |
proof (blast, blast) |
|
196 |
assume dp: "D > 0" and tA: "t + 1 \<in> A" |
|
197 |
show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" |
|
198 |
apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"]) |
|
199 |
using dp tA by simp_all |
|
200 |
next |
|
201 |
assume dp: "D > 0" and tA: "t \<in> A" |
|
202 |
show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" |
|
203 |
apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) |
|
204 |
using dp tA by simp_all |
|
205 |
next |
|
206 |
assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith |
|
207 |
next |
|
208 |
assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith |
|
209 |
next |
|
210 |
assume dp: "D > 0" and tA:"t \<in> A" |
|
211 |
{fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t" |
|
212 |
hence "t - x \<le> D" and "1 \<le> t - x" by simp+ |
|
213 |
hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto |
|
29667 | 214 |
hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: algebra_simps) |
23465 | 215 |
with nob tA have "False" by simp} |
216 |
thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast |
|
217 |
next |
|
218 |
assume dp: "D > 0" and tA:"t + 1\<in> A" |
|
219 |
{fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t" |
|
29667 | 220 |
hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: algebra_simps) |
23465 | 221 |
hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto |
29667 | 222 |
hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: algebra_simps) |
23465 | 223 |
with nob tA have "False" by simp} |
224 |
thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast |
|
225 |
next |
|
226 |
assume d: "d dvd D" |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
227 |
have "\<And>x. d dvd x + t \<Longrightarrow> d dvd x + D + t" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
228 |
proof - |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
229 |
fix x |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
230 |
assume H: "d dvd x + t" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
231 |
then obtain ka where "x + t = d * ka" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
232 |
unfolding dvd_def by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
233 |
moreover from d obtain k where *:"D = d * k" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
234 |
unfolding dvd_def by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
235 |
ultimately have "x + d * k + t = d * (ka + k)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
236 |
by (simp add: algebra_simps) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
237 |
then show "d dvd (x + D) + t" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
238 |
using * unfolding dvd_def by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
239 |
qed |
23465 | 240 |
thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp |
241 |
next |
|
242 |
assume d: "d dvd D" |
|
243 |
{fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t" |
|
80630 | 244 |
using dvd_add_left_iff[OF d, of "x+t"] by (simp add: algebra_simps)} |
23465 | 245 |
thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto |
246 |
qed blast |
|
247 |
||
61799 | 248 |
subsection\<open>Cooper's Theorem \<open>-\<infinity>\<close> and \<open>+\<infinity>\<close> Version\<close> |
23465 | 249 |
|
60758 | 250 |
subsubsection\<open>First some trivial facts about periodic sets or predicates\<close> |
23465 | 251 |
lemma periodic_finite_ex: |
67091 | 252 |
assumes dpos: "(0::int) < d" and modd: "\<forall>x k. P x = P(x - k*d)" |
253 |
shows "(\<exists>x. P x) = (\<exists>j \<in> {1..d}. P j)" |
|
23465 | 254 |
(is "?LHS = ?RHS") |
255 |
proof |
|
256 |
assume ?LHS |
|
257 |
then obtain x where P: "P x" .. |
|
64246 | 258 |
have "x mod d = x - (x div d)*d" by(simp add:mult_div_mod_eq [symmetric] ac_simps eq_diff_eq) |
23465 | 259 |
hence Pmod: "P x = P(x mod d)" using modd by simp |
260 |
show ?RHS |
|
261 |
proof (cases) |
|
262 |
assume "x mod d = 0" |
|
263 |
hence "P 0" using P Pmod by simp |
|
264 |
moreover have "P 0 = P(0 - (-1)*d)" using modd by blast |
|
265 |
ultimately have "P d" by simp |
|
67613 | 266 |
moreover have "d \<in> {1..d}" using dpos by simp |
23465 | 267 |
ultimately show ?RHS .. |
268 |
next |
|
269 |
assume not0: "x mod d \<noteq> 0" |
|
35216 | 270 |
have "P(x mod d)" using dpos P Pmod by simp |
67613 | 271 |
moreover have "x mod d \<in> {1..d}" |
23465 | 272 |
proof - |
273 |
from dpos have "0 \<le> x mod d" by(rule pos_mod_sign) |
|
274 |
moreover from dpos have "x mod d < d" by(rule pos_mod_bound) |
|
35216 | 275 |
ultimately show ?thesis using not0 by simp |
23465 | 276 |
qed |
277 |
ultimately show ?RHS .. |
|
278 |
qed |
|
279 |
qed auto |
|
280 |
||
61799 | 281 |
subsubsection\<open>The \<open>-\<infinity>\<close> Version\<close> |
23465 | 282 |
|
61944 | 283 |
lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (\<bar>x - z\<bar> + 1) * d < z" |
284 |
by (induct rule: int_gr_induct) (simp_all add: int_distrib) |
|
23465 | 285 |
|
61944 | 286 |
lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (\<bar>x - z\<bar> + 1) * d" |
287 |
by (induct rule: int_gr_induct) (simp_all add: int_distrib) |
|
23465 | 288 |
|
289 |
lemma decr_mult_lemma: |
|
290 |
assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k" |
|
67091 | 291 |
shows "\<forall>x. P x \<longrightarrow> P(x - k*d)" |
23465 | 292 |
using knneg |
293 |
proof (induct rule:int_ge_induct) |
|
294 |
case base thus ?case by simp |
|
295 |
next |
|
296 |
case (step i) |
|
297 |
{fix x |
|
298 |
have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast |
|
299 |
also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"] |
|
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
33318
diff
changeset
|
300 |
by (simp add: algebra_simps) |
23465 | 301 |
ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast} |
302 |
thus ?case .. |
|
303 |
qed |
|
304 |
||
305 |
lemma minusinfinity: |
|
306 |
assumes dpos: "0 < d" and |
|
67091 | 307 |
P1eqP1: "\<forall>x k. P1 x = P1(x - k*d)" and ePeqP1: "\<exists>z::int. \<forall>x. x < z \<longrightarrow> (P x = P1 x)" |
308 |
shows "(\<exists>x. P1 x) \<longrightarrow> (\<exists>x. P x)" |
|
23465 | 309 |
proof |
67091 | 310 |
assume eP1: "\<exists>x. P1 x" |
23465 | 311 |
then obtain x where P1: "P1 x" .. |
67091 | 312 |
from ePeqP1 obtain z where P1eqP: "\<forall>x. x < z \<longrightarrow> (P x = P1 x)" .. |
61944 | 313 |
let ?w = "x - (\<bar>x - z\<bar> + 1) * d" |
23465 | 314 |
from dpos have w: "?w < z" by(rule decr_lemma) |
315 |
have "P1 x = P1 ?w" using P1eqP1 by blast |
|
316 |
also have "\<dots> = P(?w)" using w P1eqP by blast |
|
317 |
finally have "P ?w" using P1 by blast |
|
67091 | 318 |
thus "\<exists>x. P x" .. |
23465 | 319 |
qed |
320 |
||
321 |
lemma cpmi: |
|
322 |
assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x" |
|
67091 | 323 |
and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) \<longrightarrow> P (x) \<longrightarrow> P (x - D)" |
23465 | 324 |
and pd: "\<forall> x k. P' x = P' (x-k*D)" |
67091 | 325 |
shows "(\<exists>x. P x) = ((\<exists>j \<in> {1..D} . P' j) \<or> (\<exists>j \<in> {1..D}. \<exists> b \<in> B. P (b+j)))" |
23465 | 326 |
(is "?L = (?R1 \<or> ?R2)") |
327 |
proof- |
|
328 |
{assume "?R2" hence "?L" by blast} |
|
329 |
moreover |
|
330 |
{assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp} |
|
331 |
moreover |
|
332 |
{ fix x |
|
333 |
assume P: "P x" and H: "\<not> ?R2" |
|
334 |
{fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y" |
|
67091 | 335 |
hence "\<not>(\<exists>(j::int) \<in> {1..D}. \<exists>(b::int) \<in> B. y = b+j)" by auto |
23465 | 336 |
with nb P have "P (y - D)" by auto } |
67091 | 337 |
hence "\<forall>x. \<not>(\<exists>(j::int) \<in> {1..D}. \<exists>(b::int) \<in> B. P(b+j)) \<longrightarrow> P (x) \<longrightarrow> P (x - D)" by blast |
23465 | 338 |
with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto |
67091 | 339 |
from p1 obtain z where z: "\<forall>x. x < z \<longrightarrow> (P x = P' x)" by blast |
23465 | 340 |
let ?y = "x - (\<bar>x - z\<bar> + 1)*D" |
341 |
have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith |
|
342 |
from dp have yz: "?y < z" using decr_lemma[OF dp] by simp |
|
343 |
from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto |
|
344 |
with periodic_finite_ex[OF dp pd] |
|
345 |
have "?R1" by blast} |
|
346 |
ultimately show ?thesis by blast |
|
347 |
qed |
|
348 |
||
61799 | 349 |
subsubsection \<open>The \<open>+\<infinity>\<close> Version\<close> |
23465 | 350 |
|
351 |
lemma plusinfinity: |
|
352 |
assumes dpos: "(0::int) < d" and |
|
353 |
P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x" |
|
354 |
shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)" |
|
355 |
proof |
|
67091 | 356 |
assume eP1: "\<exists>x. P' x" |
23465 | 357 |
then obtain x where P1: "P' x" .. |
358 |
from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" .. |
|
61944 | 359 |
let ?w' = "x + (\<bar>x - z\<bar> + 1) * d" |
360 |
let ?w = "x - (- (\<bar>x - z\<bar> + 1)) * d" |
|
29667 | 361 |
have ww'[simp]: "?w = ?w'" by (simp add: algebra_simps) |
23465 | 362 |
from dpos have w: "?w > z" by(simp only: ww' incr_lemma) |
363 |
hence "P' x = P' ?w" using P1eqP1 by blast |
|
364 |
also have "\<dots> = P(?w)" using w P1eqP by blast |
|
365 |
finally have "P ?w" using P1 by blast |
|
67091 | 366 |
thus "\<exists>x. P x" .. |
23465 | 367 |
qed |
368 |
||
369 |
lemma incr_mult_lemma: |
|
67091 | 370 |
assumes dpos: "(0::int) < d" and plus: "\<forall>x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k" |
371 |
shows "\<forall>x. P x \<longrightarrow> P(x + k*d)" |
|
23465 | 372 |
using knneg |
373 |
proof (induct rule:int_ge_induct) |
|
374 |
case base thus ?case by simp |
|
375 |
next |
|
376 |
case (step i) |
|
377 |
{fix x |
|
378 |
have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast |
|
379 |
also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"] |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
380 |
by (simp add:int_distrib ac_simps) |
23465 | 381 |
ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast} |
382 |
thus ?case .. |
|
383 |
qed |
|
384 |
||
385 |
lemma cppi: |
|
386 |
assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x" |
|
67091 | 387 |
and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) \<longrightarrow> P (x) \<longrightarrow> P (x + D)" |
23465 | 388 |
and pd: "\<forall> x k. P' x= P' (x-k*D)" |
67091 | 389 |
shows "(\<exists>x. P x) = ((\<exists>j \<in> {1..D} . P' j) \<or> (\<exists> j \<in> {1..D}. \<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)") |
23465 | 390 |
proof- |
391 |
{assume "?R2" hence "?L" by blast} |
|
392 |
moreover |
|
393 |
{assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp} |
|
394 |
moreover |
|
395 |
{ fix x |
|
396 |
assume P: "P x" and H: "\<not> ?R2" |
|
397 |
{fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y" |
|
67091 | 398 |
hence "\<not>(\<exists>(j::int) \<in> {1..D}. \<exists>(b::int) \<in> A. y = b - j)" by auto |
23465 | 399 |
with nb P have "P (y + D)" by auto } |
67091 | 400 |
hence "\<forall>x. \<not>(\<exists>(j::int) \<in> {1..D}. \<exists>(b::int) \<in> A. P(b-j)) \<longrightarrow> P (x) \<longrightarrow> P (x + D)" by blast |
23465 | 401 |
with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto |
67091 | 402 |
from p1 obtain z where z: "\<forall>x. x > z \<longrightarrow> (P x = P' x)" by blast |
23465 | 403 |
let ?y = "x + (\<bar>x - z\<bar> + 1)*D" |
404 |
have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith |
|
405 |
from dp have yz: "?y > z" using incr_lemma[OF dp] by simp |
|
406 |
from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto |
|
407 |
with periodic_finite_ex[OF dp pd] |
|
408 |
have "?R1" by blast} |
|
409 |
ultimately show ?thesis by blast |
|
410 |
qed |
|
411 |
||
412 |
lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})" |
|
413 |
apply(simp add:atLeastAtMost_def atLeast_def atMost_def) |
|
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44766
diff
changeset
|
414 |
apply(fastforce) |
23465 | 415 |
done |
416 |
||
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
33318
diff
changeset
|
417 |
theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0,Rings.dvd}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)" |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70341
diff
changeset
|
418 |
unfolding dvd_def by (rule eq_reflection, rule iffI) auto |
23465 | 419 |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
420 |
lemma zdvd_mono: |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
421 |
fixes k m t :: int |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
422 |
assumes "k \<noteq> 0" |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
423 |
shows "m dvd t \<equiv> k * m dvd k * t" |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
424 |
using assms by simp |
23465 | 425 |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
426 |
lemma uminus_dvd_conv: |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
427 |
fixes d t :: int |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
428 |
shows "d dvd t \<equiv> - d dvd t" and "d dvd t \<equiv> d dvd - t" |
23465 | 429 |
by simp_all |
32553 | 430 |
|
61799 | 431 |
text \<open>\bigskip Theorems for transforming predicates on nat to predicates on \<open>int\<close>\<close> |
32553 | 432 |
|
23465 | 433 |
lemma zdiff_int_split: "P (int (x - y)) = |
434 |
((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))" |
|
62348 | 435 |
by (cases "y \<le> x") (simp_all add: of_nat_diff) |
23465 | 436 |
|
60758 | 437 |
text \<open> |
23465 | 438 |
\medskip Specific instances of congruence rules, to prevent |
60758 | 439 |
simplifier from looping.\<close> |
23465 | 440 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45425
diff
changeset
|
441 |
theorem imp_le_cong: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45425
diff
changeset
|
442 |
"\<lbrakk>x = x'; 0 \<le> x' \<Longrightarrow> P = P'\<rbrakk> \<Longrightarrow> (0 \<le> (x::int) \<longrightarrow> P) = (0 \<le> x' \<longrightarrow> P')" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45425
diff
changeset
|
443 |
by simp |
23465 | 444 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45425
diff
changeset
|
445 |
theorem conj_le_cong: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45425
diff
changeset
|
446 |
"\<lbrakk>x = x'; 0 \<le> x' \<Longrightarrow> P = P'\<rbrakk> \<Longrightarrow> (0 \<le> (x::int) \<and> P) = (0 \<le> x' \<and> P')" |
23465 | 447 |
by (simp cong: conj_cong) |
36799 | 448 |
|
69605 | 449 |
ML_file \<open>Tools/Qelim/cooper.ML\<close> |
23465 | 450 |
|
60758 | 451 |
method_setup presburger = \<open> |
47432 | 452 |
let |
453 |
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () |
|
454 |
fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () |
|
455 |
val addN = "add" |
|
456 |
val delN = "del" |
|
457 |
val elimN = "elim" |
|
458 |
val any_keyword = keyword addN || keyword delN || simple_keyword elimN |
|
61476 | 459 |
val thms = Scan.repeats (Scan.unless any_keyword Attrib.multi_thm) |
47432 | 460 |
in |
461 |
Scan.optional (simple_keyword elimN >> K false) true -- |
|
462 |
Scan.optional (keyword addN |-- thms) [] -- |
|
463 |
Scan.optional (keyword delN |-- thms) [] >> |
|
464 |
(fn ((elim, add_ths), del_ths) => fn ctxt => |
|
465 |
SIMPLE_METHOD' (Cooper.tac elim add_ths del_ths ctxt)) |
|
466 |
end |
|
60758 | 467 |
\<close> "Cooper's algorithm for Presburger arithmetic" |
23465 | 468 |
|
64247 | 469 |
declare mod_eq_0_iff_dvd [presburger] |
64244 | 470 |
declare mod_by_Suc_0 [presburger] |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
471 |
declare mod_0 [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
472 |
declare mod_by_1 [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
473 |
declare mod_self [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
474 |
declare div_by_0 [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
475 |
declare mod_by_0 [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
476 |
declare mod_div_trivial [presburger] |
64242
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
haftmann
parents:
63962
diff
changeset
|
477 |
declare mult_div_mod_eq [presburger] |
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
haftmann
parents:
63962
diff
changeset
|
478 |
declare div_mult_mod_eq [presburger] |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
479 |
declare mod_mult_self1 [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
480 |
declare mod_mult_self2 [presburger] |
64247 | 481 |
declare mod2_Suc_Suc [presburger] |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
482 |
declare not_mod_2_eq_0_eq_1 [presburger] |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
49962
diff
changeset
|
483 |
declare nat_zero_less_power_iff [presburger] |
36798 | 484 |
|
27668 | 485 |
lemma [presburger, algebra]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
486 |
lemma [presburger, algebra]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger |
|
487 |
lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
|
488 |
lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger |
|
489 |
lemma [presburger, algebra]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger |
|
23465 | 490 |
|
70341
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
491 |
context semiring_parity |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
492 |
begin |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
493 |
|
68100 | 494 |
declare even_mult_iff [presburger] |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
495 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
496 |
declare even_power [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
497 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
498 |
lemma [presburger]: |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
499 |
"even (a + b) \<longleftrightarrow> even a \<and> even b \<or> odd a \<and> odd b" |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
500 |
by auto |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
501 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
502 |
end |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
503 |
|
70341
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
504 |
context ring_parity |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
505 |
begin |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
506 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
507 |
declare even_minus [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
508 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
509 |
end |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
510 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
511 |
context linordered_idom |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
512 |
begin |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
513 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
514 |
declare zero_le_power_eq [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
515 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
516 |
declare zero_less_power_eq [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
517 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
518 |
declare power_less_zero_eq [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
519 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
520 |
declare power_le_zero_eq [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
521 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
522 |
end |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
523 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
524 |
declare even_Suc [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
525 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
526 |
lemma [presburger]: |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
527 |
"Suc n div Suc (Suc 0) = n div Suc (Suc 0) \<longleftrightarrow> even n" |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
528 |
by presburger |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
529 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
530 |
declare even_diff_nat [presburger] |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
531 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
532 |
lemma [presburger]: |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
533 |
fixes k :: int |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
534 |
shows "(k + 1) div 2 = k div 2 \<longleftrightarrow> even k" |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
535 |
by presburger |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
536 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
537 |
lemma [presburger]: |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
538 |
fixes k :: int |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
539 |
shows "(k + 1) div 2 = k div 2 + 1 \<longleftrightarrow> odd k" |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
540 |
by presburger |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
541 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
542 |
lemma [presburger]: |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
543 |
"even n \<longleftrightarrow> even (int n)" |
66630 | 544 |
by simp |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
545 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
546 |
|
69593 | 547 |
subsection \<open>Nice facts about division by \<^term>\<open>4\<close>\<close> |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
548 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
549 |
lemma even_even_mod_4_iff: |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
550 |
"even (n::nat) \<longleftrightarrow> even (n mod 4)" |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
551 |
by presburger |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
552 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
553 |
lemma odd_mod_4_div_2: |
68157 | 554 |
"n mod 4 = (3::nat) \<Longrightarrow> odd ((n - Suc 0) div 2)" |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
555 |
by presburger |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
556 |
|
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
557 |
lemma even_mod_4_div_2: |
68157 | 558 |
"n mod 4 = Suc 0 \<Longrightarrow> even ((n - Suc 0) div 2)" |
58777
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
559 |
by presburger |
6ba2f1fa243b
further downshift of theory Parity in the hierarchy
haftmann
parents:
57514
diff
changeset
|
560 |
|
56850 | 561 |
|
60758 | 562 |
subsection \<open>Try0\<close> |
56850 | 563 |
|
69605 | 564 |
ML_file \<open>Tools/try0.ML\<close> |
56850 | 565 |
|
23465 | 566 |
end |