Simplified proofs due to transitivity reasoner setup.
--- a/src/HOL/Dense_Linear_Order.thy Tue Sep 18 18:51:07 2007 +0200
+++ b/src/HOL/Dense_Linear_Order.thy Tue Sep 18 18:52:17 2007 +0200
@@ -232,15 +232,8 @@
from fU neU have th2: "?MU \<in> U" and th2': "\<forall>u\<in>U. ?MU \<sqsubseteq> u" by auto
from th1 th2 H have "?ML \<sqsubset> ?MU" by auto
with dense obtain w where th3: "?ML \<sqsubset> w" and th4: "w \<sqsubset> ?MU" by blast
- from th3 th1' have "\<forall>l \<in> L. l \<sqsubset> w"
- apply auto
- apply (erule_tac x="l" in ballE)
- by (auto intro: le_less_trans)
-
- moreover from th4 th2' have "\<forall>u \<in> U. w \<sqsubset> u"
- apply auto
- apply (erule_tac x="u" in ballE)
- by (auto intro: less_le_trans)
+ from th3 th1' have "\<forall>l \<in> L. l \<sqsubset> w" by auto
+ moreover from th4 th2' have "\<forall>u \<in> U. w \<sqsubset> u" by auto
ultimately show "\<exists>x. (\<forall>y\<in>L. y \<^loc>< x) \<and> (\<forall>y\<in>U. x \<^loc>< y)" by auto
qed
--- a/src/HOL/Lattices.thy Tue Sep 18 18:51:07 2007 +0200
+++ b/src/HOL/Lattices.thy Tue Sep 18 18:52:17 2007 +0200
@@ -289,8 +289,7 @@
fix x y z
show "max x (min y z) = min (max x y) (max x z)"
unfolding min_def max_def
- by (auto simp add: intro: antisym, unfold not_le,
- auto intro: less_trans le_less_trans aux)
+ by auto
qed (auto simp add: min_def max_def not_le less_imp_le)
interpretation min_max:
--- a/src/HOL/List.thy Tue Sep 18 18:51:07 2007 +0200
+++ b/src/HOL/List.thy Tue Sep 18 18:52:17 2007 +0200
@@ -2509,7 +2509,6 @@
lemma sorted_insort: "sorted (insort x xs) = sorted xs"
apply (induct xs)
apply(auto simp:sorted_Cons set_insort not_le less_imp_le)
-apply(blast intro:order_trans)
done
theorem sorted_sort[simp]: "sorted (sort xs)"