| author | haftmann | 
| Fri, 07 Mar 2008 13:53:02 +0100 | |
| changeset 26233 | 3751b3dbb67c | 
| parent 26014 | 00c2c3525bef | 
| child 26794 | 354c3844dfde | 
| permissions | -rw-r--r-- | 
| 21249 | 1  | 
(* Title: HOL/Lattices.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow  | 
|
4  | 
*)  | 
|
5  | 
||
| 22454 | 6  | 
header {* Abstract lattices *}
 | 
| 21249 | 7  | 
|
8  | 
theory Lattices  | 
|
9  | 
imports Orderings  | 
|
10  | 
begin  | 
|
11  | 
||
12  | 
subsection{* Lattices *}
 | 
|
13  | 
||
| 25206 | 14  | 
notation  | 
| 25382 | 15  | 
less_eq (infix "\<sqsubseteq>" 50) and  | 
16  | 
less (infix "\<sqsubset>" 50)  | 
|
| 25206 | 17  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
18  | 
class lower_semilattice = order +  | 
| 21249 | 19  | 
fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)  | 
| 22737 | 20  | 
assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x"  | 
21  | 
and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y"  | 
|
| 21733 | 22  | 
and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"  | 
| 21249 | 23  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
24  | 
class upper_semilattice = order +  | 
| 21249 | 25  | 
fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)  | 
| 22737 | 26  | 
assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y"  | 
27  | 
and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y"  | 
|
| 21733 | 28  | 
and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x"  | 
| 26014 | 29  | 
begin  | 
30  | 
||
31  | 
text {* Dual lattice *}
 | 
|
32  | 
||
33  | 
lemma dual_lattice:  | 
|
34  | 
"lower_semilattice (op \<ge>) (op >) sup"  | 
|
35  | 
by unfold_locales  | 
|
36  | 
(auto simp add: sup_least)  | 
|
37  | 
||
38  | 
end  | 
|
| 21249 | 39  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
40  | 
class lattice = lower_semilattice + upper_semilattice  | 
| 21249 | 41  | 
|
| 25382 | 42  | 
|
| 21733 | 43  | 
subsubsection{* Intro and elim rules*}
 | 
44  | 
||
45  | 
context lower_semilattice  | 
|
46  | 
begin  | 
|
| 21249 | 47  | 
|
| 25062 | 48  | 
lemma le_infI1[intro]:  | 
49  | 
assumes "a \<sqsubseteq> x"  | 
|
50  | 
shows "a \<sqinter> b \<sqsubseteq> x"  | 
|
51  | 
proof (rule order_trans)  | 
|
| 25482 | 52  | 
from assms show "a \<sqsubseteq> x" .  | 
53  | 
show "a \<sqinter> b \<sqsubseteq> a" by simp  | 
|
| 25062 | 54  | 
qed  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
55  | 
lemmas (in -) [rule del] = le_infI1  | 
| 21249 | 56  | 
|
| 25062 | 57  | 
lemma le_infI2[intro]:  | 
58  | 
assumes "b \<sqsubseteq> x"  | 
|
59  | 
shows "a \<sqinter> b \<sqsubseteq> x"  | 
|
60  | 
proof (rule order_trans)  | 
|
| 25482 | 61  | 
from assms show "b \<sqsubseteq> x" .  | 
62  | 
show "a \<sqinter> b \<sqsubseteq> b" by simp  | 
|
| 25062 | 63  | 
qed  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
64  | 
lemmas (in -) [rule del] = le_infI2  | 
| 21733 | 65  | 
|
| 21734 | 66  | 
lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b"  | 
| 21733 | 67  | 
by(blast intro: inf_greatest)  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
68  | 
lemmas (in -) [rule del] = le_infI  | 
| 21249 | 69  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
70  | 
lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
71  | 
by (blast intro: order_trans)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
72  | 
lemmas (in -) [rule del] = le_infE  | 
| 21249 | 73  | 
|
| 21734 | 74  | 
lemma le_inf_iff [simp]:  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
75  | 
"x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)"  | 
| 21733 | 76  | 
by blast  | 
77  | 
||
| 21734 | 78  | 
lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
79  | 
by (blast intro: antisym dest: eq_iff [THEN iffD1])  | 
| 21249 | 80  | 
|
| 25206 | 81  | 
lemma mono_inf:  | 
82  | 
fixes f :: "'a \<Rightarrow> 'b\<Colon>lower_semilattice"  | 
|
83  | 
shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B"  | 
|
84  | 
by (auto simp add: mono_def intro: Lattices.inf_greatest)  | 
|
| 21733 | 85  | 
|
| 25206 | 86  | 
end  | 
| 21733 | 87  | 
|
88  | 
context upper_semilattice  | 
|
89  | 
begin  | 
|
| 21249 | 90  | 
|
| 21734 | 91  | 
lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"  | 
| 25062 | 92  | 
by (rule order_trans) auto  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
93  | 
lemmas (in -) [rule del] = le_supI1  | 
| 21249 | 94  | 
|
| 21734 | 95  | 
lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"  | 
| 25062 | 96  | 
by (rule order_trans) auto  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
97  | 
lemmas (in -) [rule del] = le_supI2  | 
| 21733 | 98  | 
|
| 21734 | 99  | 
lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x"  | 
| 26014 | 100  | 
by (blast intro: sup_least)  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
101  | 
lemmas (in -) [rule del] = le_supI  | 
| 21249 | 102  | 
|
| 21734 | 103  | 
lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
104  | 
by (blast intro: order_trans)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
105  | 
lemmas (in -) [rule del] = le_supE  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
106  | 
|
| 21734 | 107  | 
lemma ge_sup_conv[simp]:  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
108  | 
"x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)"  | 
| 21733 | 109  | 
by blast  | 
110  | 
||
| 21734 | 111  | 
lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
112  | 
by (blast intro: antisym dest: eq_iff [THEN iffD1])  | 
| 21734 | 113  | 
|
| 25206 | 114  | 
lemma mono_sup:  | 
115  | 
fixes f :: "'a \<Rightarrow> 'b\<Colon>upper_semilattice"  | 
|
116  | 
shows "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)"  | 
|
117  | 
by (auto simp add: mono_def intro: Lattices.sup_least)  | 
|
| 21733 | 118  | 
|
| 25206 | 119  | 
end  | 
| 23878 | 120  | 
|
| 21733 | 121  | 
|
122  | 
subsubsection{* Equational laws *}
 | 
|
| 21249 | 123  | 
|
| 21733 | 124  | 
context lower_semilattice  | 
125  | 
begin  | 
|
126  | 
||
127  | 
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
128  | 
by (blast intro: antisym)  | 
| 21733 | 129  | 
|
130  | 
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
131  | 
by (blast intro: antisym)  | 
| 21733 | 132  | 
|
133  | 
lemma inf_idem[simp]: "x \<sqinter> x = x"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
134  | 
by (blast intro: antisym)  | 
| 21733 | 135  | 
|
136  | 
lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
137  | 
by (blast intro: antisym)  | 
| 21733 | 138  | 
|
139  | 
lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
140  | 
by (blast intro: antisym)  | 
| 21733 | 141  | 
|
142  | 
lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
143  | 
by (blast intro: antisym)  | 
| 21733 | 144  | 
|
145  | 
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
146  | 
by (blast intro: antisym)  | 
| 21733 | 147  | 
|
148  | 
lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem  | 
|
149  | 
||
150  | 
end  | 
|
151  | 
||
152  | 
||
153  | 
context upper_semilattice  | 
|
154  | 
begin  | 
|
| 21249 | 155  | 
|
| 21733 | 156  | 
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
157  | 
by (blast intro: antisym)  | 
| 21733 | 158  | 
|
159  | 
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
160  | 
by (blast intro: antisym)  | 
| 21733 | 161  | 
|
162  | 
lemma sup_idem[simp]: "x \<squnion> x = x"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
163  | 
by (blast intro: antisym)  | 
| 21733 | 164  | 
|
165  | 
lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
166  | 
by (blast intro: antisym)  | 
| 21733 | 167  | 
|
168  | 
lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
169  | 
by (blast intro: antisym)  | 
| 21733 | 170  | 
|
171  | 
lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
172  | 
by (blast intro: antisym)  | 
| 21249 | 173  | 
|
| 21733 | 174  | 
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
175  | 
by (blast intro: antisym)  | 
| 21733 | 176  | 
|
177  | 
lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem  | 
|
178  | 
||
179  | 
end  | 
|
| 21249 | 180  | 
|
| 21733 | 181  | 
context lattice  | 
182  | 
begin  | 
|
183  | 
||
184  | 
lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
185  | 
by (blast intro: antisym inf_le1 inf_greatest sup_ge1)  | 
| 21733 | 186  | 
|
187  | 
lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
188  | 
by (blast intro: antisym sup_ge1 sup_least inf_le1)  | 
| 21733 | 189  | 
|
| 21734 | 190  | 
lemmas ACI = inf_ACI sup_ACI  | 
191  | 
||
| 22454 | 192  | 
lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2  | 
193  | 
||
| 21734 | 194  | 
text{* Towards distributivity *}
 | 
| 21249 | 195  | 
|
| 21734 | 196  | 
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
197  | 
by blast  | 
| 21734 | 198  | 
|
199  | 
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)"  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
200  | 
by blast  | 
| 21734 | 201  | 
|
202  | 
||
203  | 
text{* If you have one of them, you have them all. *}
 | 
|
| 21249 | 204  | 
|
| 21733 | 205  | 
lemma distrib_imp1:  | 
| 21249 | 206  | 
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
207  | 
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
|
208  | 
proof-  | 
|
209  | 
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb)  | 
|
210  | 
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc)  | 
|
211  | 
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"  | 
|
212  | 
by(simp add:inf_sup_absorb inf_commute)  | 
|
213  | 
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D)  | 
|
214  | 
finally show ?thesis .  | 
|
215  | 
qed  | 
|
216  | 
||
| 21733 | 217  | 
lemma distrib_imp2:  | 
| 21249 | 218  | 
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
219  | 
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
|
220  | 
proof-  | 
|
221  | 
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb)  | 
|
222  | 
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc)  | 
|
223  | 
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"  | 
|
224  | 
by(simp add:sup_inf_absorb sup_commute)  | 
|
225  | 
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D)  | 
|
226  | 
finally show ?thesis .  | 
|
227  | 
qed  | 
|
228  | 
||
| 21734 | 229  | 
(* seems unused *)  | 
230  | 
lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z"  | 
|
231  | 
by blast  | 
|
232  | 
||
| 21733 | 233  | 
end  | 
| 21249 | 234  | 
|
235  | 
||
| 24164 | 236  | 
subsection {* Distributive lattices *}
 | 
| 21249 | 237  | 
|
| 22454 | 238  | 
class distrib_lattice = lattice +  | 
| 21249 | 239  | 
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
240  | 
||
| 21733 | 241  | 
context distrib_lattice  | 
242  | 
begin  | 
|
243  | 
||
244  | 
lemma sup_inf_distrib2:  | 
|
| 21249 | 245  | 
"(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"  | 
246  | 
by(simp add:ACI sup_inf_distrib1)  | 
|
247  | 
||
| 21733 | 248  | 
lemma inf_sup_distrib1:  | 
| 21249 | 249  | 
"x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
250  | 
by(rule distrib_imp2[OF sup_inf_distrib1])  | 
|
251  | 
||
| 21733 | 252  | 
lemma inf_sup_distrib2:  | 
| 21249 | 253  | 
"(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"  | 
254  | 
by(simp add:ACI inf_sup_distrib1)  | 
|
255  | 
||
| 21733 | 256  | 
lemmas distrib =  | 
| 21249 | 257  | 
sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2  | 
258  | 
||
| 21733 | 259  | 
end  | 
260  | 
||
| 21249 | 261  | 
|
| 22454 | 262  | 
subsection {* Uniqueness of inf and sup *}
 | 
263  | 
||
| 22737 | 264  | 
lemma (in lower_semilattice) inf_unique:  | 
| 22454 | 265  | 
fixes f (infixl "\<triangle>" 70)  | 
| 25062 | 266  | 
assumes le1: "\<And>x y. x \<triangle> y \<le> x" and le2: "\<And>x y. x \<triangle> y \<le> y"  | 
267  | 
and greatest: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z"  | 
|
| 22737 | 268  | 
shows "x \<sqinter> y = x \<triangle> y"  | 
| 22454 | 269  | 
proof (rule antisym)  | 
| 25062 | 270  | 
show "x \<triangle> y \<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2)  | 
| 22454 | 271  | 
next  | 
| 25062 | 272  | 
have leI: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" by (blast intro: greatest)  | 
273  | 
show "x \<sqinter> y \<le> x \<triangle> y" by (rule leI) simp_all  | 
|
| 22454 | 274  | 
qed  | 
275  | 
||
| 22737 | 276  | 
lemma (in upper_semilattice) sup_unique:  | 
| 22454 | 277  | 
fixes f (infixl "\<nabla>" 70)  | 
| 25062 | 278  | 
assumes ge1 [simp]: "\<And>x y. x \<le> x \<nabla> y" and ge2: "\<And>x y. y \<le> x \<nabla> y"  | 
279  | 
and least: "\<And>x y z. y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<nabla> z \<le> x"  | 
|
| 22737 | 280  | 
shows "x \<squnion> y = x \<nabla> y"  | 
| 22454 | 281  | 
proof (rule antisym)  | 
| 25062 | 282  | 
show "x \<squnion> y \<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2)  | 
| 22454 | 283  | 
next  | 
| 25062 | 284  | 
have leI: "\<And>x y z. x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x \<nabla> y \<le> z" by (blast intro: least)  | 
285  | 
show "x \<nabla> y \<le> x \<squnion> y" by (rule leI) simp_all  | 
|
| 22454 | 286  | 
qed  | 
287  | 
||
288  | 
||
| 22916 | 289  | 
subsection {* @{const min}/@{const max} on linear orders as
 | 
290  | 
  special case of @{const inf}/@{const sup} *}
 | 
|
291  | 
||
292  | 
lemma (in linorder) distrib_lattice_min_max:  | 
|
| 25062 | 293  | 
"distrib_lattice (op \<le>) (op <) min max"  | 
| 22916 | 294  | 
proof unfold_locales  | 
| 25062 | 295  | 
have aux: "\<And>x y \<Colon> 'a. x < y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"  | 
| 22916 | 296  | 
by (auto simp add: less_le antisym)  | 
297  | 
fix x y z  | 
|
298  | 
show "max x (min y z) = min (max x y) (max x z)"  | 
|
299  | 
unfolding min_def max_def  | 
|
| 
24640
 
85a6c200ecd3
Simplified proofs due to transitivity reasoner setup.
 
ballarin 
parents: 
24514 
diff
changeset
 | 
300  | 
by auto  | 
| 22916 | 301  | 
qed (auto simp add: min_def max_def not_le less_imp_le)  | 
| 21249 | 302  | 
|
303  | 
interpretation min_max:  | 
|
| 22454 | 304  | 
distrib_lattice ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max]  | 
| 23948 | 305  | 
by (rule distrib_lattice_min_max)  | 
| 21249 | 306  | 
|
| 22454 | 307  | 
lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
308  | 
by (rule ext)+ (auto intro: antisym)  | 
| 21733 | 309  | 
|
| 22454 | 310  | 
lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
311  | 
by (rule ext)+ (auto intro: antisym)  | 
| 21733 | 312  | 
|
| 21249 | 313  | 
lemmas le_maxI1 = min_max.sup_ge1  | 
314  | 
lemmas le_maxI2 = min_max.sup_ge2  | 
|
| 21381 | 315  | 
|
| 21249 | 316  | 
lemmas max_ac = min_max.sup_assoc min_max.sup_commute  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
317  | 
mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute]  | 
| 21249 | 318  | 
|
319  | 
lemmas min_ac = min_max.inf_assoc min_max.inf_commute  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22384 
diff
changeset
 | 
320  | 
mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute]  | 
| 21249 | 321  | 
|
| 22454 | 322  | 
text {*
 | 
323  | 
Now we have inherited antisymmetry as an intro-rule on all  | 
|
324  | 
linear orders. This is a problem because it applies to bool, which is  | 
|
325  | 
undesirable.  | 
|
326  | 
*}  | 
|
327  | 
||
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
328  | 
lemmas [rule del] = min_max.le_infI min_max.le_supI  | 
| 22454 | 329  | 
min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2  | 
330  | 
min_max.le_infI1 min_max.le_infI2  | 
|
331  | 
||
332  | 
||
| 23878 | 333  | 
subsection {* Complete lattices *}
 | 
334  | 
||
335  | 
class complete_lattice = lattice +  | 
|
336  | 
  fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | 
|
| 24345 | 337  | 
    and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 23878 | 338  | 
assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"  | 
| 24345 | 339  | 
and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"  | 
340  | 
assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"  | 
|
341  | 
and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"  | 
|
| 23878 | 342  | 
begin  | 
343  | 
||
| 25062 | 344  | 
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
345  | 
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)  | 
| 23878 | 346  | 
|
| 25062 | 347  | 
lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
348  | 
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)  | 
| 23878 | 349  | 
|
350  | 
lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
 | 
|
| 24345 | 351  | 
unfolding Sup_Inf by auto  | 
| 23878 | 352  | 
|
353  | 
lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
 | 
|
354  | 
unfolding Inf_Sup by auto  | 
|
355  | 
||
356  | 
lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"  | 
|
| 26233 | 357  | 
by (auto intro: antisym Inf_greatest Inf_lower)  | 
| 23878 | 358  | 
|
| 24345 | 359  | 
lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"  | 
| 26233 | 360  | 
by (auto intro: antisym Sup_least Sup_upper)  | 
| 23878 | 361  | 
|
362  | 
lemma Inf_singleton [simp]:  | 
|
363  | 
  "\<Sqinter>{a} = a"
 | 
|
364  | 
by (auto intro: antisym Inf_lower Inf_greatest)  | 
|
365  | 
||
| 24345 | 366  | 
lemma Sup_singleton [simp]:  | 
| 23878 | 367  | 
  "\<Squnion>{a} = a"
 | 
368  | 
by (auto intro: antisym Sup_upper Sup_least)  | 
|
369  | 
||
370  | 
lemma Inf_insert_simp:  | 
|
371  | 
  "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
 | 
|
372  | 
  by (cases "A = {}") (simp_all, simp add: Inf_insert)
 | 
|
373  | 
||
374  | 
lemma Sup_insert_simp:  | 
|
375  | 
  "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
 | 
|
376  | 
  by (cases "A = {}") (simp_all, simp add: Sup_insert)
 | 
|
377  | 
||
378  | 
lemma Inf_binary:  | 
|
379  | 
  "\<Sqinter>{a, b} = a \<sqinter> b"
 | 
|
380  | 
by (simp add: Inf_insert_simp)  | 
|
381  | 
||
382  | 
lemma Sup_binary:  | 
|
383  | 
  "\<Squnion>{a, b} = a \<squnion> b"
 | 
|
384  | 
by (simp add: Sup_insert_simp)  | 
|
385  | 
||
386  | 
definition  | 
|
| 25382 | 387  | 
top :: 'a where  | 
| 25206 | 388  | 
  "top = \<Sqinter>{}"
 | 
| 23878 | 389  | 
|
390  | 
definition  | 
|
| 25382 | 391  | 
bot :: 'a where  | 
| 25206 | 392  | 
  "bot = \<Squnion>{}"
 | 
| 23878 | 393  | 
|
| 25062 | 394  | 
lemma top_greatest [simp]: "x \<le> top"  | 
| 23878 | 395  | 
by (unfold top_def, rule Inf_greatest, simp)  | 
396  | 
||
| 25062 | 397  | 
lemma bot_least [simp]: "bot \<le> x"  | 
| 23878 | 398  | 
by (unfold bot_def, rule Sup_least, simp)  | 
399  | 
||
400  | 
definition  | 
|
| 24749 | 401  | 
  SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 23878 | 402  | 
where  | 
| 25206 | 403  | 
"SUPR A f == \<Squnion> (f ` A)"  | 
| 23878 | 404  | 
|
405  | 
definition  | 
|
| 24749 | 406  | 
  INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 23878 | 407  | 
where  | 
| 25206 | 408  | 
"INFI A f == \<Sqinter> (f ` A)"  | 
| 23878 | 409  | 
|
| 24749 | 410  | 
end  | 
411  | 
||
| 23878 | 412  | 
syntax  | 
413  | 
  "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | 
|
414  | 
  "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 10] 10)
 | 
|
415  | 
  "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
 | 
|
416  | 
  "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 10] 10)
 | 
|
417  | 
||
418  | 
translations  | 
|
419  | 
"SUP x y. B" == "SUP x. SUP y. B"  | 
|
420  | 
"SUP x. B" == "CONST SUPR UNIV (%x. B)"  | 
|
421  | 
"SUP x. B" == "SUP x:UNIV. B"  | 
|
422  | 
"SUP x:A. B" == "CONST SUPR A (%x. B)"  | 
|
423  | 
"INF x y. B" == "INF x. INF y. B"  | 
|
424  | 
"INF x. B" == "CONST INFI UNIV (%x. B)"  | 
|
425  | 
"INF x. B" == "INF x:UNIV. B"  | 
|
426  | 
"INF x:A. B" == "CONST INFI A (%x. B)"  | 
|
427  | 
||
428  | 
(* To avoid eta-contraction of body: *)  | 
|
429  | 
print_translation {*
 | 
|
430  | 
let  | 
|
431  | 
fun btr' syn (A :: Abs abs :: ts) =  | 
|
432  | 
let val (x,t) = atomic_abs_tr' abs  | 
|
433  | 
in list_comb (Syntax.const syn $ x $ A $ t, ts) end  | 
|
434  | 
  val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
 | 
|
435  | 
in  | 
|
436  | 
[(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
 | 
|
437  | 
end  | 
|
438  | 
*}  | 
|
439  | 
||
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
440  | 
context complete_lattice  | 
| 
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
441  | 
begin  | 
| 
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
442  | 
|
| 23878 | 443  | 
lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)"  | 
444  | 
by (auto simp add: SUPR_def intro: Sup_upper)  | 
|
445  | 
||
446  | 
lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u"  | 
|
447  | 
by (auto simp add: SUPR_def intro: Sup_least)  | 
|
448  | 
||
449  | 
lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i"  | 
|
450  | 
by (auto simp add: INFI_def intro: Inf_lower)  | 
|
451  | 
||
452  | 
lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)"  | 
|
453  | 
by (auto simp add: INFI_def intro: Inf_greatest)  | 
|
454  | 
||
455  | 
lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
 | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
456  | 
by (auto intro: antisym SUP_leI le_SUPI)  | 
| 23878 | 457  | 
|
458  | 
lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
 | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
459  | 
by (auto intro: antisym INF_leI le_INFI)  | 
| 
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
460  | 
|
| 
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25062 
diff
changeset
 | 
461  | 
end  | 
| 23878 | 462  | 
|
463  | 
||
| 22454 | 464  | 
subsection {* Bool as lattice *}
 | 
465  | 
||
| 25510 | 466  | 
instantiation bool :: distrib_lattice  | 
467  | 
begin  | 
|
468  | 
||
469  | 
definition  | 
|
470  | 
inf_bool_eq: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q"  | 
|
471  | 
||
472  | 
definition  | 
|
473  | 
sup_bool_eq: "P \<squnion> Q \<longleftrightarrow> P \<or> Q"  | 
|
474  | 
||
475  | 
instance  | 
|
| 22454 | 476  | 
by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def)  | 
477  | 
||
| 25510 | 478  | 
end  | 
479  | 
||
480  | 
instantiation bool :: complete_lattice  | 
|
481  | 
begin  | 
|
482  | 
||
483  | 
definition  | 
|
484  | 
Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"  | 
|
485  | 
||
486  | 
definition  | 
|
487  | 
Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"  | 
|
488  | 
||
489  | 
instance  | 
|
| 24345 | 490  | 
by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def)  | 
| 23878 | 491  | 
|
| 25510 | 492  | 
end  | 
493  | 
||
| 23878 | 494  | 
lemma Inf_empty_bool [simp]:  | 
| 25206 | 495  | 
  "\<Sqinter>{}"
 | 
| 23878 | 496  | 
unfolding Inf_bool_def by auto  | 
497  | 
||
498  | 
lemma not_Sup_empty_bool [simp]:  | 
|
499  | 
  "\<not> Sup {}"
 | 
|
| 24345 | 500  | 
unfolding Sup_bool_def by auto  | 
| 23878 | 501  | 
|
502  | 
lemma top_bool_eq: "top = True"  | 
|
503  | 
by (iprover intro!: order_antisym le_boolI top_greatest)  | 
|
504  | 
||
505  | 
lemma bot_bool_eq: "bot = False"  | 
|
506  | 
by (iprover intro!: order_antisym le_boolI bot_least)  | 
|
507  | 
||
508  | 
||
509  | 
subsection {* Set as lattice *}
 | 
|
510  | 
||
| 25510 | 511  | 
instantiation set :: (type) distrib_lattice  | 
512  | 
begin  | 
|
513  | 
||
514  | 
definition  | 
|
515  | 
inf_set_eq [code func del]: "A \<sqinter> B = A \<inter> B"  | 
|
516  | 
||
517  | 
definition  | 
|
518  | 
sup_set_eq [code func del]: "A \<squnion> B = A \<union> B"  | 
|
519  | 
||
520  | 
instance  | 
|
| 23878 | 521  | 
by intro_classes (auto simp add: inf_set_eq sup_set_eq)  | 
522  | 
||
| 25510 | 523  | 
end  | 
| 23878 | 524  | 
|
| 
24514
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
525  | 
lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"  | 
| 
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
526  | 
apply (fold inf_set_eq sup_set_eq)  | 
| 
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
527  | 
apply (erule mono_inf)  | 
| 
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
528  | 
done  | 
| 23878 | 529  | 
|
| 
24514
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
530  | 
lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"  | 
| 
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
531  | 
apply (fold inf_set_eq sup_set_eq)  | 
| 
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
532  | 
apply (erule mono_sup)  | 
| 
 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 
wenzelm 
parents: 
24345 
diff
changeset
 | 
533  | 
done  | 
| 23878 | 534  | 
|
| 25510 | 535  | 
instantiation set :: (type) complete_lattice  | 
536  | 
begin  | 
|
537  | 
||
538  | 
definition  | 
|
539  | 
Inf_set_def [code func del]: "\<Sqinter>S \<equiv> \<Inter>S"  | 
|
540  | 
||
541  | 
definition  | 
|
542  | 
Sup_set_def [code func del]: "\<Squnion>S \<equiv> \<Union>S"  | 
|
543  | 
||
544  | 
instance  | 
|
| 24345 | 545  | 
by intro_classes (auto simp add: Inf_set_def Sup_set_def)  | 
| 23878 | 546  | 
|
| 25510 | 547  | 
end  | 
| 23878 | 548  | 
|
549  | 
lemma top_set_eq: "top = UNIV"  | 
|
550  | 
by (iprover intro!: subset_antisym subset_UNIV top_greatest)  | 
|
551  | 
||
552  | 
lemma bot_set_eq: "bot = {}"
 | 
|
553  | 
by (iprover intro!: subset_antisym empty_subsetI bot_least)  | 
|
554  | 
||
555  | 
||
556  | 
subsection {* Fun as lattice *}
 | 
|
557  | 
||
| 25510 | 558  | 
instantiation "fun" :: (type, lattice) lattice  | 
559  | 
begin  | 
|
560  | 
||
561  | 
definition  | 
|
562  | 
inf_fun_eq [code func del]: "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)"  | 
|
563  | 
||
564  | 
definition  | 
|
565  | 
sup_fun_eq [code func del]: "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"  | 
|
566  | 
||
567  | 
instance  | 
|
| 23878 | 568  | 
apply intro_classes  | 
569  | 
unfolding inf_fun_eq sup_fun_eq  | 
|
570  | 
apply (auto intro: le_funI)  | 
|
571  | 
apply (rule le_funI)  | 
|
572  | 
apply (auto dest: le_funD)  | 
|
573  | 
apply (rule le_funI)  | 
|
574  | 
apply (auto dest: le_funD)  | 
|
575  | 
done  | 
|
576  | 
||
| 25510 | 577  | 
end  | 
| 23878 | 578  | 
|
579  | 
instance "fun" :: (type, distrib_lattice) distrib_lattice  | 
|
580  | 
by default (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1)  | 
|
581  | 
||
| 25510 | 582  | 
instantiation "fun" :: (type, complete_lattice) complete_lattice  | 
583  | 
begin  | 
|
584  | 
||
585  | 
definition  | 
|
586  | 
  Inf_fun_def [code func del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
 | 
|
587  | 
||
588  | 
definition  | 
|
589  | 
  Sup_fun_def [code func del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
 | 
|
590  | 
||
591  | 
instance  | 
|
| 24345 | 592  | 
by intro_classes  | 
593  | 
(auto simp add: Inf_fun_def Sup_fun_def le_fun_def  | 
|
594  | 
intro: Inf_lower Sup_upper Inf_greatest Sup_least)  | 
|
| 23878 | 595  | 
|
| 25510 | 596  | 
end  | 
| 23878 | 597  | 
|
598  | 
lemma Inf_empty_fun:  | 
|
| 25206 | 599  | 
  "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
 | 
| 23878 | 600  | 
by rule (auto simp add: Inf_fun_def)  | 
601  | 
||
602  | 
lemma Sup_empty_fun:  | 
|
| 25206 | 603  | 
  "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
 | 
| 24345 | 604  | 
by rule (auto simp add: Sup_fun_def)  | 
| 23878 | 605  | 
|
606  | 
lemma top_fun_eq: "top = (\<lambda>x. top)"  | 
|
607  | 
by (iprover intro!: order_antisym le_funI top_greatest)  | 
|
608  | 
||
609  | 
lemma bot_fun_eq: "bot = (\<lambda>x. bot)"  | 
|
610  | 
by (iprover intro!: order_antisym le_funI bot_least)  | 
|
611  | 
||
612  | 
||
613  | 
text {* redundant bindings *}
 | 
|
| 22454 | 614  | 
|
615  | 
lemmas inf_aci = inf_ACI  | 
|
616  | 
lemmas sup_aci = sup_ACI  | 
|
617  | 
||
| 25062 | 618  | 
no_notation  | 
| 25382 | 619  | 
less_eq (infix "\<sqsubseteq>" 50) and  | 
620  | 
less (infix "\<sqsubset>" 50) and  | 
|
621  | 
inf (infixl "\<sqinter>" 70) and  | 
|
622  | 
sup (infixl "\<squnion>" 65) and  | 
|
623  | 
  Inf  ("\<Sqinter>_" [900] 900) and
 | 
|
624  | 
  Sup  ("\<Squnion>_" [900] 900)
 | 
|
| 25062 | 625  | 
|
| 21249 | 626  | 
end  |