author | wenzelm |
Tue, 29 Dec 2015 16:23:34 +0100 | |
changeset 61959 | 364007370bb7 |
parent 58963 | 26bf09b95dda |
child 63167 | 0909deb8059b |
permissions | -rw-r--r-- |
11565 | 1 |
(* Title: HOL/NanoJava/Example.thy |
2 |
Author: David von Oheimb |
|
3 |
Copyright 2001 Technische Universitaet Muenchen |
|
4 |
*) |
|
5 |
||
58889 | 6 |
section "Example" |
11565 | 7 |
|
39758 | 8 |
theory Example |
9 |
imports Equivalence |
|
10 |
begin |
|
11565 | 11 |
|
12 |
text {* |
|
13 |
||
14 |
\begin{verbatim} |
|
15 |
class Nat { |
|
16 |
||
17 |
Nat pred; |
|
18 |
||
19 |
Nat suc() |
|
20 |
{ Nat n = new Nat(); n.pred = this; return n; } |
|
21 |
||
22 |
Nat eq(Nat n) |
|
23 |
{ if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred); |
|
24 |
else return n.pred; // false |
|
25 |
else if (n.pred != null) return this.pred; // false |
|
26 |
else return this.suc(); // true |
|
27 |
} |
|
28 |
||
29 |
Nat add(Nat n) |
|
30 |
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; } |
|
31 |
||
32 |
public static void main(String[] args) // test x+1=1+x |
|
33 |
{ |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21020
diff
changeset
|
34 |
Nat one = new Nat().suc(); |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21020
diff
changeset
|
35 |
Nat x = new Nat().suc().suc().suc().suc(); |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21020
diff
changeset
|
36 |
Nat ok = x.suc().eq(x.add(one)); |
11565 | 37 |
System.out.println(ok != null); |
38 |
} |
|
39 |
} |
|
40 |
\end{verbatim} |
|
41 |
||
42 |
*} |
|
43 |
||
44375 | 44 |
axiomatization where |
45 |
This_neq_Par [simp]: "This \<noteq> Par" and |
|
46 |
Res_neq_This [simp]: "Res \<noteq> This" |
|
11565 | 47 |
|
48 |
||
49 |
subsection "Program representation" |
|
50 |
||
44375 | 51 |
axiomatization |
52 |
N :: cname ("Nat") (* with mixfix because of clash with NatDef.Nat *) |
|
53 |
and pred :: fname |
|
54 |
and suc add :: mname |
|
55 |
and any :: vname |
|
35102 | 56 |
|
57 |
abbreviation |
|
58 |
dummy :: expr ("<>") |
|
59 |
where "<> == LAcc any" |
|
60 |
||
61 |
abbreviation |
|
62 |
one :: expr |
|
63 |
where "one == {Nat}new Nat..suc(<>)" |
|
11565 | 64 |
|
65 |
text {* The following properties could be derived from a more complete |
|
66 |
program model, which we leave out for laziness. *} |
|
67 |
||
44375 | 68 |
axiomatization where Nat_no_subclasses [simp]: "D \<preceq>C Nat = (D=Nat)" |
11565 | 69 |
|
44375 | 70 |
axiomatization where method_Nat_add [simp]: "method Nat add = Some |
11565 | 71 |
\<lparr> par=Class Nat, res=Class Nat, lcl=[], |
72 |
bdy= If((LAcc This..pred)) |
|
73 |
(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>))) |
|
74 |
Else Res :== LAcc Par \<rparr>" |
|
75 |
||
44375 | 76 |
axiomatization where method_Nat_suc [simp]: "method Nat suc = Some |
11565 | 77 |
\<lparr> par=NT, res=Class Nat, lcl=[], |
78 |
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This \<rparr>" |
|
79 |
||
44375 | 80 |
axiomatization where field_Nat [simp]: "field Nat = empty(pred\<mapsto>Class Nat)" |
11565 | 81 |
|
82 |
lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s" |
|
83 |
by (simp add: init_locs_def init_vars_def) |
|
84 |
||
85 |
lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s" |
|
86 |
by (simp add: init_locs_def init_vars_def) |
|
87 |
||
88 |
lemma upd_obj_new_obj_Nat [simp]: |
|
89 |
"upd_obj a pred v (new_obj a Nat s) = hupd(a\<mapsto>(Nat, empty(pred\<mapsto>v))) s" |
|
90 |
by (simp add: new_obj_def init_vars_def upd_obj_def Let_def) |
|
91 |
||
92 |
||
93 |
subsection "``atleast'' relation for interpretation of Nat ``values''" |
|
94 |
||
39758 | 95 |
primrec Nat_atleast :: "state \<Rightarrow> val \<Rightarrow> nat \<Rightarrow> bool" ("_:_ \<ge> _" [51, 51, 51] 50) where |
96 |
"s:x\<ge>0 = (x\<noteq>Null)" |
|
97 |
| "s:x\<ge>Suc n = (\<exists>a. x=Addr a \<and> heap s a \<noteq> None \<and> s:get_field s a pred\<ge>n)" |
|
11565 | 98 |
|
99 |
lemma Nat_atleast_lupd [rule_format, simp]: |
|
21020 | 100 |
"\<forall>s v::val. lupd(x\<mapsto>y) s:v \<ge> n = (s:v \<ge> n)" |
11565 | 101 |
apply (induct n) |
102 |
by auto |
|
103 |
||
104 |
lemma Nat_atleast_set_locs [rule_format, simp]: |
|
21020 | 105 |
"\<forall>s v::val. set_locs l s:v \<ge> n = (s:v \<ge> n)" |
11565 | 106 |
apply (induct n) |
107 |
by auto |
|
108 |
||
11772 | 109 |
lemma Nat_atleast_del_locs [rule_format, simp]: |
21020 | 110 |
"\<forall>s v::val. del_locs s:v \<ge> n = (s:v \<ge> n)" |
11565 | 111 |
apply (induct n) |
112 |
by auto |
|
113 |
||
114 |
lemma Nat_atleast_NullD [rule_format]: "s:Null \<ge> n \<longrightarrow> False" |
|
115 |
apply (induct n) |
|
116 |
by auto |
|
117 |
||
118 |
lemma Nat_atleast_pred_NullD [rule_format]: |
|
119 |
"Null = get_field s a pred \<Longrightarrow> s:Addr a \<ge> n \<longrightarrow> n = 0" |
|
120 |
apply (induct n) |
|
121 |
by (auto dest: Nat_atleast_NullD) |
|
122 |
||
123 |
lemma Nat_atleast_mono [rule_format]: |
|
124 |
"\<forall>a. s:get_field s a pred \<ge> n \<longrightarrow> heap s a \<noteq> None \<longrightarrow> s:Addr a \<ge> n" |
|
125 |
apply (induct n) |
|
126 |
by auto |
|
127 |
||
128 |
lemma Nat_atleast_newC [rule_format]: |
|
21020 | 129 |
"heap s aa = None \<Longrightarrow> \<forall>v::val. s:v \<ge> n \<longrightarrow> hupd(aa\<mapsto>obj) s:v \<ge> n" |
11565 | 130 |
apply (induct n) |
131 |
apply auto |
|
132 |
apply (case_tac "aa=a") |
|
133 |
apply auto |
|
58963
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
wenzelm
parents:
58889
diff
changeset
|
134 |
apply (tactic "smp_tac @{context} 1 1") |
11565 | 135 |
apply (case_tac "aa=a") |
136 |
apply auto |
|
137 |
done |
|
138 |
||
139 |
||
140 |
subsection "Proof(s) using the Hoare logic" |
|
141 |
||
12742 | 142 |
theorem add_homomorph_lb: |
11565 | 143 |
"{} \<turnstile> {\<lambda>s. s:s<This> \<ge> X \<and> s:s<Par> \<ge> Y} Meth(Nat,add) {\<lambda>s. s:s<Res> \<ge> X+Y}" |
12742 | 144 |
apply (rule hoare_ehoare.Meth) (* 1 *) |
11565 | 145 |
apply clarsimp |
146 |
apply (rule_tac P'= "\<lambda>Z s. (s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z) \<and> D=Nat" and |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
147 |
Q'= "\<lambda>Z s. s:s<Res> \<ge> fst Z+snd Z" in AxSem.Conseq) |
11565 | 148 |
prefer 2 |
149 |
apply (clarsimp simp add: init_locs_def init_vars_def) |
|
150 |
apply rule |
|
151 |
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
152 |
apply (rule_tac P = "\<lambda>Z Cm s. s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z" in AxSem.Impl1) |
12742 | 153 |
apply (clarsimp simp add: body_def) (* 4 *) |
11565 | 154 |
apply (rename_tac n m) |
155 |
apply (rule_tac Q = "\<lambda>v s. (s:s<This> \<ge> n \<and> s:s<Par> \<ge> m) \<and> |
|
156 |
(\<exists>a. s<This> = Addr a \<and> v = get_field s a pred)" in hoare_ehoare.Cond) |
|
157 |
apply (rule hoare_ehoare.FAcc) |
|
158 |
apply (rule eConseq1) |
|
159 |
apply (rule hoare_ehoare.LAcc) |
|
160 |
apply fast |
|
161 |
apply auto |
|
162 |
prefer 2 |
|
163 |
apply (rule hoare_ehoare.LAss) |
|
164 |
apply (rule eConseq1) |
|
165 |
apply (rule hoare_ehoare.LAcc) |
|
166 |
apply (auto dest: Nat_atleast_pred_NullD) |
|
167 |
apply (rule hoare_ehoare.LAss) |
|
168 |
apply (rule_tac |
|
169 |
Q = "\<lambda>v s. (\<forall>m. n = Suc m \<longrightarrow> s:v \<ge> m) \<and> s:s<Par> \<ge> m" and |
|
170 |
R = "\<lambda>T P s. (\<forall>m. n = Suc m \<longrightarrow> s:T \<ge> m) \<and> s:P \<ge> Suc m" |
|
12742 | 171 |
in hoare_ehoare.Call) (* 13 *) |
11565 | 172 |
apply (rule hoare_ehoare.FAcc) |
173 |
apply (rule eConseq1) |
|
174 |
apply (rule hoare_ehoare.LAcc) |
|
175 |
apply clarify |
|
176 |
apply (drule sym, rotate_tac -1, frule (1) trans) |
|
177 |
apply simp |
|
178 |
prefer 2 |
|
179 |
apply clarsimp |
|
12742 | 180 |
apply (rule hoare_ehoare.Meth) (* 17 *) |
11565 | 181 |
apply clarsimp |
182 |
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
183 |
apply (rule AxSem.Conseq) |
11565 | 184 |
apply rule |
12742 | 185 |
apply (rule hoare_ehoare.Asm) (* 20 *) |
11565 | 186 |
apply (rule_tac a = "((case n of 0 \<Rightarrow> 0 | Suc m \<Rightarrow> m),m+1)" in UN_I, rule+) |
187 |
apply (clarsimp split add: nat.split_asm dest!: Nat_atleast_mono) |
|
188 |
apply rule |
|
12742 | 189 |
apply (rule hoare_ehoare.Call) (* 21 *) |
11565 | 190 |
apply (rule hoare_ehoare.LAcc) |
191 |
apply rule |
|
192 |
apply (rule hoare_ehoare.LAcc) |
|
193 |
apply clarify |
|
12742 | 194 |
apply (rule hoare_ehoare.Meth) (* 24 *) |
11565 | 195 |
apply clarsimp |
196 |
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
197 |
apply (rule AxSem.Impl1) |
11565 | 198 |
apply (clarsimp simp add: body_def) |
12742 | 199 |
apply (rule hoare_ehoare.Comp) (* 26 *) |
11565 | 200 |
prefer 2 |
201 |
apply (rule hoare_ehoare.FAss) |
|
202 |
prefer 2 |
|
203 |
apply rule |
|
204 |
apply (rule hoare_ehoare.LAcc) |
|
205 |
apply (rule hoare_ehoare.LAcc) |
|
206 |
apply (rule hoare_ehoare.LAss) |
|
207 |
apply (rule eConseq1) |
|
12742 | 208 |
apply (rule hoare_ehoare.NewC) (* 32 *) |
11565 | 209 |
apply (auto dest!: new_AddrD elim: Nat_atleast_newC) |
210 |
done |
|
211 |
||
212 |
||
213 |
end |