author | wenzelm |
Tue, 19 Oct 2021 18:24:33 +0200 | |
changeset 74551 | 375e8e1a2139 |
parent 74527 | 52eadb60499f |
child 75300 | 8adbfeaecbfe |
permissions | -rw-r--r-- |
30439 | 1 |
(* Title: HOL/Decision_Procs/Cooper.thy |
27456 | 2 |
Author: Amine Chaieb |
3 |
*) |
|
4 |
||
70091 | 5 |
section \<open>Presburger arithmetic based on Cooper's algorithm\<close> |
6 |
||
29788 | 7 |
theory Cooper |
55885 | 8 |
imports |
9 |
Complex_Main |
|
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
65024
diff
changeset
|
10 |
"HOL-Library.Code_Target_Numeral" |
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23315
diff
changeset
|
11 |
begin |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
12 |
|
70091 | 13 |
subsection \<open>Basic formulae\<close> |
23274 | 14 |
|
66809 | 15 |
datatype (plugins del: size) num = C int | Bound nat | CN nat int num |
16 |
| Neg num | Add num num | Sub num num |
|
23274 | 17 |
| Mul int num |
18 |
||
66809 | 19 |
instantiation num :: size |
20 |
begin |
|
21 |
||
22 |
primrec size_num :: "num \<Rightarrow> nat" |
|
67123 | 23 |
where |
24 |
"size_num (C c) = 1" |
|
25 |
| "size_num (Bound n) = 1" |
|
26 |
| "size_num (Neg a) = 1 + size_num a" |
|
27 |
| "size_num (Add a b) = 1 + size_num a + size_num b" |
|
28 |
| "size_num (Sub a b) = 3 + size_num a + size_num b" |
|
29 |
| "size_num (CN n c a) = 4 + size_num a" |
|
30 |
| "size_num (Mul c a) = 1 + size_num a" |
|
66809 | 31 |
|
32 |
instance .. |
|
33 |
||
34 |
end |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
35 |
|
55844 | 36 |
primrec Inum :: "int list \<Rightarrow> num \<Rightarrow> int" |
67123 | 37 |
where |
38 |
"Inum bs (C c) = c" |
|
39 |
| "Inum bs (Bound n) = bs ! n" |
|
40 |
| "Inum bs (CN n c a) = c * (bs ! n) + Inum bs a" |
|
41 |
| "Inum bs (Neg a) = - Inum bs a" |
|
42 |
| "Inum bs (Add a b) = Inum bs a + Inum bs b" |
|
43 |
| "Inum bs (Sub a b) = Inum bs a - Inum bs b" |
|
44 |
| "Inum bs (Mul c a) = c * Inum bs a" |
|
23274 | 45 |
|
66809 | 46 |
datatype (plugins del: size) fm = T | F |
47 |
| Lt num | Le num | Gt num | Ge num | Eq num | NEq num |
|
48 |
| Dvd int num | NDvd int num |
|
74101 | 49 |
| Not fm | And fm fm | Or fm fm | Imp fm fm | Iff fm fm |
66809 | 50 |
| E fm | A fm | Closed nat | NClosed nat |
23274 | 51 |
|
66809 | 52 |
instantiation fm :: size |
53 |
begin |
|
23274 | 54 |
|
66809 | 55 |
primrec size_fm :: "fm \<Rightarrow> nat" |
67123 | 56 |
where |
74101 | 57 |
"size_fm (Not p) = 1 + size_fm p" |
67123 | 58 |
| "size_fm (And p q) = 1 + size_fm p + size_fm q" |
59 |
| "size_fm (Or p q) = 1 + size_fm p + size_fm q" |
|
60 |
| "size_fm (Imp p q) = 3 + size_fm p + size_fm q" |
|
61 |
| "size_fm (Iff p q) = 3 + 2 * (size_fm p + size_fm q)" |
|
62 |
| "size_fm (E p) = 1 + size_fm p" |
|
63 |
| "size_fm (A p) = 4 + size_fm p" |
|
64 |
| "size_fm (Dvd i t) = 2" |
|
65 |
| "size_fm (NDvd i t) = 2" |
|
66 |
| "size_fm T = 1" |
|
67 |
| "size_fm F = 1" |
|
68 |
| "size_fm (Lt _) = 1" |
|
69 |
| "size_fm (Le _) = 1" |
|
70 |
| "size_fm (Gt _) = 1" |
|
71 |
| "size_fm (Ge _) = 1" |
|
72 |
| "size_fm (Eq _) = 1" |
|
73 |
| "size_fm (NEq _) = 1" |
|
74 |
| "size_fm (Closed _) = 1" |
|
75 |
| "size_fm (NClosed _) = 1" |
|
50313 | 76 |
|
66809 | 77 |
instance .. |
78 |
||
79 |
end |
|
80 |
||
67123 | 81 |
lemma fmsize_pos [simp]: "size p > 0" |
82 |
for p :: fm |
|
66809 | 83 |
by (induct p) simp_all |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
84 |
|
67123 | 85 |
primrec Ifm :: "bool list \<Rightarrow> int list \<Rightarrow> fm \<Rightarrow> bool" \<comment> \<open>Semantics of formulae (\<open>fm\<close>)\<close> |
86 |
where |
|
87 |
"Ifm bbs bs T \<longleftrightarrow> True" |
|
88 |
| "Ifm bbs bs F \<longleftrightarrow> False" |
|
89 |
| "Ifm bbs bs (Lt a) \<longleftrightarrow> Inum bs a < 0" |
|
90 |
| "Ifm bbs bs (Gt a) \<longleftrightarrow> Inum bs a > 0" |
|
91 |
| "Ifm bbs bs (Le a) \<longleftrightarrow> Inum bs a \<le> 0" |
|
92 |
| "Ifm bbs bs (Ge a) \<longleftrightarrow> Inum bs a \<ge> 0" |
|
93 |
| "Ifm bbs bs (Eq a) \<longleftrightarrow> Inum bs a = 0" |
|
94 |
| "Ifm bbs bs (NEq a) \<longleftrightarrow> Inum bs a \<noteq> 0" |
|
95 |
| "Ifm bbs bs (Dvd i b) \<longleftrightarrow> i dvd Inum bs b" |
|
96 |
| "Ifm bbs bs (NDvd i b) \<longleftrightarrow> \<not> i dvd Inum bs b" |
|
74101 | 97 |
| "Ifm bbs bs (Not p) \<longleftrightarrow> \<not> Ifm bbs bs p" |
67123 | 98 |
| "Ifm bbs bs (And p q) \<longleftrightarrow> Ifm bbs bs p \<and> Ifm bbs bs q" |
99 |
| "Ifm bbs bs (Or p q) \<longleftrightarrow> Ifm bbs bs p \<or> Ifm bbs bs q" |
|
100 |
| "Ifm bbs bs (Imp p q) \<longleftrightarrow> (Ifm bbs bs p \<longrightarrow> Ifm bbs bs q)" |
|
101 |
| "Ifm bbs bs (Iff p q) \<longleftrightarrow> Ifm bbs bs p = Ifm bbs bs q" |
|
102 |
| "Ifm bbs bs (E p) \<longleftrightarrow> (\<exists>x. Ifm bbs (x # bs) p)" |
|
103 |
| "Ifm bbs bs (A p) \<longleftrightarrow> (\<forall>x. Ifm bbs (x # bs) p)" |
|
104 |
| "Ifm bbs bs (Closed n) \<longleftrightarrow> bbs ! n" |
|
105 |
| "Ifm bbs bs (NClosed n) \<longleftrightarrow> \<not> bbs ! n" |
|
23274 | 106 |
|
66809 | 107 |
fun prep :: "fm \<Rightarrow> fm" |
67123 | 108 |
where |
109 |
"prep (E T) = T" |
|
110 |
| "prep (E F) = F" |
|
111 |
| "prep (E (Or p q)) = Or (prep (E p)) (prep (E q))" |
|
74101 | 112 |
| "prep (E (Imp p q)) = Or (prep (E (Not p))) (prep (E q))" |
113 |
| "prep (E (Iff p q)) = Or (prep (E (And p q))) (prep (E (And (Not p) (Not q))))" |
|
114 |
| "prep (E (Not (And p q))) = Or (prep (E (Not p))) (prep (E(Not q)))" |
|
115 |
| "prep (E (Not (Imp p q))) = prep (E (And p (Not q)))" |
|
116 |
| "prep (E (Not (Iff p q))) = Or (prep (E (And p (Not q)))) (prep (E(And (Not p) q)))" |
|
67123 | 117 |
| "prep (E p) = E (prep p)" |
118 |
| "prep (A (And p q)) = And (prep (A p)) (prep (A q))" |
|
74101 | 119 |
| "prep (A p) = prep (Not (E (Not p)))" |
120 |
| "prep (Not (Not p)) = prep p" |
|
121 |
| "prep (Not (And p q)) = Or (prep (Not p)) (prep (Not q))" |
|
122 |
| "prep (Not (A p)) = prep (E (Not p))" |
|
123 |
| "prep (Not (Or p q)) = And (prep (Not p)) (prep (Not q))" |
|
124 |
| "prep (Not (Imp p q)) = And (prep p) (prep (Not q))" |
|
125 |
| "prep (Not (Iff p q)) = Or (prep (And p (Not q))) (prep (And (Not p) q))" |
|
126 |
| "prep (Not p) = Not (prep p)" |
|
67123 | 127 |
| "prep (Or p q) = Or (prep p) (prep q)" |
128 |
| "prep (And p q) = And (prep p) (prep q)" |
|
74101 | 129 |
| "prep (Imp p q) = prep (Or (Not p) q)" |
130 |
| "prep (Iff p q) = Or (prep (And p q)) (prep (And (Not p) (Not q)))" |
|
67123 | 131 |
| "prep p = p" |
50313 | 132 |
|
23274 | 133 |
lemma prep: "Ifm bbs bs (prep p) = Ifm bbs bs p" |
50313 | 134 |
by (induct p arbitrary: bs rule: prep.induct) auto |
23274 | 135 |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
136 |
|
61586 | 137 |
fun qfree :: "fm \<Rightarrow> bool" \<comment> \<open>Quantifier freeness\<close> |
67123 | 138 |
where |
139 |
"qfree (E p) \<longleftrightarrow> False" |
|
140 |
| "qfree (A p) \<longleftrightarrow> False" |
|
74101 | 141 |
| "qfree (Not p) \<longleftrightarrow> qfree p" |
67123 | 142 |
| "qfree (And p q) \<longleftrightarrow> qfree p \<and> qfree q" |
143 |
| "qfree (Or p q) \<longleftrightarrow> qfree p \<and> qfree q" |
|
144 |
| "qfree (Imp p q) \<longleftrightarrow> qfree p \<and> qfree q" |
|
145 |
| "qfree (Iff p q) \<longleftrightarrow> qfree p \<and> qfree q" |
|
146 |
| "qfree p \<longleftrightarrow> True" |
|
23274 | 147 |
|
50313 | 148 |
|
70091 | 149 |
subsection \<open>Boundedness and substitution\<close> |
50313 | 150 |
|
67123 | 151 |
primrec numbound0 :: "num \<Rightarrow> bool" \<comment> \<open>a \<open>num\<close> is \<^emph>\<open>independent\<close> of Bound 0\<close> |
152 |
where |
|
153 |
"numbound0 (C c) \<longleftrightarrow> True" |
|
154 |
| "numbound0 (Bound n) \<longleftrightarrow> n > 0" |
|
155 |
| "numbound0 (CN n i a) \<longleftrightarrow> n > 0 \<and> numbound0 a" |
|
156 |
| "numbound0 (Neg a) \<longleftrightarrow> numbound0 a" |
|
157 |
| "numbound0 (Add a b) \<longleftrightarrow> numbound0 a \<and> numbound0 b" |
|
158 |
| "numbound0 (Sub a b) \<longleftrightarrow> numbound0 a \<and> numbound0 b" |
|
159 |
| "numbound0 (Mul i a) \<longleftrightarrow> numbound0 a" |
|
23274 | 160 |
|
161 |
lemma numbound0_I: |
|
67123 | 162 |
assumes "numbound0 a" |
55981 | 163 |
shows "Inum (b # bs) a = Inum (b' # bs) a" |
67123 | 164 |
using assms by (induct a rule: num.induct) (auto simp add: gr0_conv_Suc) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
165 |
|
67123 | 166 |
primrec bound0 :: "fm \<Rightarrow> bool" \<comment> \<open>a formula is independent of Bound 0\<close> |
167 |
where |
|
168 |
"bound0 T \<longleftrightarrow> True" |
|
169 |
| "bound0 F \<longleftrightarrow> True" |
|
170 |
| "bound0 (Lt a) \<longleftrightarrow> numbound0 a" |
|
171 |
| "bound0 (Le a) \<longleftrightarrow> numbound0 a" |
|
172 |
| "bound0 (Gt a) \<longleftrightarrow> numbound0 a" |
|
173 |
| "bound0 (Ge a) \<longleftrightarrow> numbound0 a" |
|
174 |
| "bound0 (Eq a) \<longleftrightarrow> numbound0 a" |
|
175 |
| "bound0 (NEq a) \<longleftrightarrow> numbound0 a" |
|
176 |
| "bound0 (Dvd i a) \<longleftrightarrow> numbound0 a" |
|
177 |
| "bound0 (NDvd i a) \<longleftrightarrow> numbound0 a" |
|
74101 | 178 |
| "bound0 (Not p) \<longleftrightarrow> bound0 p" |
67123 | 179 |
| "bound0 (And p q) \<longleftrightarrow> bound0 p \<and> bound0 q" |
180 |
| "bound0 (Or p q) \<longleftrightarrow> bound0 p \<and> bound0 q" |
|
181 |
| "bound0 (Imp p q) \<longleftrightarrow> bound0 p \<and> bound0 q" |
|
182 |
| "bound0 (Iff p q) \<longleftrightarrow> bound0 p \<and> bound0 q" |
|
183 |
| "bound0 (E p) \<longleftrightarrow> False" |
|
184 |
| "bound0 (A p) \<longleftrightarrow> False" |
|
185 |
| "bound0 (Closed P) \<longleftrightarrow> True" |
|
186 |
| "bound0 (NClosed P) \<longleftrightarrow> True" |
|
50313 | 187 |
|
23274 | 188 |
lemma bound0_I: |
67123 | 189 |
assumes "bound0 p" |
55981 | 190 |
shows "Ifm bbs (b # bs) p = Ifm bbs (b' # bs) p" |
67123 | 191 |
using assms numbound0_I[where b="b" and bs="bs" and b'="b'"] |
50313 | 192 |
by (induct p rule: fm.induct) (auto simp add: gr0_conv_Suc) |
23274 | 193 |
|
50313 | 194 |
fun numsubst0 :: "num \<Rightarrow> num \<Rightarrow> num" |
67123 | 195 |
where |
196 |
"numsubst0 t (C c) = (C c)" |
|
197 |
| "numsubst0 t (Bound n) = (if n = 0 then t else Bound n)" |
|
198 |
| "numsubst0 t (CN 0 i a) = Add (Mul i t) (numsubst0 t a)" |
|
199 |
| "numsubst0 t (CN n i a) = CN n i (numsubst0 t a)" |
|
200 |
| "numsubst0 t (Neg a) = Neg (numsubst0 t a)" |
|
201 |
| "numsubst0 t (Add a b) = Add (numsubst0 t a) (numsubst0 t b)" |
|
202 |
| "numsubst0 t (Sub a b) = Sub (numsubst0 t a) (numsubst0 t b)" |
|
203 |
| "numsubst0 t (Mul i a) = Mul i (numsubst0 t a)" |
|
23274 | 204 |
|
67123 | 205 |
lemma numsubst0_I: "Inum (b # bs) (numsubst0 a t) = Inum ((Inum (b # bs) a) # bs) t" |
50313 | 206 |
by (induct t rule: numsubst0.induct) (auto simp: nth_Cons') |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
207 |
|
67123 | 208 |
lemma numsubst0_I': "numbound0 a \<Longrightarrow> Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b'#bs) a)#bs) t" |
50313 | 209 |
by (induct t rule: numsubst0.induct) (auto simp: nth_Cons' numbound0_I[where b="b" and b'="b'"]) |
23274 | 210 |
|
67123 | 211 |
primrec subst0:: "num \<Rightarrow> fm \<Rightarrow> fm" \<comment> \<open>substitute a \<open>num\<close> into a formula for Bound 0\<close> |
212 |
where |
|
213 |
"subst0 t T = T" |
|
214 |
| "subst0 t F = F" |
|
215 |
| "subst0 t (Lt a) = Lt (numsubst0 t a)" |
|
216 |
| "subst0 t (Le a) = Le (numsubst0 t a)" |
|
217 |
| "subst0 t (Gt a) = Gt (numsubst0 t a)" |
|
218 |
| "subst0 t (Ge a) = Ge (numsubst0 t a)" |
|
219 |
| "subst0 t (Eq a) = Eq (numsubst0 t a)" |
|
220 |
| "subst0 t (NEq a) = NEq (numsubst0 t a)" |
|
221 |
| "subst0 t (Dvd i a) = Dvd i (numsubst0 t a)" |
|
222 |
| "subst0 t (NDvd i a) = NDvd i (numsubst0 t a)" |
|
74101 | 223 |
| "subst0 t (Not p) = Not (subst0 t p)" |
67123 | 224 |
| "subst0 t (And p q) = And (subst0 t p) (subst0 t q)" |
225 |
| "subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)" |
|
226 |
| "subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)" |
|
227 |
| "subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)" |
|
228 |
| "subst0 t (Closed P) = (Closed P)" |
|
229 |
| "subst0 t (NClosed P) = (NClosed P)" |
|
23274 | 230 |
|
50313 | 231 |
lemma subst0_I: |
55999 | 232 |
assumes "qfree p" |
55885 | 233 |
shows "Ifm bbs (b # bs) (subst0 a p) = Ifm bbs (Inum (b # bs) a # bs) p" |
55999 | 234 |
using assms numsubst0_I[where b="b" and bs="bs" and a="a"] |
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
235 |
by (induct p) (simp_all add: gr0_conv_Suc) |
23274 | 236 |
|
50313 | 237 |
fun decrnum:: "num \<Rightarrow> num" |
67123 | 238 |
where |
239 |
"decrnum (Bound n) = Bound (n - 1)" |
|
240 |
| "decrnum (Neg a) = Neg (decrnum a)" |
|
241 |
| "decrnum (Add a b) = Add (decrnum a) (decrnum b)" |
|
242 |
| "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)" |
|
243 |
| "decrnum (Mul c a) = Mul c (decrnum a)" |
|
244 |
| "decrnum (CN n i a) = (CN (n - 1) i (decrnum a))" |
|
245 |
| "decrnum a = a" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
246 |
|
50313 | 247 |
fun decr :: "fm \<Rightarrow> fm" |
67123 | 248 |
where |
249 |
"decr (Lt a) = Lt (decrnum a)" |
|
250 |
| "decr (Le a) = Le (decrnum a)" |
|
251 |
| "decr (Gt a) = Gt (decrnum a)" |
|
252 |
| "decr (Ge a) = Ge (decrnum a)" |
|
253 |
| "decr (Eq a) = Eq (decrnum a)" |
|
254 |
| "decr (NEq a) = NEq (decrnum a)" |
|
255 |
| "decr (Dvd i a) = Dvd i (decrnum a)" |
|
256 |
| "decr (NDvd i a) = NDvd i (decrnum a)" |
|
74101 | 257 |
| "decr (Not p) = Not (decr p)" |
67123 | 258 |
| "decr (And p q) = And (decr p) (decr q)" |
259 |
| "decr (Or p q) = Or (decr p) (decr q)" |
|
260 |
| "decr (Imp p q) = Imp (decr p) (decr q)" |
|
261 |
| "decr (Iff p q) = Iff (decr p) (decr q)" |
|
262 |
| "decr p = p" |
|
23274 | 263 |
|
50313 | 264 |
lemma decrnum: |
67123 | 265 |
assumes "numbound0 t" |
55885 | 266 |
shows "Inum (x # bs) t = Inum bs (decrnum t)" |
67123 | 267 |
using assms by (induct t rule: decrnum.induct) (auto simp add: gr0_conv_Suc) |
23274 | 268 |
|
50313 | 269 |
lemma decr: |
67123 | 270 |
assumes assms: "bound0 p" |
55885 | 271 |
shows "Ifm bbs (x # bs) p = Ifm bbs bs (decr p)" |
67123 | 272 |
using assms by (induct p rule: decr.induct) (simp_all add: gr0_conv_Suc decrnum) |
23274 | 273 |
|
274 |
lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)" |
|
50313 | 275 |
by (induct p) simp_all |
23274 | 276 |
|
61586 | 277 |
fun isatom :: "fm \<Rightarrow> bool" \<comment> \<open>test for atomicity\<close> |
67123 | 278 |
where |
279 |
"isatom T \<longleftrightarrow> True" |
|
280 |
| "isatom F \<longleftrightarrow> True" |
|
281 |
| "isatom (Lt a) \<longleftrightarrow> True" |
|
282 |
| "isatom (Le a) \<longleftrightarrow> True" |
|
283 |
| "isatom (Gt a) \<longleftrightarrow> True" |
|
284 |
| "isatom (Ge a) \<longleftrightarrow> True" |
|
285 |
| "isatom (Eq a) \<longleftrightarrow> True" |
|
286 |
| "isatom (NEq a) \<longleftrightarrow> True" |
|
287 |
| "isatom (Dvd i b) \<longleftrightarrow> True" |
|
288 |
| "isatom (NDvd i b) \<longleftrightarrow> True" |
|
289 |
| "isatom (Closed P) \<longleftrightarrow> True" |
|
290 |
| "isatom (NClosed P) \<longleftrightarrow> True" |
|
291 |
| "isatom p \<longleftrightarrow> False" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
292 |
|
50313 | 293 |
lemma numsubst0_numbound0: |
55844 | 294 |
assumes "numbound0 t" |
23274 | 295 |
shows "numbound0 (numsubst0 t a)" |
55844 | 296 |
using assms |
60708 | 297 |
proof (induct a) |
67123 | 298 |
case (CN n) |
60708 | 299 |
then show ?case by (cases n) simp_all |
300 |
qed simp_all |
|
23274 | 301 |
|
50313 | 302 |
lemma subst0_bound0: |
55844 | 303 |
assumes qf: "qfree p" |
304 |
and nb: "numbound0 t" |
|
23274 | 305 |
shows "bound0 (subst0 t p)" |
50313 | 306 |
using qf numsubst0_numbound0[OF nb] by (induct p) auto |
23274 | 307 |
|
308 |
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p" |
|
50313 | 309 |
by (induct p) simp_all |
23274 | 310 |
|
311 |
||
50313 | 312 |
definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" |
313 |
where |
|
314 |
"djf f p q = |
|
55885 | 315 |
(if q = T then T |
316 |
else if q = F then f p |
|
317 |
else |
|
318 |
let fp = f p |
|
319 |
in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q)" |
|
50313 | 320 |
|
321 |
definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" |
|
322 |
where "evaldjf f ps = foldr (djf f) ps F" |
|
23274 | 323 |
|
324 |
lemma djf_Or: "Ifm bbs bs (djf f p q) = Ifm bbs bs (Or (f p) q)" |
|
55885 | 325 |
by (cases "q=T", simp add: djf_def, cases "q = F", simp add: djf_def) |
50313 | 326 |
(cases "f p", simp_all add: Let_def djf_def) |
23274 | 327 |
|
55885 | 328 |
lemma evaldjf_ex: "Ifm bbs bs (evaldjf f ps) \<longleftrightarrow> (\<exists>p \<in> set ps. Ifm bbs bs (f p))" |
50313 | 329 |
by (induct ps) (simp_all add: evaldjf_def djf_Or) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
330 |
|
50313 | 331 |
lemma evaldjf_bound0: |
332 |
assumes nb: "\<forall>x\<in> set xs. bound0 (f x)" |
|
23274 | 333 |
shows "bound0 (evaldjf f xs)" |
55422 | 334 |
using nb by (induct xs) (auto simp add: evaldjf_def djf_def Let_def, case_tac "f a", auto) |
23274 | 335 |
|
50313 | 336 |
lemma evaldjf_qf: |
337 |
assumes nb: "\<forall>x\<in> set xs. qfree (f x)" |
|
23274 | 338 |
shows "qfree (evaldjf f xs)" |
55422 | 339 |
using nb by (induct xs) (auto simp add: evaldjf_def djf_def Let_def, case_tac "f a", auto) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
340 |
|
50313 | 341 |
fun disjuncts :: "fm \<Rightarrow> fm list" |
67123 | 342 |
where |
343 |
"disjuncts (Or p q) = disjuncts p @ disjuncts q" |
|
344 |
| "disjuncts F = []" |
|
345 |
| "disjuncts p = [p]" |
|
23274 | 346 |
|
55885 | 347 |
lemma disjuncts: "(\<exists>q \<in> set (disjuncts p). Ifm bbs bs q) \<longleftrightarrow> Ifm bbs bs p" |
348 |
by (induct p rule: disjuncts.induct) auto |
|
23274 | 349 |
|
50313 | 350 |
lemma disjuncts_nb: |
55999 | 351 |
assumes "bound0 p" |
50313 | 352 |
shows "\<forall>q \<in> set (disjuncts p). bound0 q" |
353 |
proof - |
|
55999 | 354 |
from assms have "list_all bound0 (disjuncts p)" |
50313 | 355 |
by (induct p rule: disjuncts.induct) auto |
55999 | 356 |
then show ?thesis |
357 |
by (simp only: list_all_iff) |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
358 |
qed |
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
359 |
|
50313 | 360 |
lemma disjuncts_qf: |
55999 | 361 |
assumes "qfree p" |
50313 | 362 |
shows "\<forall>q \<in> set (disjuncts p). qfree q" |
363 |
proof - |
|
55999 | 364 |
from assms have "list_all qfree (disjuncts p)" |
50313 | 365 |
by (induct p rule: disjuncts.induct) auto |
55885 | 366 |
then show ?thesis by (simp only: list_all_iff) |
23274 | 367 |
qed |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
368 |
|
50313 | 369 |
definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" |
370 |
where "DJ f p = evaldjf f (disjuncts p)" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
371 |
|
50313 | 372 |
lemma DJ: |
55999 | 373 |
assumes "\<forall>p q. f (Or p q) = Or (f p) (f q)" |
374 |
and "f F = F" |
|
23274 | 375 |
shows "Ifm bbs bs (DJ f p) = Ifm bbs bs (f p)" |
50313 | 376 |
proof - |
55999 | 377 |
have "Ifm bbs bs (DJ f p) \<longleftrightarrow> (\<exists>q \<in> set (disjuncts p). Ifm bbs bs (f q))" |
50313 | 378 |
by (simp add: DJ_def evaldjf_ex) |
55999 | 379 |
also from assms have "\<dots> = Ifm bbs bs (f p)" |
380 |
by (induct p rule: disjuncts.induct) auto |
|
23274 | 381 |
finally show ?thesis . |
382 |
qed |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
383 |
|
50313 | 384 |
lemma DJ_qf: |
55999 | 385 |
assumes "\<forall>p. qfree p \<longrightarrow> qfree (f p)" |
23274 | 386 |
shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) " |
50313 | 387 |
proof clarify |
55844 | 388 |
fix p |
389 |
assume qf: "qfree p" |
|
390 |
have th: "DJ f p = evaldjf f (disjuncts p)" |
|
391 |
by (simp add: DJ_def) |
|
55925 | 392 |
from disjuncts_qf[OF qf] have "\<forall>q \<in> set (disjuncts p). qfree q" . |
55999 | 393 |
with assms have th': "\<forall>q \<in> set (disjuncts p). qfree (f q)" |
55844 | 394 |
by blast |
395 |
from evaldjf_qf[OF th'] th show "qfree (DJ f p)" |
|
396 |
by simp |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
397 |
qed |
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
398 |
|
50313 | 399 |
lemma DJ_qe: |
55885 | 400 |
assumes qe: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> Ifm bbs bs (qe p) = Ifm bbs bs (E p)" |
401 |
shows "\<forall>bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> Ifm bbs bs ((DJ qe p)) = Ifm bbs bs (E p)" |
|
50313 | 402 |
proof clarify |
55844 | 403 |
fix p :: fm |
404 |
fix bs |
|
23274 | 405 |
assume qf: "qfree p" |
55844 | 406 |
from qe have qth: "\<forall>p. qfree p \<longrightarrow> qfree (qe p)" |
407 |
by blast |
|
55925 | 408 |
from DJ_qf[OF qth] qf have qfth: "qfree (DJ qe p)" |
55844 | 409 |
by auto |
50313 | 410 |
have "Ifm bbs bs (DJ qe p) = (\<exists>q\<in> set (disjuncts p). Ifm bbs bs (qe q))" |
23274 | 411 |
by (simp add: DJ_def evaldjf_ex) |
55999 | 412 |
also have "\<dots> \<longleftrightarrow> (\<exists>q \<in> set (disjuncts p). Ifm bbs bs (E q))" |
50313 | 413 |
using qe disjuncts_qf[OF qf] by auto |
55925 | 414 |
also have "\<dots> \<longleftrightarrow> Ifm bbs bs (E p)" |
50313 | 415 |
by (induct p rule: disjuncts.induct) auto |
416 |
finally show "qfree (DJ qe p) \<and> Ifm bbs bs (DJ qe p) = Ifm bbs bs (E p)" |
|
417 |
using qfth by blast |
|
23274 | 418 |
qed |
50313 | 419 |
|
420 |
||
70091 | 421 |
subsection \<open>Simplification\<close> |
23274 | 422 |
|
60533 | 423 |
text \<open>Algebraic simplifications for nums\<close> |
41837 | 424 |
|
50313 | 425 |
fun bnds :: "num \<Rightarrow> nat list" |
67123 | 426 |
where |
427 |
"bnds (Bound n) = [n]" |
|
428 |
| "bnds (CN n c a) = n # bnds a" |
|
429 |
| "bnds (Neg a) = bnds a" |
|
430 |
| "bnds (Add a b) = bnds a @ bnds b" |
|
431 |
| "bnds (Sub a b) = bnds a @ bnds b" |
|
432 |
| "bnds (Mul i a) = bnds a" |
|
433 |
| "bnds a = []" |
|
41837 | 434 |
|
50313 | 435 |
fun lex_ns:: "nat list \<Rightarrow> nat list \<Rightarrow> bool" |
67123 | 436 |
where |
437 |
"lex_ns [] ms \<longleftrightarrow> True" |
|
438 |
| "lex_ns ns [] \<longleftrightarrow> False" |
|
439 |
| "lex_ns (n # ns) (m # ms) \<longleftrightarrow> n < m \<or> (n = m \<and> lex_ns ns ms)" |
|
23274 | 440 |
|
50313 | 441 |
definition lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool" |
442 |
where "lex_bnd t s = lex_ns (bnds t) (bnds s)" |
|
443 |
||
66809 | 444 |
fun numadd:: "num \<Rightarrow> num \<Rightarrow> num" |
67123 | 445 |
where |
446 |
"numadd (CN n1 c1 r1) (CN n2 c2 r2) = |
|
447 |
(if n1 = n2 then |
|
448 |
let c = c1 + c2 |
|
449 |
in if c = 0 then numadd r1 r2 else CN n1 c (numadd r1 r2) |
|
450 |
else if n1 \<le> n2 then CN n1 c1 (numadd r1 (Add (Mul c2 (Bound n2)) r2)) |
|
451 |
else CN n2 c2 (numadd (Add (Mul c1 (Bound n1)) r1) r2))" |
|
452 |
| "numadd (CN n1 c1 r1) t = CN n1 c1 (numadd r1 t)" |
|
453 |
| "numadd t (CN n2 c2 r2) = CN n2 c2 (numadd t r2)" |
|
454 |
| "numadd (C b1) (C b2) = C (b1 + b2)" |
|
455 |
| "numadd a b = Add a b" |
|
23274 | 456 |
|
66809 | 457 |
lemma numadd: "Inum bs (numadd t s) = Inum bs (Add t s)" |
458 |
by (induct t s rule: numadd.induct) (simp_all add: Let_def algebra_simps add_eq_0_iff) |
|
23274 | 459 |
|
66809 | 460 |
lemma numadd_nb: "numbound0 t \<Longrightarrow> numbound0 s \<Longrightarrow> numbound0 (numadd t s)" |
461 |
by (induct t s rule: numadd.induct) (simp_all add: Let_def) |
|
23274 | 462 |
|
50313 | 463 |
fun nummul :: "int \<Rightarrow> num \<Rightarrow> num" |
67123 | 464 |
where |
465 |
"nummul i (C j) = C (i * j)" |
|
466 |
| "nummul i (CN n c t) = CN n (c * i) (nummul i t)" |
|
467 |
| "nummul i t = Mul i t" |
|
23274 | 468 |
|
50313 | 469 |
lemma nummul: "Inum bs (nummul i t) = Inum bs (Mul i t)" |
66809 | 470 |
by (induct t arbitrary: i rule: nummul.induct) (simp_all add: algebra_simps) |
23274 | 471 |
|
50313 | 472 |
lemma nummul_nb: "numbound0 t \<Longrightarrow> numbound0 (nummul i t)" |
66809 | 473 |
by (induct t arbitrary: i rule: nummul.induct) (simp_all add: numadd_nb) |
23274 | 474 |
|
50313 | 475 |
definition numneg :: "num \<Rightarrow> num" |
476 |
where "numneg t = nummul (- 1) t" |
|
23274 | 477 |
|
50313 | 478 |
definition numsub :: "num \<Rightarrow> num \<Rightarrow> num" |
66809 | 479 |
where "numsub s t = (if s = t then C 0 else numadd s (numneg t))" |
23274 | 480 |
|
481 |
lemma numneg: "Inum bs (numneg t) = Inum bs (Neg t)" |
|
50313 | 482 |
using numneg_def nummul by simp |
23274 | 483 |
|
484 |
lemma numneg_nb: "numbound0 t \<Longrightarrow> numbound0 (numneg t)" |
|
50313 | 485 |
using numneg_def nummul_nb by simp |
23274 | 486 |
|
487 |
lemma numsub: "Inum bs (numsub a b) = Inum bs (Sub a b)" |
|
50313 | 488 |
using numneg numadd numsub_def by simp |
23274 | 489 |
|
50313 | 490 |
lemma numsub_nb: "numbound0 t \<Longrightarrow> numbound0 s \<Longrightarrow> numbound0 (numsub t s)" |
491 |
using numsub_def numadd_nb numneg_nb by simp |
|
23274 | 492 |
|
50313 | 493 |
fun simpnum :: "num \<Rightarrow> num" |
67123 | 494 |
where |
495 |
"simpnum (C j) = C j" |
|
496 |
| "simpnum (Bound n) = CN n 1 (C 0)" |
|
497 |
| "simpnum (Neg t) = numneg (simpnum t)" |
|
498 |
| "simpnum (Add t s) = numadd (simpnum t) (simpnum s)" |
|
499 |
| "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)" |
|
500 |
| "simpnum (Mul i t) = (if i = 0 then C 0 else nummul i (simpnum t))" |
|
501 |
| "simpnum t = t" |
|
23274 | 502 |
|
503 |
lemma simpnum_ci: "Inum bs (simpnum t) = Inum bs t" |
|
50313 | 504 |
by (induct t rule: simpnum.induct) (auto simp add: numneg numadd numsub nummul) |
23274 | 505 |
|
50313 | 506 |
lemma simpnum_numbound0: "numbound0 t \<Longrightarrow> numbound0 (simpnum t)" |
507 |
by (induct t rule: simpnum.induct) (auto simp add: numadd_nb numsub_nb nummul_nb numneg_nb) |
|
23274 | 508 |
|
50313 | 509 |
fun not :: "fm \<Rightarrow> fm" |
67123 | 510 |
where |
74101 | 511 |
"not (Not p) = p" |
67123 | 512 |
| "not T = F" |
513 |
| "not F = T" |
|
74101 | 514 |
| "not p = Not p" |
50313 | 515 |
|
74101 | 516 |
lemma not: "Ifm bbs bs (not p) = Ifm bbs bs (Not p)" |
41807 | 517 |
by (cases p) auto |
50313 | 518 |
|
23274 | 519 |
lemma not_qf: "qfree p \<Longrightarrow> qfree (not p)" |
41807 | 520 |
by (cases p) auto |
50313 | 521 |
|
23274 | 522 |
lemma not_bn: "bound0 p \<Longrightarrow> bound0 (not p)" |
41807 | 523 |
by (cases p) auto |
23274 | 524 |
|
50313 | 525 |
definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 526 |
where "conj p q = |
60708 | 527 |
(if p = F \<or> q = F then F |
528 |
else if p = T then q |
|
529 |
else if q = T then p |
|
530 |
else And p q)" |
|
50313 | 531 |
|
23274 | 532 |
lemma conj: "Ifm bbs bs (conj p q) = Ifm bbs bs (And p q)" |
55844 | 533 |
by (cases "p = F \<or> q = F", simp_all add: conj_def) (cases p, simp_all) |
23274 | 534 |
|
50313 | 535 |
lemma conj_qf: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (conj p q)" |
536 |
using conj_def by auto |
|
23274 | 537 |
|
50313 | 538 |
lemma conj_nb: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (conj p q)" |
539 |
using conj_def by auto |
|
540 |
||
541 |
definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
|
67123 | 542 |
where "disj p q = |
60708 | 543 |
(if p = T \<or> q = T then T |
544 |
else if p = F then q |
|
545 |
else if q = F then p |
|
546 |
else Or p q)" |
|
23274 | 547 |
|
548 |
lemma disj: "Ifm bbs bs (disj p q) = Ifm bbs bs (Or p q)" |
|
55885 | 549 |
by (cases "p = T \<or> q = T", simp_all add: disj_def) (cases p, simp_all) |
50313 | 550 |
|
55844 | 551 |
lemma disj_qf: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (disj p q)" |
50313 | 552 |
using disj_def by auto |
553 |
||
55844 | 554 |
lemma disj_nb: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (disj p q)" |
50313 | 555 |
using disj_def by auto |
23274 | 556 |
|
50313 | 557 |
definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 558 |
where "imp p q = |
60708 | 559 |
(if p = F \<or> q = T then T |
560 |
else if p = T then q |
|
561 |
else if q = F then not p |
|
562 |
else Imp p q)" |
|
50313 | 563 |
|
23274 | 564 |
lemma imp: "Ifm bbs bs (imp p q) = Ifm bbs bs (Imp p q)" |
55844 | 565 |
by (cases "p = F \<or> q = T", simp_all add: imp_def, cases p) (simp_all add: not) |
50313 | 566 |
|
567 |
lemma imp_qf: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (imp p q)" |
|
55844 | 568 |
using imp_def by (cases "p = F \<or> q = T", simp_all add: imp_def, cases p) (simp_all add: not_qf) |
50313 | 569 |
|
570 |
lemma imp_nb: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (imp p q)" |
|
55844 | 571 |
using imp_def by (cases "p = F \<or> q = T", simp_all add: imp_def, cases p) simp_all |
23274 | 572 |
|
50313 | 573 |
definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" |
67123 | 574 |
where "iff p q = |
55885 | 575 |
(if p = q then T |
576 |
else if p = not q \<or> not p = q then F |
|
577 |
else if p = F then not q |
|
578 |
else if q = F then not p |
|
579 |
else if p = T then q |
|
580 |
else if q = T then p |
|
581 |
else Iff p q)" |
|
50313 | 582 |
|
23274 | 583 |
lemma iff: "Ifm bbs bs (iff p q) = Ifm bbs bs (Iff p q)" |
55885 | 584 |
by (unfold iff_def, cases "p = q", simp, cases "p = not q", simp add: not) |
585 |
(cases "not p = q", auto simp add: not) |
|
50313 | 586 |
|
55885 | 587 |
lemma iff_qf: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (iff p q)" |
588 |
by (unfold iff_def, cases "p = q", auto simp add: not_qf) |
|
23274 | 589 |
|
55885 | 590 |
lemma iff_nb: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (iff p q)" |
591 |
using iff_def by (unfold iff_def, cases "p = q", auto simp add: not_bn) |
|
50313 | 592 |
|
66809 | 593 |
fun simpfm :: "fm \<Rightarrow> fm" |
67123 | 594 |
where |
595 |
"simpfm (And p q) = conj (simpfm p) (simpfm q)" |
|
596 |
| "simpfm (Or p q) = disj (simpfm p) (simpfm q)" |
|
597 |
| "simpfm (Imp p q) = imp (simpfm p) (simpfm q)" |
|
598 |
| "simpfm (Iff p q) = iff (simpfm p) (simpfm q)" |
|
74101 | 599 |
| "simpfm (Not p) = not (simpfm p)" |
67123 | 600 |
| "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if v < 0 then T else F | _ \<Rightarrow> Lt a')" |
601 |
| "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if v \<le> 0 then T else F | _ \<Rightarrow> Le a')" |
|
602 |
| "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if v > 0 then T else F | _ \<Rightarrow> Gt a')" |
|
603 |
| "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if v \<ge> 0 then T else F | _ \<Rightarrow> Ge a')" |
|
604 |
| "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if v = 0 then T else F | _ \<Rightarrow> Eq a')" |
|
605 |
| "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if v \<noteq> 0 then T else F | _ \<Rightarrow> NEq a')" |
|
606 |
| "simpfm (Dvd i a) = |
|
607 |
(if i = 0 then simpfm (Eq a) |
|
608 |
else if \<bar>i\<bar> = 1 then T |
|
609 |
else let a' = simpnum a in case a' of C v \<Rightarrow> if i dvd v then T else F | _ \<Rightarrow> Dvd i a')" |
|
610 |
| "simpfm (NDvd i a) = |
|
611 |
(if i = 0 then simpfm (NEq a) |
|
612 |
else if \<bar>i\<bar> = 1 then F |
|
613 |
else let a' = simpnum a in case a' of C v \<Rightarrow> if \<not>( i dvd v) then T else F | _ \<Rightarrow> NDvd i a')" |
|
614 |
| "simpfm p = p" |
|
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
615 |
|
23274 | 616 |
lemma simpfm: "Ifm bbs bs (simpfm p) = Ifm bbs bs p" |
55844 | 617 |
proof (induct p rule: simpfm.induct) |
50313 | 618 |
case (6 a) |
619 |
let ?sa = "simpnum a" |
|
55925 | 620 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
621 |
by simp |
|
60708 | 622 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
623 |
then show ?case |
|
624 |
proof cases |
|
625 |
case 1 |
|
626 |
with sa show ?thesis by simp |
|
627 |
next |
|
628 |
case 2 |
|
629 |
with sa show ?thesis by (cases ?sa) (simp_all add: Let_def) |
|
630 |
qed |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
631 |
next |
50313 | 632 |
case (7 a) |
633 |
let ?sa = "simpnum a" |
|
55925 | 634 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
635 |
by simp |
|
60708 | 636 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
637 |
then show ?case |
|
638 |
proof cases |
|
639 |
case 1 |
|
640 |
with sa show ?thesis by simp |
|
641 |
next |
|
642 |
case 2 |
|
643 |
with sa show ?thesis by (cases ?sa) (simp_all add: Let_def) |
|
644 |
qed |
|
23274 | 645 |
next |
50313 | 646 |
case (8 a) |
647 |
let ?sa = "simpnum a" |
|
55925 | 648 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
649 |
by simp |
|
60708 | 650 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
651 |
then show ?case |
|
652 |
proof cases |
|
653 |
case 1 |
|
654 |
with sa show ?thesis by simp |
|
655 |
next |
|
656 |
case 2 |
|
657 |
with sa show ?thesis by (cases ?sa) (simp_all add: Let_def) |
|
658 |
qed |
|
23274 | 659 |
next |
50313 | 660 |
case (9 a) |
661 |
let ?sa = "simpnum a" |
|
55925 | 662 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
663 |
by simp |
|
60708 | 664 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
665 |
then show ?case |
|
666 |
proof cases |
|
667 |
case 1 |
|
668 |
with sa show ?thesis by simp |
|
669 |
next |
|
670 |
case 2 |
|
671 |
with sa show ?thesis by (cases ?sa) (simp_all add: Let_def) |
|
672 |
qed |
|
23274 | 673 |
next |
50313 | 674 |
case (10 a) |
675 |
let ?sa = "simpnum a" |
|
55925 | 676 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
677 |
by simp |
|
60708 | 678 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
679 |
then show ?case |
|
680 |
proof cases |
|
681 |
case 1 |
|
682 |
with sa show ?thesis by simp |
|
683 |
next |
|
684 |
case 2 |
|
685 |
with sa show ?thesis by (cases ?sa) (simp_all add: Let_def) |
|
686 |
qed |
|
23274 | 687 |
next |
50313 | 688 |
case (11 a) |
689 |
let ?sa = "simpnum a" |
|
55925 | 690 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
691 |
by simp |
|
60708 | 692 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
693 |
then show ?case |
|
694 |
proof cases |
|
695 |
case 1 |
|
696 |
with sa show ?thesis by simp |
|
697 |
next |
|
698 |
case 2 |
|
699 |
with sa show ?thesis by (cases ?sa) (simp_all add: Let_def) |
|
700 |
qed |
|
23274 | 701 |
next |
50313 | 702 |
case (12 i a) |
703 |
let ?sa = "simpnum a" |
|
55925 | 704 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
705 |
by simp |
|
61945 | 706 |
consider "i = 0" | "\<bar>i\<bar> = 1" | "i \<noteq> 0" "\<bar>i\<bar> \<noteq> 1" by blast |
60708 | 707 |
then show ?case |
708 |
proof cases |
|
709 |
case 1 |
|
710 |
then show ?thesis |
|
711 |
using "12.hyps" by (simp add: dvd_def Let_def) |
|
712 |
next |
|
713 |
case 2 |
|
714 |
with one_dvd[of "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"] |
|
715 |
show ?thesis |
|
55925 | 716 |
apply (cases "i = 0") |
717 |
apply (simp_all add: Let_def) |
|
718 |
apply (cases "i > 0") |
|
719 |
apply simp_all |
|
50313 | 720 |
done |
60708 | 721 |
next |
722 |
case i: 3 |
|
723 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
|
724 |
then show ?thesis |
|
725 |
proof cases |
|
726 |
case 1 |
|
727 |
with sa[symmetric] i show ?thesis |
|
61945 | 728 |
by (cases "\<bar>i\<bar> = 1") auto |
60708 | 729 |
next |
730 |
case 2 |
|
55925 | 731 |
then have "simpfm (Dvd i a) = Dvd i ?sa" |
60708 | 732 |
using i by (cases ?sa) (auto simp add: Let_def) |
733 |
with sa show ?thesis by simp |
|
734 |
qed |
|
735 |
qed |
|
50313 | 736 |
next |
737 |
case (13 i a) |
|
55925 | 738 |
let ?sa = "simpnum a" |
739 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" |
|
740 |
by simp |
|
61945 | 741 |
consider "i = 0" | "\<bar>i\<bar> = 1" | "i \<noteq> 0" "\<bar>i\<bar> \<noteq> 1" by blast |
60708 | 742 |
then show ?case |
743 |
proof cases |
|
744 |
case 1 |
|
745 |
then show ?thesis |
|
746 |
using "13.hyps" by (simp add: dvd_def Let_def) |
|
747 |
next |
|
748 |
case 2 |
|
749 |
with one_dvd[of "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"] |
|
750 |
show ?thesis |
|
55925 | 751 |
apply (cases "i = 0") |
752 |
apply (simp_all add: Let_def) |
|
753 |
apply (cases "i > 0") |
|
754 |
apply simp_all |
|
50313 | 755 |
done |
60708 | 756 |
next |
757 |
case i: 3 |
|
758 |
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast |
|
759 |
then show ?thesis |
|
760 |
proof cases |
|
761 |
case 1 |
|
762 |
with sa[symmetric] i show ?thesis |
|
61945 | 763 |
by (cases "\<bar>i\<bar> = 1") auto |
60708 | 764 |
next |
765 |
case 2 |
|
55925 | 766 |
then have "simpfm (NDvd i a) = NDvd i ?sa" |
60708 | 767 |
using i by (cases ?sa) (auto simp add: Let_def) |
768 |
with sa show ?thesis by simp |
|
769 |
qed |
|
770 |
qed |
|
50313 | 771 |
qed (simp_all add: conj disj imp iff not) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
772 |
|
23274 | 773 |
lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)" |
50313 | 774 |
proof (induct p rule: simpfm.induct) |
55925 | 775 |
case (6 a) |
776 |
then have nb: "numbound0 a" by simp |
|
55885 | 777 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
778 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 779 |
next |
55925 | 780 |
case (7 a) |
781 |
then have nb: "numbound0 a" by simp |
|
55885 | 782 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
783 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 784 |
next |
55925 | 785 |
case (8 a) |
786 |
then have nb: "numbound0 a" by simp |
|
55885 | 787 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
788 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 789 |
next |
55925 | 790 |
case (9 a) |
791 |
then have nb: "numbound0 a" by simp |
|
55885 | 792 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
793 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 794 |
next |
55925 | 795 |
case (10 a) |
796 |
then have nb: "numbound0 a" by simp |
|
55885 | 797 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
798 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 799 |
next |
55925 | 800 |
case (11 a) |
801 |
then have nb: "numbound0 a" by simp |
|
55885 | 802 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
803 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 804 |
next |
55925 | 805 |
case (12 i a) |
806 |
then have nb: "numbound0 a" by simp |
|
55885 | 807 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
808 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
23274 | 809 |
next |
55925 | 810 |
case (13 i a) |
811 |
then have nb: "numbound0 a" by simp |
|
55885 | 812 |
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) |
813 |
then show ?case by (cases "simpnum a") (auto simp add: Let_def) |
|
50313 | 814 |
qed (auto simp add: disj_def imp_def iff_def conj_def not_bn) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
815 |
|
23274 | 816 |
lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)" |
60708 | 817 |
apply (induct p rule: simpfm.induct) |
818 |
apply (auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def) |
|
819 |
apply (case_tac "simpnum a", auto)+ |
|
820 |
done |
|
23274 | 821 |
|
70091 | 822 |
|
823 |
subsection \<open>Generic quantifier elimination\<close> |
|
824 |
||
66809 | 825 |
fun qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm" |
67123 | 826 |
where |
827 |
"qelim (E p) = (\<lambda>qe. DJ qe (qelim p qe))" |
|
74101 | 828 |
| "qelim (A p) = (\<lambda>qe. not (qe ((qelim (Not p) qe))))" |
829 |
| "qelim (Not p) = (\<lambda>qe. not (qelim p qe))" |
|
67123 | 830 |
| "qelim (And p q) = (\<lambda>qe. conj (qelim p qe) (qelim q qe))" |
831 |
| "qelim (Or p q) = (\<lambda>qe. disj (qelim p qe) (qelim q qe))" |
|
832 |
| "qelim (Imp p q) = (\<lambda>qe. imp (qelim p qe) (qelim q qe))" |
|
833 |
| "qelim (Iff p q) = (\<lambda>qe. iff (qelim p qe) (qelim q qe))" |
|
834 |
| "qelim p = (\<lambda>y. simpfm p)" |
|
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
835 |
|
23274 | 836 |
lemma qelim_ci: |
55885 | 837 |
assumes qe_inv: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> Ifm bbs bs (qe p) = Ifm bbs bs (E p)" |
838 |
shows "\<And>bs. qfree (qelim p qe) \<and> Ifm bbs bs (qelim p qe) = Ifm bbs bs p" |
|
50313 | 839 |
using qe_inv DJ_qe[OF qe_inv] |
55964 | 840 |
by (induct p rule: qelim.induct) |
841 |
(auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf |
|
842 |
simpfm simpfm_qf simp del: simpfm.simps) |
|
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
843 |
|
61586 | 844 |
text \<open>Linearity for fm where Bound 0 ranges over \<open>\<int>\<close>\<close> |
50313 | 845 |
|
61586 | 846 |
fun zsplit0 :: "num \<Rightarrow> int \<times> num" \<comment> \<open>splits the bounded from the unbounded part\<close> |
67123 | 847 |
where |
848 |
"zsplit0 (C c) = (0, C c)" |
|
849 |
| "zsplit0 (Bound n) = (if n = 0 then (1, C 0) else (0, Bound n))" |
|
850 |
| "zsplit0 (CN n i a) = |
|
851 |
(let (i', a') = zsplit0 a |
|
852 |
in if n = 0 then (i + i', a') else (i', CN n i a'))" |
|
853 |
| "zsplit0 (Neg a) = (let (i', a') = zsplit0 a in (-i', Neg a'))" |
|
854 |
| "zsplit0 (Add a b) = |
|
855 |
(let |
|
856 |
(ia, a') = zsplit0 a; |
|
857 |
(ib, b') = zsplit0 b |
|
858 |
in (ia + ib, Add a' b'))" |
|
859 |
| "zsplit0 (Sub a b) = |
|
860 |
(let |
|
861 |
(ia, a') = zsplit0 a; |
|
862 |
(ib, b') = zsplit0 b |
|
863 |
in (ia - ib, Sub a' b'))" |
|
864 |
| "zsplit0 (Mul i a) = (let (i', a') = zsplit0 a in (i*i', Mul i a'))" |
|
23274 | 865 |
|
866 |
lemma zsplit0_I: |
|
55964 | 867 |
"\<And>n a. zsplit0 t = (n, a) \<Longrightarrow> |
55921 | 868 |
(Inum ((x::int) # bs) (CN 0 n a) = Inum (x # bs) t) \<and> numbound0 a" |
50313 | 869 |
(is "\<And>n a. ?S t = (n,a) \<Longrightarrow> (?I x (CN 0 n a) = ?I x t) \<and> ?N a") |
870 |
proof (induct t rule: zsplit0.induct) |
|
55844 | 871 |
case (1 c n a) |
872 |
then show ?case by auto |
|
23274 | 873 |
next |
55844 | 874 |
case (2 m n a) |
875 |
then show ?case by (cases "m = 0") auto |
|
23274 | 876 |
next |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
877 |
case (3 m i a n a') |
23274 | 878 |
let ?j = "fst (zsplit0 a)" |
879 |
let ?b = "snd (zsplit0 a)" |
|
55844 | 880 |
have abj: "zsplit0 a = (?j, ?b)" by simp |
60708 | 881 |
show ?case |
882 |
proof (cases "m = 0") |
|
883 |
case False |
|
884 |
with 3(1)[OF abj] 3(2) show ?thesis |
|
55844 | 885 |
by (auto simp add: Let_def split_def) |
60708 | 886 |
next |
887 |
case m: True |
|
55964 | 888 |
with abj have th: "a' = ?b \<and> n = i + ?j" |
889 |
using 3 by (simp add: Let_def split_def) |
|
60708 | 890 |
from abj 3 m have th2: "(?I x (CN 0 ?j ?b) = ?I x a) \<and> ?N ?b" |
55844 | 891 |
by blast |
55964 | 892 |
from th have "?I x (CN 0 n a') = ?I x (CN 0 (i + ?j) ?b)" |
55844 | 893 |
by simp |
894 |
also from th2 have "\<dots> = ?I x (CN 0 i (CN 0 ?j ?b))" |
|
895 |
by (simp add: distrib_right) |
|
896 |
finally have "?I x (CN 0 n a') = ?I x (CN 0 i a)" |
|
897 |
using th2 by simp |
|
60708 | 898 |
with th2 th m show ?thesis |
55844 | 899 |
by blast |
60708 | 900 |
qed |
23274 | 901 |
next |
902 |
case (4 t n a) |
|
903 |
let ?nt = "fst (zsplit0 t)" |
|
904 |
let ?at = "snd (zsplit0 t)" |
|
55964 | 905 |
have abj: "zsplit0 t = (?nt, ?at)" |
906 |
by simp |
|
907 |
then have th: "a = Neg ?at \<and> n = - ?nt" |
|
55844 | 908 |
using 4 by (simp add: Let_def split_def) |
909 |
from abj 4 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" |
|
910 |
by blast |
|
911 |
from th2[simplified] th[simplified] show ?case |
|
912 |
by simp |
|
23274 | 913 |
next |
914 |
case (5 s t n a) |
|
915 |
let ?ns = "fst (zsplit0 s)" |
|
916 |
let ?as = "snd (zsplit0 s)" |
|
917 |
let ?nt = "fst (zsplit0 t)" |
|
918 |
let ?at = "snd (zsplit0 t)" |
|
55844 | 919 |
have abjs: "zsplit0 s = (?ns, ?as)" |
920 |
by simp |
|
921 |
moreover have abjt: "zsplit0 t = (?nt, ?at)" |
|
922 |
by simp |
|
55964 | 923 |
ultimately have th: "a = Add ?as ?at \<and> n = ?ns + ?nt" |
55844 | 924 |
using 5 by (simp add: Let_def split_def) |
55964 | 925 |
from abjs[symmetric] have bluddy: "\<exists>x y. (x, y) = zsplit0 s" |
55844 | 926 |
by blast |
927 |
from 5 have "(\<exists>x y. (x, y) = zsplit0 s) \<longrightarrow> |
|
928 |
(\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (x # bs) (CN 0 xa xb) = Inum (x # bs) t \<and> numbound0 xb)" |
|
929 |
by auto |
|
930 |
with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" |
|
931 |
by blast |
|
932 |
from abjs 5 have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) \<and> ?N ?as" |
|
933 |
by blast |
|
50313 | 934 |
from th3[simplified] th2[simplified] th[simplified] show ?case |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
48891
diff
changeset
|
935 |
by (simp add: distrib_right) |
23274 | 936 |
next |
937 |
case (6 s t n a) |
|
938 |
let ?ns = "fst (zsplit0 s)" |
|
939 |
let ?as = "snd (zsplit0 s)" |
|
940 |
let ?nt = "fst (zsplit0 t)" |
|
941 |
let ?at = "snd (zsplit0 t)" |
|
55844 | 942 |
have abjs: "zsplit0 s = (?ns, ?as)" |
943 |
by simp |
|
944 |
moreover have abjt: "zsplit0 t = (?nt, ?at)" |
|
945 |
by simp |
|
55964 | 946 |
ultimately have th: "a = Sub ?as ?at \<and> n = ?ns - ?nt" |
55844 | 947 |
using 6 by (simp add: Let_def split_def) |
55964 | 948 |
from abjs[symmetric] have bluddy: "\<exists>x y. (x, y) = zsplit0 s" |
55844 | 949 |
by blast |
50313 | 950 |
from 6 have "(\<exists>x y. (x,y) = zsplit0 s) \<longrightarrow> |
951 |
(\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (x # bs) (CN 0 xa xb) = Inum (x # bs) t \<and> numbound0 xb)" |
|
952 |
by auto |
|
55844 | 953 |
with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" |
954 |
by blast |
|
955 |
from abjs 6 have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) \<and> ?N ?as" |
|
956 |
by blast |
|
50313 | 957 |
from th3[simplified] th2[simplified] th[simplified] show ?case |
23274 | 958 |
by (simp add: left_diff_distrib) |
959 |
next |
|
960 |
case (7 i t n a) |
|
961 |
let ?nt = "fst (zsplit0 t)" |
|
962 |
let ?at = "snd (zsplit0 t)" |
|
55844 | 963 |
have abj: "zsplit0 t = (?nt,?at)" |
964 |
by simp |
|
55964 | 965 |
then have th: "a = Mul i ?at \<and> n = i * ?nt" |
55844 | 966 |
using 7 by (simp add: Let_def split_def) |
967 |
from abj 7 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" |
|
968 |
by blast |
|
969 |
then have "?I x (Mul i t) = i * ?I x (CN 0 ?nt ?at)" |
|
970 |
by simp |
|
971 |
also have "\<dots> = ?I x (CN 0 (i*?nt) (Mul i ?at))" |
|
972 |
by (simp add: distrib_left) |
|
973 |
finally show ?case using th th2 |
|
974 |
by simp |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
975 |
qed |
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
976 |
|
67123 | 977 |
fun iszlfm :: "fm \<Rightarrow> bool" \<comment> \<open>linearity test for fm\<close> |
978 |
where |
|
979 |
"iszlfm (And p q) \<longleftrightarrow> iszlfm p \<and> iszlfm q" |
|
980 |
| "iszlfm (Or p q) \<longleftrightarrow> iszlfm p \<and> iszlfm q" |
|
981 |
| "iszlfm (Eq (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> numbound0 e" |
|
982 |
| "iszlfm (NEq (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> numbound0 e" |
|
983 |
| "iszlfm (Lt (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> numbound0 e" |
|
984 |
| "iszlfm (Le (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> numbound0 e" |
|
985 |
| "iszlfm (Gt (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> numbound0 e" |
|
986 |
| "iszlfm (Ge (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> numbound0 e" |
|
987 |
| "iszlfm (Dvd i (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> i > 0 \<and> numbound0 e" |
|
988 |
| "iszlfm (NDvd i (CN 0 c e)) \<longleftrightarrow> c > 0 \<and> i > 0 \<and> numbound0 e" |
|
989 |
| "iszlfm p \<longleftrightarrow> isatom p \<and> bound0 p" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
990 |
|
23274 | 991 |
lemma zlin_qfree: "iszlfm p \<Longrightarrow> qfree p" |
992 |
by (induct p rule: iszlfm.induct) auto |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
993 |
|
67123 | 994 |
fun zlfm :: "fm \<Rightarrow> fm" \<comment> \<open>linearity transformation for fm\<close> |
995 |
where |
|
996 |
"zlfm (And p q) = And (zlfm p) (zlfm q)" |
|
997 |
| "zlfm (Or p q) = Or (zlfm p) (zlfm q)" |
|
74101 | 998 |
| "zlfm (Imp p q) = Or (zlfm (Not p)) (zlfm q)" |
999 |
| "zlfm (Iff p q) = Or (And (zlfm p) (zlfm q)) (And (zlfm (Not p)) (zlfm (Not q)))" |
|
67123 | 1000 |
| "zlfm (Lt a) = |
1001 |
(let (c, r) = zsplit0 a in |
|
1002 |
if c = 0 then Lt r else |
|
1003 |
if c > 0 then (Lt (CN 0 c r)) |
|
1004 |
else Gt (CN 0 (- c) (Neg r)))" |
|
1005 |
| "zlfm (Le a) = |
|
1006 |
(let (c, r) = zsplit0 a in |
|
1007 |
if c = 0 then Le r |
|
1008 |
else if c > 0 then Le (CN 0 c r) |
|
1009 |
else Ge (CN 0 (- c) (Neg r)))" |
|
1010 |
| "zlfm (Gt a) = |
|
1011 |
(let (c, r) = zsplit0 a in |
|
1012 |
if c = 0 then Gt r else |
|
1013 |
if c > 0 then Gt (CN 0 c r) |
|
1014 |
else Lt (CN 0 (- c) (Neg r)))" |
|
1015 |
| "zlfm (Ge a) = |
|
1016 |
(let (c, r) = zsplit0 a in |
|
1017 |
if c = 0 then Ge r |
|
1018 |
else if c > 0 then Ge (CN 0 c r) |
|
1019 |
else Le (CN 0 (- c) (Neg r)))" |
|
1020 |
| "zlfm (Eq a) = |
|
1021 |
(let (c, r) = zsplit0 a in |
|
1022 |
if c = 0 then Eq r |
|
1023 |
else if c > 0 then Eq (CN 0 c r) |
|
1024 |
else Eq (CN 0 (- c) (Neg r)))" |
|
1025 |
| "zlfm (NEq a) = |
|
1026 |
(let (c, r) = zsplit0 a in |
|
1027 |
if c = 0 then NEq r |
|
1028 |
else if c > 0 then NEq (CN 0 c r) |
|
1029 |
else NEq (CN 0 (- c) (Neg r)))" |
|
1030 |
| "zlfm (Dvd i a) = |
|
1031 |
(if i = 0 then zlfm (Eq a) |
|
1032 |
else |
|
1033 |
let (c, r) = zsplit0 a in |
|
1034 |
if c = 0 then Dvd \<bar>i\<bar> r |
|
1035 |
else if c > 0 then Dvd \<bar>i\<bar> (CN 0 c r) |
|
1036 |
else Dvd \<bar>i\<bar> (CN 0 (- c) (Neg r)))" |
|
1037 |
| "zlfm (NDvd i a) = |
|
1038 |
(if i = 0 then zlfm (NEq a) |
|
1039 |
else |
|
1040 |
let (c, r) = zsplit0 a in |
|
1041 |
if c = 0 then NDvd \<bar>i\<bar> r |
|
1042 |
else if c > 0 then NDvd \<bar>i\<bar> (CN 0 c r) |
|
1043 |
else NDvd \<bar>i\<bar> (CN 0 (- c) (Neg r)))" |
|
74101 | 1044 |
| "zlfm (Not (And p q)) = Or (zlfm (Not p)) (zlfm (Not q))" |
1045 |
| "zlfm (Not (Or p q)) = And (zlfm (Not p)) (zlfm (Not q))" |
|
1046 |
| "zlfm (Not (Imp p q)) = And (zlfm p) (zlfm (Not q))" |
|
1047 |
| "zlfm (Not (Iff p q)) = Or (And(zlfm p) (zlfm(Not q))) (And (zlfm(Not p)) (zlfm q))" |
|
1048 |
| "zlfm (Not (Not p)) = zlfm p" |
|
1049 |
| "zlfm (Not T) = F" |
|
1050 |
| "zlfm (Not F) = T" |
|
1051 |
| "zlfm (Not (Lt a)) = zlfm (Ge a)" |
|
1052 |
| "zlfm (Not (Le a)) = zlfm (Gt a)" |
|
1053 |
| "zlfm (Not (Gt a)) = zlfm (Le a)" |
|
1054 |
| "zlfm (Not (Ge a)) = zlfm (Lt a)" |
|
1055 |
| "zlfm (Not (Eq a)) = zlfm (NEq a)" |
|
1056 |
| "zlfm (Not (NEq a)) = zlfm (Eq a)" |
|
1057 |
| "zlfm (Not (Dvd i a)) = zlfm (NDvd i a)" |
|
1058 |
| "zlfm (Not (NDvd i a)) = zlfm (Dvd i a)" |
|
1059 |
| "zlfm (Not (Closed P)) = NClosed P" |
|
1060 |
| "zlfm (Not (NClosed P)) = Closed P" |
|
67123 | 1061 |
| "zlfm p = p" |
23274 | 1062 |
|
1063 |
lemma zlfm_I: |
|
1064 |
assumes qfp: "qfree p" |
|
55981 | 1065 |
shows "Ifm bbs (i # bs) (zlfm p) = Ifm bbs (i # bs) p \<and> iszlfm (zlfm p)" |
60708 | 1066 |
(is "?I (?l p) = ?I p \<and> ?L (?l p)") |
50313 | 1067 |
using qfp |
1068 |
proof (induct p rule: zlfm.induct) |
|
1069 |
case (5 a) |
|
23274 | 1070 |
let ?c = "fst (zsplit0 a)" |
1071 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1072 |
have spl: "zsplit0 a = (?c, ?r)" |
1073 |
by simp |
|
50313 | 1074 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55964 | 1075 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
55844 | 1076 |
by auto |
55964 | 1077 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
1078 |
from 5 Ia nb show ?case |
|
50313 | 1079 |
apply (auto simp add: Let_def split_def algebra_simps) |
55844 | 1080 |
apply (cases "?r") |
1081 |
apply auto |
|
60708 | 1082 |
subgoal for nat a b by (cases nat) auto |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
1083 |
done |
23274 | 1084 |
next |
50313 | 1085 |
case (6 a) |
23274 | 1086 |
let ?c = "fst (zsplit0 a)" |
1087 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1088 |
have spl: "zsplit0 a = (?c, ?r)" |
1089 |
by simp |
|
50313 | 1090 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55964 | 1091 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
55844 | 1092 |
by auto |
55964 | 1093 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
50313 | 1094 |
from 6 Ia nb show ?case |
1095 |
apply (auto simp add: Let_def split_def algebra_simps) |
|
55844 | 1096 |
apply (cases "?r") |
1097 |
apply auto |
|
60708 | 1098 |
subgoal for nat a b by (cases nat) auto |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
1099 |
done |
23274 | 1100 |
next |
50313 | 1101 |
case (7 a) |
23274 | 1102 |
let ?c = "fst (zsplit0 a)" |
1103 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1104 |
have spl: "zsplit0 a = (?c, ?r)" |
1105 |
by simp |
|
50313 | 1106 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55844 | 1107 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
1108 |
by auto |
|
55964 | 1109 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
50313 | 1110 |
from 7 Ia nb show ?case |
1111 |
apply (auto simp add: Let_def split_def algebra_simps) |
|
55844 | 1112 |
apply (cases "?r") |
1113 |
apply auto |
|
60708 | 1114 |
subgoal for nat a b by (cases nat) auto |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
1115 |
done |
23274 | 1116 |
next |
50313 | 1117 |
case (8 a) |
23274 | 1118 |
let ?c = "fst (zsplit0 a)" |
1119 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1120 |
have spl: "zsplit0 a = (?c, ?r)" |
1121 |
by simp |
|
50313 | 1122 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55964 | 1123 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
55844 | 1124 |
by auto |
55964 | 1125 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
55844 | 1126 |
from 8 Ia nb show ?case |
50313 | 1127 |
apply (auto simp add: Let_def split_def algebra_simps) |
55844 | 1128 |
apply (cases "?r") |
1129 |
apply auto |
|
60708 | 1130 |
subgoal for nat a b by (cases nat) auto |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
1131 |
done |
23274 | 1132 |
next |
50313 | 1133 |
case (9 a) |
23274 | 1134 |
let ?c = "fst (zsplit0 a)" |
1135 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1136 |
have spl: "zsplit0 a = (?c, ?r)" |
1137 |
by simp |
|
50313 | 1138 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55844 | 1139 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
1140 |
by auto |
|
55964 | 1141 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
55844 | 1142 |
from 9 Ia nb show ?case |
50313 | 1143 |
apply (auto simp add: Let_def split_def algebra_simps) |
55844 | 1144 |
apply (cases "?r") |
1145 |
apply auto |
|
60708 | 1146 |
subgoal for nat a b by (cases nat) auto |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
1147 |
done |
23274 | 1148 |
next |
50313 | 1149 |
case (10 a) |
23274 | 1150 |
let ?c = "fst (zsplit0 a)" |
1151 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1152 |
have spl: "zsplit0 a = (?c, ?r)" |
1153 |
by simp |
|
50313 | 1154 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55844 | 1155 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
1156 |
by auto |
|
55964 | 1157 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
55844 | 1158 |
from 10 Ia nb show ?case |
50313 | 1159 |
apply (auto simp add: Let_def split_def algebra_simps) |
55844 | 1160 |
apply (cases "?r") |
1161 |
apply auto |
|
60708 | 1162 |
subgoal for nat a b by (cases nat) auto |
23995
c34490f1e0ff
Updated proofs; changed shadow syntax to improve (processing) time
chaieb
parents:
23984
diff
changeset
|
1163 |
done |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1164 |
next |
50313 | 1165 |
case (11 j a) |
23274 | 1166 |
let ?c = "fst (zsplit0 a)" |
1167 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1168 |
have spl: "zsplit0 a = (?c,?r)" |
1169 |
by simp |
|
50313 | 1170 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
55844 | 1171 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
1172 |
by auto |
|
50313 | 1173 |
let ?N = "\<lambda>t. Inum (i#bs) t" |
60708 | 1174 |
consider "j = 0" | "j \<noteq> 0" "?c = 0" | "j \<noteq> 0" "?c > 0" | "j \<noteq> 0" "?c < 0" |
55844 | 1175 |
by arith |
60708 | 1176 |
then show ?case |
1177 |
proof cases |
|
1178 |
case 1 |
|
55844 | 1179 |
then have z: "zlfm (Dvd j a) = (zlfm (Eq a))" |
1180 |
by (simp add: Let_def) |
|
60708 | 1181 |
with 11 \<open>j = 0\<close> show ?thesis |
55844 | 1182 |
by (simp del: zlfm.simps) |
60708 | 1183 |
next |
1184 |
case 2 |
|
1185 |
with zsplit0_I[OF spl, where x="i" and bs="bs"] show ?thesis |
|
1186 |
apply (auto simp add: Let_def split_def algebra_simps) |
|
1187 |
apply (cases "?r") |
|
1188 |
apply auto |
|
1189 |
subgoal for nat a b by (cases nat) auto |
|
1190 |
done |
|
1191 |
next |
|
1192 |
case 3 |
|
55844 | 1193 |
then have l: "?L (?l (Dvd j a))" |
23274 | 1194 |
by (simp add: nb Let_def split_def) |
60708 | 1195 |
with Ia 3 show ?thesis |
1196 |
by (simp add: Let_def split_def) |
|
1197 |
next |
|
1198 |
case 4 |
|
55844 | 1199 |
then have l: "?L (?l (Dvd j a))" |
23274 | 1200 |
by (simp add: nb Let_def split_def) |
61945 | 1201 |
with Ia 4 dvd_minus_iff[of "\<bar>j\<bar>" "?c*i + ?N ?r"] show ?thesis |
55844 | 1202 |
by (simp add: Let_def split_def) |
60708 | 1203 |
qed |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1204 |
next |
50313 | 1205 |
case (12 j a) |
23274 | 1206 |
let ?c = "fst (zsplit0 a)" |
1207 |
let ?r = "snd (zsplit0 a)" |
|
55844 | 1208 |
have spl: "zsplit0 a = (?c, ?r)" |
1209 |
by simp |
|
50313 | 1210 |
from zsplit0_I[OF spl, where x="i" and bs="bs"] |
67123 | 1211 |
have Ia: "Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" |
55844 | 1212 |
by auto |
55964 | 1213 |
let ?N = "\<lambda>t. Inum (i # bs) t" |
60708 | 1214 |
consider "j = 0" | "j \<noteq> 0" "?c = 0" | "j \<noteq> 0" "?c > 0" | "j \<noteq> 0" "?c < 0" |
55844 | 1215 |
by arith |
60708 | 1216 |
then show ?case |
1217 |
proof cases |
|
1218 |
case 1 |
|
55964 | 1219 |
then have z: "zlfm (NDvd j a) = zlfm (NEq a)" |
55844 | 1220 |
by (simp add: Let_def) |
60708 | 1221 |
with assms 12 \<open>j = 0\<close> show ?thesis |
1222 |
by (simp del: zlfm.simps) |
|
1223 |
next |
|
1224 |
case 2 |
|
1225 |
with zsplit0_I[OF spl, where x="i" and bs="bs"] show ?thesis |
|
1226 |
apply (auto simp add: Let_def split_def algebra_simps) |
|
1227 |
apply (cases "?r") |
|
1228 |
apply auto |
|
1229 |
subgoal for nat a b by (cases nat) auto |
|
1230 |
done |
|
1231 |
next |
|
1232 |
case 3 |
|
55844 | 1233 |
then have l: "?L (?l (Dvd j a))" |
23274 | 1234 |
by (simp add: nb Let_def split_def) |
60708 | 1235 |
with Ia 3 show ?thesis |
55844 | 1236 |
by (simp add: Let_def split_def) |
60708 | 1237 |
next |
1238 |
case 4 |
|
55844 | 1239 |
then have l: "?L (?l (Dvd j a))" |
23274 | 1240 |
by (simp add: nb Let_def split_def) |
61945 | 1241 |
with Ia 4 dvd_minus_iff[of "\<bar>j\<bar>" "?c*i + ?N ?r"] show ?thesis |
55844 | 1242 |
by (simp add: Let_def split_def) |
60708 | 1243 |
qed |
23274 | 1244 |
qed auto |
1245 |
||
67123 | 1246 |
fun minusinf :: "fm \<Rightarrow> fm" \<comment> \<open>virtual substitution of \<open>-\<infinity>\<close>\<close> |
1247 |
where |
|
1248 |
"minusinf (And p q) = And (minusinf p) (minusinf q)" |
|
1249 |
| "minusinf (Or p q) = Or (minusinf p) (minusinf q)" |
|
1250 |
| "minusinf (Eq (CN 0 c e)) = F" |
|
1251 |
| "minusinf (NEq (CN 0 c e)) = T" |
|
1252 |
| "minusinf (Lt (CN 0 c e)) = T" |
|
1253 |
| "minusinf (Le (CN 0 c e)) = T" |
|
1254 |
| "minusinf (Gt (CN 0 c e)) = F" |
|
1255 |
| "minusinf (Ge (CN 0 c e)) = F" |
|
1256 |
| "minusinf p = p" |
|
23274 | 1257 |
|
1258 |
lemma minusinf_qfree: "qfree p \<Longrightarrow> qfree (minusinf p)" |
|
50313 | 1259 |
by (induct p rule: minusinf.induct) auto |
23274 | 1260 |
|
67123 | 1261 |
fun plusinf :: "fm \<Rightarrow> fm" \<comment> \<open>virtual substitution of \<open>+\<infinity>\<close>\<close> |
1262 |
where |
|
1263 |
"plusinf (And p q) = And (plusinf p) (plusinf q)" |
|
1264 |
| "plusinf (Or p q) = Or (plusinf p) (plusinf q)" |
|
1265 |
| "plusinf (Eq (CN 0 c e)) = F" |
|
1266 |
| "plusinf (NEq (CN 0 c e)) = T" |
|
1267 |
| "plusinf (Lt (CN 0 c e)) = F" |
|
1268 |
| "plusinf (Le (CN 0 c e)) = F" |
|
1269 |
| "plusinf (Gt (CN 0 c e)) = T" |
|
1270 |
| "plusinf (Ge (CN 0 c e)) = T" |
|
1271 |
| "plusinf p = p" |
|
23274 | 1272 |
|
67123 | 1273 |
fun \<delta> :: "fm \<Rightarrow> int" \<comment> \<open>compute \<open>lcm {d| N\<^sup>? Dvd c*x+t \<in> p}\<close>\<close> |
1274 |
where |
|
1275 |
"\<delta> (And p q) = lcm (\<delta> p) (\<delta> q)" |
|
1276 |
| "\<delta> (Or p q) = lcm (\<delta> p) (\<delta> q)" |
|
1277 |
| "\<delta> (Dvd i (CN 0 c e)) = i" |
|
1278 |
| "\<delta> (NDvd i (CN 0 c e)) = i" |
|
1279 |
| "\<delta> p = 1" |
|
23274 | 1280 |
|
67123 | 1281 |
fun d_\<delta> :: "fm \<Rightarrow> int \<Rightarrow> bool" \<comment> \<open>check if a given \<open>l\<close> divides all the \<open>ds\<close> above\<close> |
1282 |
where |
|
1283 |
"d_\<delta> (And p q) d \<longleftrightarrow> d_\<delta> p d \<and> d_\<delta> q d" |
|
1284 |
| "d_\<delta> (Or p q) d \<longleftrightarrow> d_\<delta> p d \<and> d_\<delta> q d" |
|
1285 |
| "d_\<delta> (Dvd i (CN 0 c e)) d \<longleftrightarrow> i dvd d" |
|
1286 |
| "d_\<delta> (NDvd i (CN 0 c e)) d \<longleftrightarrow> i dvd d" |
|
1287 |
| "d_\<delta> p d \<longleftrightarrow> True" |
|
23274 | 1288 |
|
50313 | 1289 |
lemma delta_mono: |
23274 | 1290 |
assumes lin: "iszlfm p" |
50313 | 1291 |
and d: "d dvd d'" |
1292 |
and ad: "d_\<delta> p d" |
|
50252 | 1293 |
shows "d_\<delta> p d'" |
55999 | 1294 |
using lin ad |
50313 | 1295 |
proof (induct p rule: iszlfm.induct) |
55844 | 1296 |
case (9 i c e) |
1297 |
then show ?case using d |
|
30042 | 1298 |
by (simp add: dvd_trans[of "i" "d" "d'"]) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1299 |
next |
55844 | 1300 |
case (10 i c e) |
1301 |
then show ?case using d |
|
30042 | 1302 |
by (simp add: dvd_trans[of "i" "d" "d'"]) |
23274 | 1303 |
qed simp_all |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1304 |
|
50313 | 1305 |
lemma \<delta>: |
55885 | 1306 |
assumes lin: "iszlfm p" |
50252 | 1307 |
shows "d_\<delta> p (\<delta> p) \<and> \<delta> p >0" |
50313 | 1308 |
using lin |
67123 | 1309 |
by (induct p rule: iszlfm.induct) (auto intro: delta_mono simp add: lcm_pos_int) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1310 |
|
65024 | 1311 |
fun a_\<beta> :: "fm \<Rightarrow> int \<Rightarrow> fm" \<comment> \<open>adjust the coefficients of a formula\<close> |
67123 | 1312 |
where |
1313 |
"a_\<beta> (And p q) k = And (a_\<beta> p k) (a_\<beta> q k)" |
|
1314 |
| "a_\<beta> (Or p q) k = Or (a_\<beta> p k) (a_\<beta> q k)" |
|
1315 |
| "a_\<beta> (Eq (CN 0 c e)) k = Eq (CN 0 1 (Mul (k div c) e))" |
|
1316 |
| "a_\<beta> (NEq (CN 0 c e)) k = NEq (CN 0 1 (Mul (k div c) e))" |
|
1317 |
| "a_\<beta> (Lt (CN 0 c e)) k = Lt (CN 0 1 (Mul (k div c) e))" |
|
1318 |
| "a_\<beta> (Le (CN 0 c e)) k = Le (CN 0 1 (Mul (k div c) e))" |
|
1319 |
| "a_\<beta> (Gt (CN 0 c e)) k = Gt (CN 0 1 (Mul (k div c) e))" |
|
1320 |
| "a_\<beta> (Ge (CN 0 c e)) k = Ge (CN 0 1 (Mul (k div c) e))" |
|
1321 |
| "a_\<beta> (Dvd i (CN 0 c e)) k = Dvd ((k div c)*i) (CN 0 1 (Mul (k div c) e))" |
|
1322 |
| "a_\<beta> (NDvd i (CN 0 c e)) k = NDvd ((k div c)*i) (CN 0 1 (Mul (k div c) e))" |
|
1323 |
| "a_\<beta> p k = p" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1324 |
|
67123 | 1325 |
fun d_\<beta> :: "fm \<Rightarrow> int \<Rightarrow> bool" \<comment> \<open>test if all coeffs of \<open>c\<close> divide a given \<open>l\<close>\<close> |
1326 |
where |
|
1327 |
"d_\<beta> (And p q) k \<longleftrightarrow> d_\<beta> p k \<and> d_\<beta> q k" |
|
1328 |
| "d_\<beta> (Or p q) k \<longleftrightarrow> d_\<beta> p k \<and> d_\<beta> q k" |
|
1329 |
| "d_\<beta> (Eq (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1330 |
| "d_\<beta> (NEq (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1331 |
| "d_\<beta> (Lt (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1332 |
| "d_\<beta> (Le (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1333 |
| "d_\<beta> (Gt (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1334 |
| "d_\<beta> (Ge (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1335 |
| "d_\<beta> (Dvd i (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1336 |
| "d_\<beta> (NDvd i (CN 0 c e)) k \<longleftrightarrow> c dvd k" |
|
1337 |
| "d_\<beta> p k \<longleftrightarrow> True" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1338 |
|
67123 | 1339 |
fun \<zeta> :: "fm \<Rightarrow> int" \<comment> \<open>computes the lcm of all coefficients of \<open>x\<close>\<close> |
1340 |
where |
|
1341 |
"\<zeta> (And p q) = lcm (\<zeta> p) (\<zeta> q)" |
|
1342 |
| "\<zeta> (Or p q) = lcm (\<zeta> p) (\<zeta> q)" |
|
1343 |
| "\<zeta> (Eq (CN 0 c e)) = c" |
|
1344 |
| "\<zeta> (NEq (CN 0 c e)) = c" |
|
1345 |
| "\<zeta> (Lt (CN 0 c e)) = c" |
|
1346 |
| "\<zeta> (Le (CN 0 c e)) = c" |
|
1347 |
| "\<zeta> (Gt (CN 0 c e)) = c" |
|
1348 |
| "\<zeta> (Ge (CN 0 c e)) = c" |
|
1349 |
| "\<zeta> (Dvd i (CN 0 c e)) = c" |
|
1350 |
| "\<zeta> (NDvd i (CN 0 c e))= c" |
|
1351 |
| "\<zeta> p = 1" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1352 |
|
65024 | 1353 |
fun \<beta> :: "fm \<Rightarrow> num list" |
67123 | 1354 |
where |
1355 |
"\<beta> (And p q) = (\<beta> p @ \<beta> q)" |
|
1356 |
| "\<beta> (Or p q) = (\<beta> p @ \<beta> q)" |
|
1357 |
| "\<beta> (Eq (CN 0 c e)) = [Sub (C (- 1)) e]" |
|
1358 |
| "\<beta> (NEq (CN 0 c e)) = [Neg e]" |
|
1359 |
| "\<beta> (Lt (CN 0 c e)) = []" |
|
1360 |
| "\<beta> (Le (CN 0 c e)) = []" |
|
1361 |
| "\<beta> (Gt (CN 0 c e)) = [Neg e]" |
|
1362 |
| "\<beta> (Ge (CN 0 c e)) = [Sub (C (- 1)) e]" |
|
1363 |
| "\<beta> p = []" |
|
19736 | 1364 |
|
65024 | 1365 |
fun \<alpha> :: "fm \<Rightarrow> num list" |
67123 | 1366 |
where |
1367 |
"\<alpha> (And p q) = \<alpha> p @ \<alpha> q" |
|
1368 |
| "\<alpha> (Or p q) = \<alpha> p @ \<alpha> q" |
|
1369 |
| "\<alpha> (Eq (CN 0 c e)) = [Add (C (- 1)) e]" |
|
1370 |
| "\<alpha> (NEq (CN 0 c e)) = [e]" |
|
1371 |
| "\<alpha> (Lt (CN 0 c e)) = [e]" |
|
1372 |
| "\<alpha> (Le (CN 0 c e)) = [Add (C (- 1)) e]" |
|
1373 |
| "\<alpha> (Gt (CN 0 c e)) = []" |
|
1374 |
| "\<alpha> (Ge (CN 0 c e)) = []" |
|
1375 |
| "\<alpha> p = []" |
|
50313 | 1376 |
|
65024 | 1377 |
fun mirror :: "fm \<Rightarrow> fm" |
67123 | 1378 |
where |
1379 |
"mirror (And p q) = And (mirror p) (mirror q)" |
|
1380 |
| "mirror (Or p q) = Or (mirror p) (mirror q)" |
|
1381 |
| "mirror (Eq (CN 0 c e)) = Eq (CN 0 c (Neg e))" |
|
1382 |
| "mirror (NEq (CN 0 c e)) = NEq (CN 0 c (Neg e))" |
|
1383 |
| "mirror (Lt (CN 0 c e)) = Gt (CN 0 c (Neg e))" |
|
1384 |
| "mirror (Le (CN 0 c e)) = Ge (CN 0 c (Neg e))" |
|
1385 |
| "mirror (Gt (CN 0 c e)) = Lt (CN 0 c (Neg e))" |
|
1386 |
| "mirror (Ge (CN 0 c e)) = Le (CN 0 c (Neg e))" |
|
1387 |
| "mirror (Dvd i (CN 0 c e)) = Dvd i (CN 0 c (Neg e))" |
|
1388 |
| "mirror (NDvd i (CN 0 c e)) = NDvd i (CN 0 c (Neg e))" |
|
1389 |
| "mirror p = p" |
|
50313 | 1390 |
|
61586 | 1391 |
text \<open>Lemmas for the correctness of \<open>\<sigma>_\<rho>\<close>\<close> |
50313 | 1392 |
|
67123 | 1393 |
lemma dvd1_eq1: "x > 0 \<Longrightarrow> x dvd 1 \<longleftrightarrow> x = 1" |
1394 |
for x :: int |
|
41807 | 1395 |
by simp |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1396 |
|
23274 | 1397 |
lemma minusinf_inf: |
1398 |
assumes linp: "iszlfm p" |
|
50313 | 1399 |
and u: "d_\<beta> p 1" |
55964 | 1400 |
shows "\<exists>z::int. \<forall>x < z. Ifm bbs (x # bs) (minusinf p) = Ifm bbs (x # bs) p" |
50313 | 1401 |
(is "?P p" is "\<exists>(z::int). \<forall>x < z. ?I x (?M p) = ?I x p") |
1402 |
using linp u |
|
23274 | 1403 |
proof (induct p rule: minusinf.induct) |
55844 | 1404 |
case (1 p q) |
1405 |
then show ?case |
|
60708 | 1406 |
apply auto |
1407 |
subgoal for z z' by (rule exI [where x = "min z z'"]) simp |
|
1408 |
done |
|
23274 | 1409 |
next |
55844 | 1410 |
case (2 p q) |
1411 |
then show ?case |
|
60708 | 1412 |
apply auto |
1413 |
subgoal for z z' by (rule exI [where x = "min z z'"]) simp |
|
1414 |
done |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1415 |
next |
55844 | 1416 |
case (3 c e) |
1417 |
then have c1: "c = 1" and nb: "numbound0 e" |
|
1418 |
by simp_all |
|
26934 | 1419 |
fix a |
55999 | 1420 |
from 3 have "\<forall>x<(- Inum (a # bs) e). c * x + Inum (x # bs) e \<noteq> 0" |
55844 | 1421 |
proof clarsimp |
1422 |
fix x |
|
55999 | 1423 |
assume "x < (- Inum (a # bs) e)" and "x + Inum (x # bs) e = 0" |
23274 | 1424 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"] |
55844 | 1425 |
show False by simp |
23274 | 1426 |
qed |
55844 | 1427 |
then show ?case by auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1428 |
next |
55844 | 1429 |
case (4 c e) |
1430 |
then have c1: "c = 1" and nb: "numbound0 e" |
|
1431 |
by simp_all |
|
26934 | 1432 |
fix a |
55964 | 1433 |
from 4 have "\<forall>x < (- Inum (a # bs) e). c * x + Inum (x # bs) e \<noteq> 0" |
55921 | 1434 |
proof clarsimp |
1435 |
fix x |
|
55964 | 1436 |
assume "x < (- Inum (a # bs) e)" and "x + Inum (x # bs) e = 0" |
23274 | 1437 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"] |
1438 |
show "False" by simp |
|
1439 |
qed |
|
55885 | 1440 |
then show ?case by auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1441 |
next |
55921 | 1442 |
case (5 c e) |
1443 |
then have c1: "c = 1" and nb: "numbound0 e" |
|
1444 |
by simp_all |
|
26934 | 1445 |
fix a |
55999 | 1446 |
from 5 have "\<forall>x<(- Inum (a # bs) e). c * x + Inum (x # bs) e < 0" |
55921 | 1447 |
proof clarsimp |
1448 |
fix x |
|
55964 | 1449 |
assume "x < (- Inum (a # bs) e)" |
23274 | 1450 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"] |
55921 | 1451 |
show "x + Inum (x # bs) e < 0" |
1452 |
by simp |
|
23274 | 1453 |
qed |
55885 | 1454 |
then show ?case by auto |
23274 | 1455 |
next |
55921 | 1456 |
case (6 c e) |
1457 |
then have c1: "c = 1" and nb: "numbound0 e" |
|
1458 |
by simp_all |
|
26934 | 1459 |
fix a |
55964 | 1460 |
from 6 have "\<forall>x<(- Inum (a # bs) e). c * x + Inum (x # bs) e \<le> 0" |
55921 | 1461 |
proof clarsimp |
1462 |
fix x |
|
55964 | 1463 |
assume "x < (- Inum (a # bs) e)" |
23274 | 1464 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"] |
55964 | 1465 |
show "x + Inum (x # bs) e \<le> 0" by simp |
23274 | 1466 |
qed |
55885 | 1467 |
then show ?case by auto |
23274 | 1468 |
next |
55921 | 1469 |
case (7 c e) |
1470 |
then have c1: "c = 1" and nb: "numbound0 e" |
|
1471 |
by simp_all |
|
26934 | 1472 |
fix a |
55964 | 1473 |
from 7 have "\<forall>x<(- Inum (a # bs) e). \<not> (c * x + Inum (x # bs) e > 0)" |
55921 | 1474 |
proof clarsimp |
1475 |
fix x |
|
55964 | 1476 |
assume "x < - Inum (a # bs) e" and "x + Inum (x # bs) e > 0" |
23274 | 1477 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"] |
55921 | 1478 |
show False by simp |
23274 | 1479 |
qed |
55885 | 1480 |
then show ?case by auto |
23274 | 1481 |
next |
55921 | 1482 |
case (8 c e) |
1483 |
then have c1: "c = 1" and nb: "numbound0 e" |
|
1484 |
by simp_all |
|
26934 | 1485 |
fix a |
55999 | 1486 |
from 8 have "\<forall>x<(- Inum (a # bs) e). \<not> c * x + Inum (x # bs) e \<ge> 0" |
55921 | 1487 |
proof clarsimp |
1488 |
fix x |
|
55999 | 1489 |
assume "x < (- Inum (a # bs) e)" and "x + Inum (x # bs) e \<ge> 0" |
23274 | 1490 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"] |
55921 | 1491 |
show False by simp |
23274 | 1492 |
qed |
55885 | 1493 |
then show ?case by auto |
23274 | 1494 |
qed auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1495 |
|
23274 | 1496 |
lemma minusinf_repeats: |
55921 | 1497 |
assumes d: "d_\<delta> p d" |
1498 |
and linp: "iszlfm p" |
|
1499 |
shows "Ifm bbs ((x - k * d) # bs) (minusinf p) = Ifm bbs (x # bs) (minusinf p)" |
|
50313 | 1500 |
using linp d |
1501 |
proof (induct p rule: iszlfm.induct) |
|
1502 |
case (9 i c e) |
|
55921 | 1503 |
then have nbe: "numbound0 e" and id: "i dvd d" |
1504 |
by simp_all |
|
1505 |
then have "\<exists>k. d = i * k" |
|
1506 |
by (simp add: dvd_def) |
|
1507 |
then obtain "di" where di_def: "d = i * di" |
|
1508 |
by blast |
|
50313 | 1509 |
show ?case |
1510 |
proof (simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, |
|
1511 |
rule iffI) |
|
55921 | 1512 |
assume "i dvd c * x - c * (k * d) + Inum (x # bs) e" |
55999 | 1513 |
(is "?ri dvd ?rc * ?rx - ?rc * (?rk * ?rd) + ?I x e" is "?ri dvd ?rt") |
55921 | 1514 |
then have "\<exists>l::int. ?rt = i * l" |
1515 |
by (simp add: dvd_def) |
|
55964 | 1516 |
then have "\<exists>l::int. c * x + ?I x e = i * l + c * (k * i * di)" |
50313 | 1517 |
by (simp add: algebra_simps di_def) |
55964 | 1518 |
then have "\<exists>l::int. c * x + ?I x e = i* (l + c * k * di)" |
50313 | 1519 |
by (simp add: algebra_simps) |
55921 | 1520 |
then have "\<exists>l::int. c * x + ?I x e = i * l" |
1521 |
by blast |
|
1522 |
then show "i dvd c * x + Inum (x # bs) e" |
|
1523 |
by (simp add: dvd_def) |
|
50313 | 1524 |
next |
55964 | 1525 |
assume "i dvd c * x + Inum (x # bs) e" (is "?ri dvd ?rc * ?rx + ?e") |
55921 | 1526 |
then have "\<exists>l::int. c * x + ?e = i * l" |
1527 |
by (simp add: dvd_def) |
|
1528 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * l - c * (k * d)" |
|
1529 |
by simp |
|
1530 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * l - c * (k * i * di)" |
|
1531 |
by (simp add: di_def) |
|
55964 | 1532 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * (l - c * k * di)" |
55921 | 1533 |
by (simp add: algebra_simps) |
1534 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * l" |
|
1535 |
by blast |
|
1536 |
then show "i dvd c * x - c * (k * d) + Inum (x # bs) e" |
|
1537 |
by (simp add: dvd_def) |
|
50313 | 1538 |
qed |
23274 | 1539 |
next |
50313 | 1540 |
case (10 i c e) |
55921 | 1541 |
then have nbe: "numbound0 e" and id: "i dvd d" |
1542 |
by simp_all |
|
1543 |
then have "\<exists>k. d = i * k" |
|
1544 |
by (simp add: dvd_def) |
|
1545 |
then obtain di where di_def: "d = i * di" |
|
1546 |
by blast |
|
50313 | 1547 |
show ?case |
55999 | 1548 |
proof (simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, |
1549 |
rule iffI) |
|
55921 | 1550 |
assume "i dvd c * x - c * (k * d) + Inum (x # bs) e" |
55999 | 1551 |
(is "?ri dvd ?rc * ?rx - ?rc * (?rk * ?rd) + ?I x e" is "?ri dvd ?rt") |
55921 | 1552 |
then have "\<exists>l::int. ?rt = i * l" |
1553 |
by (simp add: dvd_def) |
|
1554 |
then have "\<exists>l::int. c * x + ?I x e = i * l + c * (k * i * di)" |
|
50313 | 1555 |
by (simp add: algebra_simps di_def) |
55921 | 1556 |
then have "\<exists>l::int. c * x+ ?I x e = i * (l + c * k * di)" |
50313 | 1557 |
by (simp add: algebra_simps) |
55921 | 1558 |
then have "\<exists>l::int. c * x + ?I x e = i * l" |
1559 |
by blast |
|
1560 |
then show "i dvd c * x + Inum (x # bs) e" |
|
1561 |
by (simp add: dvd_def) |
|
50313 | 1562 |
next |
55921 | 1563 |
assume "i dvd c * x + Inum (x # bs) e" (is "?ri dvd ?rc * ?rx + ?e") |
1564 |
then have "\<exists>l::int. c * x + ?e = i * l" |
|
1565 |
by (simp add: dvd_def) |
|
1566 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * l - c * (k * d)" |
|
1567 |
by simp |
|
1568 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * l - c * (k * i * di)" |
|
1569 |
by (simp add: di_def) |
|
55999 | 1570 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * (l - c * k * di)" |
55921 | 1571 |
by (simp add: algebra_simps) |
1572 |
then have "\<exists>l::int. c * x - c * (k * d) + ?e = i * l" |
|
50313 | 1573 |
by blast |
55921 | 1574 |
then show "i dvd c * x - c * (k * d) + Inum (x # bs) e" |
1575 |
by (simp add: dvd_def) |
|
50313 | 1576 |
qed |
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
1577 |
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="x - k*d" and b'="x"]) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1578 |
|
50252 | 1579 |
lemma mirror_\<alpha>_\<beta>: |
23274 | 1580 |
assumes lp: "iszlfm p" |
55964 | 1581 |
shows "Inum (i # bs) ` set (\<alpha> p) = Inum (i # bs) ` set (\<beta> (mirror p))" |
50313 | 1582 |
using lp by (induct p rule: mirror.induct) auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1583 |
|
50313 | 1584 |
lemma mirror: |
23274 | 1585 |
assumes lp: "iszlfm p" |
55921 | 1586 |
shows "Ifm bbs (x # bs) (mirror p) = Ifm bbs ((- x) # bs) p" |
50313 | 1587 |
using lp |
1588 |
proof (induct p rule: iszlfm.induct) |
|
1589 |
case (9 j c e) |
|
55964 | 1590 |
then have nb: "numbound0 e" |
1591 |
by simp |
|
1592 |
have "Ifm bbs (x # bs) (mirror (Dvd j (CN 0 c e))) \<longleftrightarrow> j dvd c * x - Inum (x # bs) e" |
|
50313 | 1593 |
(is "_ = (j dvd c*x - ?e)") by simp |
55964 | 1594 |
also have "\<dots> \<longleftrightarrow> j dvd (- (c * x - ?e))" |
30042 | 1595 |
by (simp only: dvd_minus_iff) |
55964 | 1596 |
also have "\<dots> \<longleftrightarrow> j dvd (c * (- x)) + ?e" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
55999
diff
changeset
|
1597 |
by (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] ac_simps minus_add_distrib) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53168
diff
changeset
|
1598 |
(simp add: algebra_simps) |
55964 | 1599 |
also have "\<dots> = Ifm bbs ((- x) # bs) (Dvd j (CN 0 c e))" |
50313 | 1600 |
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] by simp |
23274 | 1601 |
finally show ?case . |
1602 |
next |
|
55964 | 1603 |
case (10 j c e) |
1604 |
then have nb: "numbound0 e" |
|
1605 |
by simp |
|
1606 |
have "Ifm bbs (x # bs) (mirror (Dvd j (CN 0 c e))) \<longleftrightarrow> j dvd c * x - Inum (x # bs) e" |
|
1607 |
(is "_ = (j dvd c * x - ?e)") by simp |
|
1608 |
also have "\<dots> \<longleftrightarrow> j dvd (- (c * x - ?e))" |
|
30042 | 1609 |
by (simp only: dvd_minus_iff) |
55964 | 1610 |
also have "\<dots> \<longleftrightarrow> j dvd (c * (- x)) + ?e" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
55999
diff
changeset
|
1611 |
by (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] ac_simps minus_add_distrib) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53168
diff
changeset
|
1612 |
(simp add: algebra_simps) |
55964 | 1613 |
also have "\<dots> \<longleftrightarrow> Ifm bbs ((- x) # bs) (Dvd j (CN 0 c e))" |
50313 | 1614 |
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] by simp |
23274 | 1615 |
finally show ?case by simp |
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
1616 |
qed (auto simp add: numbound0_I[where bs="bs" and b="x" and b'="- x"] gr0_conv_Suc) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1617 |
|
50313 | 1618 |
lemma mirror_l: "iszlfm p \<and> d_\<beta> p 1 \<Longrightarrow> iszlfm (mirror p) \<and> d_\<beta> (mirror p) 1" |
41807 | 1619 |
by (induct p rule: mirror.induct) auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1620 |
|
23274 | 1621 |
lemma mirror_\<delta>: "iszlfm p \<Longrightarrow> \<delta> (mirror p) = \<delta> p" |
41807 | 1622 |
by (induct p rule: mirror.induct) auto |
23274 | 1623 |
|
50313 | 1624 |
lemma \<beta>_numbound0: |
1625 |
assumes lp: "iszlfm p" |
|
55964 | 1626 |
shows "\<forall>b \<in> set (\<beta> p). numbound0 b" |
41807 | 1627 |
using lp by (induct p rule: \<beta>.induct) auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1628 |
|
50313 | 1629 |
lemma d_\<beta>_mono: |
23274 | 1630 |
assumes linp: "iszlfm p" |
50313 | 1631 |
and dr: "d_\<beta> p l" |
1632 |
and d: "l dvd l'" |
|
50252 | 1633 |
shows "d_\<beta> p l'" |
50313 | 1634 |
using dr linp dvd_trans[of _ "l" "l'", simplified d] |
41807 | 1635 |
by (induct p rule: iszlfm.induct) simp_all |
23274 | 1636 |
|
50313 | 1637 |
lemma \<alpha>_l: |
55999 | 1638 |
assumes "iszlfm p" |
50313 | 1639 |
shows "\<forall>b \<in> set (\<alpha> p). numbound0 b" |
55999 | 1640 |
using assms by (induct p rule: \<alpha>.induct) auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1641 |
|
50313 | 1642 |
lemma \<zeta>: |
55999 | 1643 |
assumes "iszlfm p" |
50252 | 1644 |
shows "\<zeta> p > 0 \<and> d_\<beta> p (\<zeta> p)" |
55999 | 1645 |
using assms |
50313 | 1646 |
proof (induct p rule: iszlfm.induct) |
23274 | 1647 |
case (1 p q) |
55964 | 1648 |
from 1 have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" |
1649 |
by simp |
|
1650 |
from 1 have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" |
|
1651 |
by simp |
|
50313 | 1652 |
from 1 d_\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"] |
55964 | 1653 |
d_\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"] |
1654 |
dl1 dl2 |
|
1655 |
show ?case |
|
1656 |
by (auto simp add: lcm_pos_int) |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1657 |
next |
23274 | 1658 |
case (2 p q) |
55964 | 1659 |
from 2 have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" |
1660 |
by simp |
|
1661 |
from 2 have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" |
|
1662 |
by simp |
|
50313 | 1663 |
from 2 d_\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"] |
55964 | 1664 |
d_\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"] |
1665 |
dl1 dl2 |
|
1666 |
show ?case |
|
1667 |
by (auto simp add: lcm_pos_int) |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31730
diff
changeset
|
1668 |
qed (auto simp add: lcm_pos_int) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1669 |
|
50313 | 1670 |
lemma a_\<beta>: |
55921 | 1671 |
assumes linp: "iszlfm p" |
1672 |
and d: "d_\<beta> p l" |
|
1673 |
and lp: "l > 0" |
|
55964 | 1674 |
shows "iszlfm (a_\<beta> p l) \<and> d_\<beta> (a_\<beta> p l) 1 \<and> Ifm bbs (l * x # bs) (a_\<beta> p l) = Ifm bbs (x # bs) p" |
50313 | 1675 |
using linp d |
23274 | 1676 |
proof (induct p rule: iszlfm.induct) |
50313 | 1677 |
case (5 c e) |
55964 | 1678 |
then have cp: "c > 0" and be: "numbound0 e" and d': "c dvd l" |
55921 | 1679 |
by simp_all |
1680 |
from lp cp have clel: "c \<le> l" |
|
1681 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1682 |
from cp have cnz: "c \<noteq> 0" |
|
1683 |
by simp |
|
1684 |
have "c div c \<le> l div c" |
|
50313 | 1685 |
by (simp add: zdiv_mono1[OF clel cp]) |
55999 | 1686 |
then have ldcp: "0 < l div c" |
50313 | 1687 |
by (simp add: div_self[OF cnz]) |
55921 | 1688 |
have "c * (l div c) = c * (l div c) + l mod c" |
1689 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
|
1690 |
then have cl: "c * (l div c) =l" |
|
64246 | 1691 |
using mult_div_mod_eq [where a="l" and b="c"] by simp |
55964 | 1692 |
then have "(l * x + (l div c) * Inum (x # bs) e < 0) \<longleftrightarrow> |
50313 | 1693 |
((c * (l div c)) * x + (l div c) * Inum (x # bs) e < 0)" |
1694 |
by simp |
|
55999 | 1695 |
also have "\<dots> \<longleftrightarrow> (l div c) * (c * x + Inum (x # bs) e) < (l div c) * 0" |
50313 | 1696 |
by (simp add: algebra_simps) |
55964 | 1697 |
also have "\<dots> \<longleftrightarrow> c * x + Inum (x # bs) e < 0" |
1698 |
using mult_less_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp |
|
1699 |
by simp |
|
50313 | 1700 |
finally show ?case |
55964 | 1701 |
using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] be |
1702 |
by simp |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1703 |
next |
50313 | 1704 |
case (6 c e) |
55921 | 1705 |
then have cp: "c > 0" and be: "numbound0 e" and d': "c dvd l" |
1706 |
by simp_all |
|
1707 |
from lp cp have clel: "c \<le> l" |
|
1708 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1709 |
from cp have cnz: "c \<noteq> 0" |
|
1710 |
by simp |
|
55964 | 1711 |
have "c div c \<le> l div c" |
50313 | 1712 |
by (simp add: zdiv_mono1[OF clel cp]) |
1713 |
then have ldcp:"0 < l div c" |
|
1714 |
by (simp add: div_self[OF cnz]) |
|
55964 | 1715 |
have "c * (l div c) = c * (l div c) + l mod c" |
55921 | 1716 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
1717 |
then have cl: "c * (l div c) = l" |
|
64246 | 1718 |
using mult_div_mod_eq [where a="l" and b="c"] by simp |
55964 | 1719 |
then have "l * x + (l div c) * Inum (x # bs) e \<le> 0 \<longleftrightarrow> |
1720 |
(c * (l div c)) * x + (l div c) * Inum (x # bs) e \<le> 0" |
|
50313 | 1721 |
by simp |
55964 | 1722 |
also have "\<dots> \<longleftrightarrow> (l div c) * (c * x + Inum (x # bs) e) \<le> (l div c) * 0" |
50313 | 1723 |
by (simp add: algebra_simps) |
55964 | 1724 |
also have "\<dots> \<longleftrightarrow> c * x + Inum (x # bs) e \<le> 0" |
23274 | 1725 |
using mult_le_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp |
50313 | 1726 |
finally show ?case |
1727 |
using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] be by simp |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1728 |
next |
50313 | 1729 |
case (7 c e) |
55921 | 1730 |
then have cp: "c > 0" and be: "numbound0 e" and d': "c dvd l" |
1731 |
by simp_all |
|
1732 |
from lp cp have clel: "c \<le> l" |
|
1733 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1734 |
from cp have cnz: "c \<noteq> 0" |
|
1735 |
by simp |
|
1736 |
have "c div c \<le> l div c" |
|
1737 |
by (simp add: zdiv_mono1[OF clel cp]) |
|
55964 | 1738 |
then have ldcp: "0 < l div c" |
55921 | 1739 |
by (simp add: div_self[OF cnz]) |
55964 | 1740 |
have "c * (l div c) = c * (l div c) + l mod c" |
55921 | 1741 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
55964 | 1742 |
then have cl: "c * (l div c) = l" |
64246 | 1743 |
using mult_div_mod_eq [where a="l" and b="c"] by simp |
55964 | 1744 |
then have "l * x + (l div c) * Inum (x # bs) e > 0 \<longleftrightarrow> |
1745 |
(c * (l div c)) * x + (l div c) * Inum (x # bs) e > 0" |
|
55921 | 1746 |
by simp |
55964 | 1747 |
also have "\<dots> \<longleftrightarrow> (l div c) * (c * x + Inum (x # bs) e) > (l div c) * 0" |
55921 | 1748 |
by (simp add: algebra_simps) |
55964 | 1749 |
also have "\<dots> \<longleftrightarrow> c * x + Inum (x # bs) e > 0" |
55921 | 1750 |
using zero_less_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp |
1751 |
by simp |
|
1752 |
finally show ?case |
|
1753 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be |
|
1754 |
by simp |
|
1755 |
next |
|
1756 |
case (8 c e) |
|
1757 |
then have cp: "c > 0" and be: "numbound0 e" and d': "c dvd l" |
|
1758 |
by simp_all |
|
1759 |
from lp cp have clel: "c \<le> l" |
|
1760 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1761 |
from cp have cnz: "c \<noteq> 0" |
|
1762 |
by simp |
|
1763 |
have "c div c \<le> l div c" |
|
1764 |
by (simp add: zdiv_mono1[OF clel cp]) |
|
1765 |
then have ldcp: "0 < l div c" |
|
1766 |
by (simp add: div_self[OF cnz]) |
|
55964 | 1767 |
have "c * (l div c) = c * (l div c) + l mod c" |
55921 | 1768 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
1769 |
then have cl: "c * (l div c) =l" |
|
64246 | 1770 |
using mult_div_mod_eq [where a="l" and b="c"] |
55921 | 1771 |
by simp |
55964 | 1772 |
then have "l * x + (l div c) * Inum (x # bs) e \<ge> 0 \<longleftrightarrow> |
1773 |
(c * (l div c)) * x + (l div c) * Inum (x # bs) e \<ge> 0" |
|
55921 | 1774 |
by simp |
55964 | 1775 |
also have "\<dots> \<longleftrightarrow> (l div c) * (c * x + Inum (x # bs) e) \<ge> (l div c) * 0" |
55921 | 1776 |
by (simp add: algebra_simps) |
55964 | 1777 |
also have "\<dots> \<longleftrightarrow> c * x + Inum (x # bs) e \<ge> 0" |
55921 | 1778 |
using ldcp zero_le_mult_iff [where a="l div c" and b="c*x + Inum (x # bs) e"] |
1779 |
by simp |
|
1780 |
finally show ?case |
|
1781 |
using be numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] |
|
1782 |
by simp |
|
1783 |
next |
|
1784 |
case (3 c e) |
|
1785 |
then have cp: "c > 0" and be: "numbound0 e" and d': "c dvd l" |
|
1786 |
by simp_all |
|
1787 |
from lp cp have clel: "c \<le> l" |
|
1788 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1789 |
from cp have cnz: "c \<noteq> 0" |
|
1790 |
by simp |
|
1791 |
have "c div c \<le> l div c" |
|
50313 | 1792 |
by (simp add: zdiv_mono1[OF clel cp]) |
1793 |
then have ldcp:"0 < l div c" |
|
1794 |
by (simp add: div_self[OF cnz]) |
|
55964 | 1795 |
have "c * (l div c) = c * (l div c) + l mod c" |
50313 | 1796 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
64246 | 1797 |
then have cl:"c * (l div c) =l" using mult_div_mod_eq [where a="l" and b="c"] |
50313 | 1798 |
by simp |
55964 | 1799 |
then have "l * x + (l div c) * Inum (x # bs) e = 0 \<longleftrightarrow> |
1800 |
(c * (l div c)) * x + (l div c) * Inum (x # bs) e = 0" |
|
23274 | 1801 |
by simp |
55964 | 1802 |
also have "\<dots> \<longleftrightarrow> (l div c) * (c * x + Inum (x # bs) e) = ((l div c)) * 0" |
50313 | 1803 |
by (simp add: algebra_simps) |
55964 | 1804 |
also have "\<dots> \<longleftrightarrow> c * x + Inum (x # bs) e = 0" |
55921 | 1805 |
using mult_eq_0_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp |
1806 |
by simp |
|
50313 | 1807 |
finally show ?case |
55921 | 1808 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be |
1809 |
by simp |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1810 |
next |
50313 | 1811 |
case (4 c e) |
55921 | 1812 |
then have cp: "c > 0" and be: "numbound0 e" and d': "c dvd l" |
1813 |
by simp_all |
|
1814 |
from lp cp have clel: "c \<le> l" |
|
1815 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1816 |
from cp have cnz: "c \<noteq> 0" |
|
1817 |
by simp |
|
1818 |
have "c div c \<le> l div c" |
|
50313 | 1819 |
by (simp add: zdiv_mono1[OF clel cp]) |
1820 |
then have ldcp:"0 < l div c" |
|
1821 |
by (simp add: div_self[OF cnz]) |
|
55964 | 1822 |
have "c * (l div c) = c * (l div c) + l mod c" |
55921 | 1823 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
1824 |
then have cl: "c * (l div c) = l" |
|
64246 | 1825 |
using mult_div_mod_eq [where a="l" and b="c"] by simp |
55964 | 1826 |
then have "l * x + (l div c) * Inum (x # bs) e \<noteq> 0 \<longleftrightarrow> |
55921 | 1827 |
(c * (l div c)) * x + (l div c) * Inum (x # bs) e \<noteq> 0" |
50313 | 1828 |
by simp |
55921 | 1829 |
also have "\<dots> \<longleftrightarrow> (l div c) * (c * x + Inum (x # bs) e) \<noteq> (l div c) * 0" |
50313 | 1830 |
by (simp add: algebra_simps) |
55921 | 1831 |
also have "\<dots> \<longleftrightarrow> c * x + Inum (x # bs) e \<noteq> 0" |
1832 |
using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp |
|
1833 |
by simp |
|
50313 | 1834 |
finally show ?case |
55921 | 1835 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be |
1836 |
by simp |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1837 |
next |
50313 | 1838 |
case (9 j c e) |
55921 | 1839 |
then have cp: "c > 0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" |
1840 |
by simp_all |
|
1841 |
from lp cp have clel: "c \<le> l" |
|
1842 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
50313 | 1843 |
from cp have cnz: "c \<noteq> 0" by simp |
1844 |
have "c div c\<le> l div c" |
|
1845 |
by (simp add: zdiv_mono1[OF clel cp]) |
|
1846 |
then have ldcp:"0 < l div c" |
|
1847 |
by (simp add: div_self[OF cnz]) |
|
55964 | 1848 |
have "c * (l div c) = c * (l div c) + l mod c" |
55885 | 1849 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
55921 | 1850 |
then have cl: "c * (l div c) = l" |
64246 | 1851 |
using mult_div_mod_eq [where a="l" and b="c"] by simp |
55921 | 1852 |
then have "(\<exists>k::int. l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) \<longleftrightarrow> |
55964 | 1853 |
(\<exists>k::int. (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)" |
55921 | 1854 |
by simp |
55964 | 1855 |
also have "\<dots> \<longleftrightarrow> (\<exists>k::int. (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c) * 0)" |
55921 | 1856 |
by (simp add: algebra_simps) |
60708 | 1857 |
also have "\<dots> \<longleftrightarrow> (\<exists>k::int. c * x + Inum (x # bs) e - j * k = 0)" |
1858 |
using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k" for k] ldcp |
|
55921 | 1859 |
by simp |
1860 |
also have "\<dots> \<longleftrightarrow> (\<exists>k::int. c * x + Inum (x # bs) e = j * k)" |
|
1861 |
by simp |
|
1862 |
finally show ?case |
|
1863 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] |
|
1864 |
be mult_strict_mono[OF ldcp jp ldcp ] |
|
1865 |
by (simp add: dvd_def) |
|
1866 |
next |
|
1867 |
case (10 j c e) |
|
1868 |
then have cp: "c > 0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" |
|
1869 |
by simp_all |
|
1870 |
from lp cp have clel: "c \<le> l" |
|
1871 |
by (simp add: zdvd_imp_le [OF d' lp]) |
|
1872 |
from cp have cnz: "c \<noteq> 0" |
|
50313 | 1873 |
by simp |
55921 | 1874 |
have "c div c \<le> l div c" |
1875 |
by (simp add: zdiv_mono1[OF clel cp]) |
|
1876 |
then have ldcp: "0 < l div c" |
|
1877 |
by (simp add: div_self[OF cnz]) |
|
1878 |
have "c * (l div c) = c* (l div c) + l mod c" |
|
1879 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp |
|
1880 |
then have cl:"c * (l div c) =l" |
|
64246 | 1881 |
using mult_div_mod_eq [where a="l" and b="c"] |
55921 | 1882 |
by simp |
1883 |
then have "(\<exists>k::int. l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) \<longleftrightarrow> |
|
1884 |
(\<exists>k::int. (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)" |
|
1885 |
by simp |
|
1886 |
also have "\<dots> \<longleftrightarrow> (\<exists>k::int. (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c) * 0)" |
|
1887 |
by (simp add: algebra_simps) |
|
60708 | 1888 |
also have "\<dots> \<longleftrightarrow> (\<exists>k::int. c * x + Inum (x # bs) e - j * k = 0)" |
1889 |
using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k" for k] ldcp |
|
55921 | 1890 |
by simp |
55964 | 1891 |
also have "\<dots> \<longleftrightarrow> (\<exists>k::int. c * x + Inum (x # bs) e = j * k)" |
55921 | 1892 |
by simp |
1893 |
finally show ?case |
|
1894 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be |
|
1895 |
mult_strict_mono[OF ldcp jp ldcp ] |
|
1896 |
by (simp add: dvd_def) |
|
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
1897 |
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="(l * x)" and b'="x"]) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1898 |
|
55921 | 1899 |
lemma a_\<beta>_ex: |
1900 |
assumes linp: "iszlfm p" |
|
1901 |
and d: "d_\<beta> p l" |
|
1902 |
and lp: "l > 0" |
|
1903 |
shows "(\<exists>x. l dvd x \<and> Ifm bbs (x #bs) (a_\<beta> p l)) \<longleftrightarrow> (\<exists>x::int. Ifm bbs (x#bs) p)" |
|
1904 |
(is "(\<exists>x. l dvd x \<and> ?P x) \<longleftrightarrow> (\<exists>x. ?P' x)") |
|
23274 | 1905 |
proof- |
55999 | 1906 |
have "(\<exists>x. l dvd x \<and> ?P x) \<longleftrightarrow> (\<exists>x::int. ?P (l * x))" |
23274 | 1907 |
using unity_coeff_ex[where l="l" and P="?P", simplified] by simp |
55921 | 1908 |
also have "\<dots> = (\<exists>x::int. ?P' x)" |
1909 |
using a_\<beta>[OF linp d lp] by simp |
|
50313 | 1910 |
finally show ?thesis . |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1911 |
qed |
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
1912 |
|
23274 | 1913 |
lemma \<beta>: |
55999 | 1914 |
assumes "iszlfm p" |
1915 |
and "d_\<beta> p 1" |
|
1916 |
and "d_\<delta> p d" |
|
55885 | 1917 |
and dp: "d > 0" |
55999 | 1918 |
and "\<not> (\<exists>j::int \<in> {1 .. d}. \<exists>b \<in> Inum (a # bs) ` set (\<beta> p). x = b + j)" |
55964 | 1919 |
and p: "Ifm bbs (x # bs) p" (is "?P x") |
23274 | 1920 |
shows "?P (x - d)" |
55999 | 1921 |
using assms |
55885 | 1922 |
proof (induct p rule: iszlfm.induct) |
1923 |
case (5 c e) |
|
1924 |
then have c1: "c = 1" and bn: "numbound0 e" |
|
1925 |
by simp_all |
|
55964 | 1926 |
with dp p c1 numbound0_I[OF bn,where b = "(x - d)" and b' = "x" and bs = "bs"] 5 |
41807 | 1927 |
show ?case by simp |
23274 | 1928 |
next |
55885 | 1929 |
case (6 c e) |
1930 |
then have c1: "c = 1" and bn: "numbound0 e" |
|
1931 |
by simp_all |
|
41807 | 1932 |
with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] 6 |
1933 |
show ?case by simp |
|
23274 | 1934 |
next |
55885 | 1935 |
case (7 c e) |
55964 | 1936 |
then have p: "Ifm bbs (x # bs) (Gt (CN 0 c e))" and c1: "c=1" and bn: "numbound0 e" |
55885 | 1937 |
by simp_all |
41807 | 1938 |
let ?e = "Inum (x # bs) e" |
60708 | 1939 |
show ?case |
1940 |
proof (cases "(x - d) + ?e > 0") |
|
1941 |
case True |
|
1942 |
then show ?thesis |
|
55885 | 1943 |
using c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] by simp |
60708 | 1944 |
next |
1945 |
case False |
|
55964 | 1946 |
let ?v = "Neg e" |
1947 |
have vb: "?v \<in> set (\<beta> (Gt (CN 0 c e)))" |
|
1948 |
by simp |
|
57816
d8bbb97689d3
no need for 'set_simps' now that 'datatype_new' generates the desired 'set' property
blanchet
parents:
57514
diff
changeset
|
1949 |
from 7(5)[simplified simp_thms Inum.simps \<beta>.simps list.set bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]] |
55964 | 1950 |
have nob: "\<not> (\<exists>j\<in> {1 ..d}. x = - ?e + j)" |
55885 | 1951 |
by auto |
60708 | 1952 |
from False p have "x + ?e > 0 \<and> x + ?e \<le> d" |
55885 | 1953 |
by (simp add: c1) |
1954 |
then have "x + ?e \<ge> 1 \<and> x + ?e \<le> d" |
|
1955 |
by simp |
|
55964 | 1956 |
then have "\<exists>j::int \<in> {1 .. d}. j = x + ?e" |
55885 | 1957 |
by simp |
55964 | 1958 |
then have "\<exists>j::int \<in> {1 .. d}. x = (- ?e + j)" |
41807 | 1959 |
by (simp add: algebra_simps) |
60708 | 1960 |
with nob show ?thesis |
55885 | 1961 |
by auto |
60708 | 1962 |
qed |
23274 | 1963 |
next |
55885 | 1964 |
case (8 c e) |
1965 |
then have p: "Ifm bbs (x # bs) (Ge (CN 0 c e))" and c1: "c = 1" and bn: "numbound0 e" |
|
50313 | 1966 |
by simp_all |
55885 | 1967 |
let ?e = "Inum (x # bs) e" |
60708 | 1968 |
show ?case |
1969 |
proof (cases "(x - d) + ?e \<ge> 0") |
|
1970 |
case True |
|
1971 |
then show ?thesis |
|
55885 | 1972 |
using c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] |
1973 |
by simp |
|
60708 | 1974 |
next |
1975 |
case False |
|
58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58310
diff
changeset
|
1976 |
let ?v = "Sub (C (- 1)) e" |
55885 | 1977 |
have vb: "?v \<in> set (\<beta> (Ge (CN 0 c e)))" |
1978 |
by simp |
|
57816
d8bbb97689d3
no need for 'set_simps' now that 'datatype_new' generates the desired 'set' property
blanchet
parents:
57514
diff
changeset
|
1979 |
from 8(5)[simplified simp_thms Inum.simps \<beta>.simps list.set bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]] |
55885 | 1980 |
have nob: "\<not> (\<exists>j\<in> {1 ..d}. x = - ?e - 1 + j)" |
1981 |
by auto |
|
60708 | 1982 |
from False p have "x + ?e \<ge> 0 \<and> x + ?e < d" |
55885 | 1983 |
by (simp add: c1) |
1984 |
then have "x + ?e +1 \<ge> 1 \<and> x + ?e + 1 \<le> d" |
|
1985 |
by simp |
|
55964 | 1986 |
then have "\<exists>j::int \<in> {1 .. d}. j = x + ?e + 1" |
55885 | 1987 |
by simp |
55964 | 1988 |
then have "\<exists>j::int \<in> {1 .. d}. x= - ?e - 1 + j" |
55885 | 1989 |
by (simp add: algebra_simps) |
60708 | 1990 |
with nob show ?thesis |
55885 | 1991 |
by simp |
60708 | 1992 |
qed |
23274 | 1993 |
next |
55885 | 1994 |
case (3 c e) |
1995 |
then |
|
1996 |
have p: "Ifm bbs (x #bs) (Eq (CN 0 c e))" (is "?p x") |
|
55964 | 1997 |
and c1: "c = 1" |
55885 | 1998 |
and bn: "numbound0 e" |
1999 |
by simp_all |
|
2000 |
let ?e = "Inum (x # bs) e" |
|
58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58310
diff
changeset
|
2001 |
let ?v="(Sub (C (- 1)) e)" |
55885 | 2002 |
have vb: "?v \<in> set (\<beta> (Eq (CN 0 c e)))" |
2003 |
by simp |
|
55964 | 2004 |
from p have "x= - ?e" |
2005 |
by (simp add: c1) with 3(5) |
|
2006 |
show ?case |
|
60708 | 2007 |
using dp apply simp |
2008 |
apply (erule ballE[where x="1"]) |
|
2009 |
apply (simp_all add:algebra_simps numbound0_I[OF bn,where b="x"and b'="a"and bs="bs"]) |
|
2010 |
done |
|
23274 | 2011 |
next |
55885 | 2012 |
case (4 c e) |
2013 |
then |
|
55964 | 2014 |
have p: "Ifm bbs (x # bs) (NEq (CN 0 c e))" (is "?p x") |
55885 | 2015 |
and c1: "c = 1" |
2016 |
and bn: "numbound0 e" |
|
2017 |
by simp_all |
|
2018 |
let ?e = "Inum (x # bs) e" |
|
2019 |
let ?v="Neg e" |
|
55964 | 2020 |
have vb: "?v \<in> set (\<beta> (NEq (CN 0 c e)))" |
2021 |
by simp |
|
60708 | 2022 |
show ?case |
2023 |
proof (cases "x - d + Inum ((x - d) # bs) e = 0") |
|
2024 |
case False |
|
2025 |
then show ?thesis by (simp add: c1) |
|
2026 |
next |
|
2027 |
case True |
|
55964 | 2028 |
then have "x = - Inum ((x - d) # bs) e + d" |
55885 | 2029 |
by simp |
2030 |
then have "x = - Inum (a # bs) e + d" |
|
2031 |
by (simp add: numbound0_I[OF bn,where b="x - d"and b'="a"and bs="bs"]) |
|
60708 | 2032 |
with 4(5) show ?thesis |
55885 | 2033 |
using dp by simp |
60708 | 2034 |
qed |
50313 | 2035 |
next |
55885 | 2036 |
case (9 j c e) |
2037 |
then |
|
2038 |
have p: "Ifm bbs (x # bs) (Dvd j (CN 0 c e))" (is "?p x") |
|
2039 |
and c1: "c = 1" |
|
2040 |
and bn: "numbound0 e" |
|
2041 |
by simp_all |
|
2042 |
let ?e = "Inum (x # bs) e" |
|
2043 |
from 9 have id: "j dvd d" |
|
2044 |
by simp |
|
55964 | 2045 |
from c1 have "?p x \<longleftrightarrow> j dvd (x + ?e)" |
55885 | 2046 |
by simp |
55964 | 2047 |
also have "\<dots> \<longleftrightarrow> j dvd x - d + ?e" |
55885 | 2048 |
using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] |
2049 |
by simp |
|
2050 |
finally show ?case |
|
2051 |
using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p |
|
2052 |
by simp |
|
23274 | 2053 |
next |
55885 | 2054 |
case (10 j c e) |
2055 |
then |
|
55964 | 2056 |
have p: "Ifm bbs (x # bs) (NDvd j (CN 0 c e))" (is "?p x") |
55885 | 2057 |
and c1: "c = 1" |
2058 |
and bn: "numbound0 e" |
|
2059 |
by simp_all |
|
2060 |
let ?e = "Inum (x # bs) e" |
|
2061 |
from 10 have id: "j dvd d" |
|
2062 |
by simp |
|
55964 | 2063 |
from c1 have "?p x \<longleftrightarrow> \<not> j dvd (x + ?e)" |
55885 | 2064 |
by simp |
55964 | 2065 |
also have "\<dots> \<longleftrightarrow> \<not> j dvd x - d + ?e" |
55885 | 2066 |
using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] |
2067 |
by simp |
|
2068 |
finally show ?case |
|
2069 |
using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p |
|
2070 |
by simp |
|
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
2071 |
qed (auto simp add: numbound0_I[where bs="bs" and b="(x - d)" and b'="x"] gr0_conv_Suc) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2072 |
|
50313 | 2073 |
lemma \<beta>': |
23274 | 2074 |
assumes lp: "iszlfm p" |
60708 | 2075 |
and u: "d_\<beta> p 1" |
2076 |
and d: "d_\<delta> p d" |
|
2077 |
and dp: "d > 0" |
|
55964 | 2078 |
shows "\<forall>x. \<not> (\<exists>j::int \<in> {1 .. d}. \<exists>b \<in> set(\<beta> p). Ifm bbs ((Inum (a#bs) b + j) #bs) p) \<longrightarrow> |
2079 |
Ifm bbs (x # bs) p \<longrightarrow> Ifm bbs ((x - d) # bs) p" (is "\<forall>x. ?b \<longrightarrow> ?P x \<longrightarrow> ?P (x - d)") |
|
55885 | 2080 |
proof clarify |
50313 | 2081 |
fix x |
60708 | 2082 |
assume nb: "?b" and px: "?P x" |
55964 | 2083 |
then have nb2: "\<not> (\<exists>j::int \<in> {1 .. d}. \<exists>b \<in> Inum (a # bs) ` set (\<beta> p). x = b + j)" |
23274 | 2084 |
by auto |
60708 | 2085 |
show "?P (x - d)" by (rule \<beta>[OF lp u d dp nb2 px]) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2086 |
qed |
55885 | 2087 |
|
2088 |
lemma cpmi_eq: |
|
55999 | 2089 |
fixes P P1 :: "int \<Rightarrow> bool" |
2090 |
assumes "0 < D" |
|
2091 |
and "\<exists>z. \<forall>x. x < z \<longrightarrow> P x = P1 x" |
|
2092 |
and "\<forall>x. \<not> (\<exists>j \<in> {1..D}. \<exists>b \<in> B. P (b + j)) \<longrightarrow> P x \<longrightarrow> P (x - D)" |
|
2093 |
and "\<forall>x k. P1 x = P1 (x - k * D)" |
|
2094 |
shows "(\<exists>x. P x) \<longleftrightarrow> (\<exists>j \<in> {1..D}. P1 j) \<or> (\<exists>j \<in> {1..D}. \<exists>b \<in> B. P (b + j))" |
|
2095 |
apply (insert assms) |
|
2096 |
apply (rule iffI) |
|
55885 | 2097 |
prefer 2 |
55981 | 2098 |
apply (drule minusinfinity) |
55885 | 2099 |
apply assumption+ |
55981 | 2100 |
apply fastforce |
55885 | 2101 |
apply clarsimp |
55981 | 2102 |
apply (subgoal_tac "\<And>k. 0 \<le> k \<Longrightarrow> \<forall>x. P x \<longrightarrow> P (x - k * D)") |
2103 |
apply (frule_tac x = x and z=z in decr_lemma) |
|
2104 |
apply (subgoal_tac "P1 (x - (\<bar>x - z\<bar> + 1) * D)") |
|
55885 | 2105 |
prefer 2 |
55981 | 2106 |
apply (subgoal_tac "0 \<le> \<bar>x - z\<bar> + 1") |
55885 | 2107 |
prefer 2 apply arith |
2108 |
apply fastforce |
|
55981 | 2109 |
apply (drule (1) periodic_finite_ex) |
55885 | 2110 |
apply blast |
55981 | 2111 |
apply (blast dest: decr_mult_lemma) |
55885 | 2112 |
done |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2113 |
|
23274 | 2114 |
theorem cp_thm: |
2115 |
assumes lp: "iszlfm p" |
|
55885 | 2116 |
and u: "d_\<beta> p 1" |
2117 |
and d: "d_\<delta> p d" |
|
2118 |
and dp: "d > 0" |
|
55999 | 2119 |
shows "(\<exists>x. Ifm bbs (x # bs) p) \<longleftrightarrow> |
55964 | 2120 |
(\<exists>j \<in> {1.. d}. Ifm bbs (j # bs) (minusinf p) \<or> |
2121 |
(\<exists>b \<in> set (\<beta> p). Ifm bbs ((Inum (i # bs) b + j) # bs) p))" |
|
55999 | 2122 |
(is "(\<exists>x. ?P x) \<longleftrightarrow> (\<exists>j \<in> ?D. ?M j \<or> (\<exists>b \<in> ?B. ?P (?I b + j)))") |
55885 | 2123 |
proof - |
50313 | 2124 |
from minusinf_inf[OF lp u] |
55999 | 2125 |
have th: "\<exists>z. \<forall>x<z. ?P x = ?M x" |
55885 | 2126 |
by blast |
55964 | 2127 |
let ?B' = "{?I b | b. b \<in> ?B}" |
2128 |
have BB': "(\<exists>j\<in>?D. \<exists>b \<in> ?B. ?P (?I b + j)) \<longleftrightarrow> (\<exists>j \<in> ?D. \<exists>b \<in> ?B'. ?P (b + j))" |
|
55885 | 2129 |
by auto |
55964 | 2130 |
then have th2: "\<forall>x. \<not> (\<exists>j \<in> ?D. \<exists>b \<in> ?B'. ?P (b + j)) \<longrightarrow> ?P x \<longrightarrow> ?P (x - d)" |
23274 | 2131 |
using \<beta>'[OF lp u d dp, where a="i" and bbs = "bbs"] by blast |
2132 |
from minusinf_repeats[OF d lp] |
|
55885 | 2133 |
have th3: "\<forall>x k. ?M x = ?M (x-k*d)" |
2134 |
by simp |
|
2135 |
from cpmi_eq[OF dp th th2 th3] BB' show ?thesis |
|
2136 |
by blast |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2137 |
qed |
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2138 |
|
67123 | 2139 |
text \<open>Implement the right hand sides of Cooper's theorem and Ferrante and Rackoff.\<close> |
2140 |
||
50313 | 2141 |
lemma mirror_ex: |
55999 | 2142 |
assumes "iszlfm p" |
2143 |
shows "(\<exists>x. Ifm bbs (x#bs) (mirror p)) \<longleftrightarrow> (\<exists>x. Ifm bbs (x#bs) p)" |
|
50313 | 2144 |
(is "(\<exists>x. ?I x ?mp) = (\<exists>x. ?I x p)") |
55964 | 2145 |
proof auto |
2146 |
fix x |
|
2147 |
assume "?I x ?mp" |
|
2148 |
then have "?I (- x) p" |
|
55999 | 2149 |
using mirror[OF assms] by blast |
55964 | 2150 |
then show "\<exists>x. ?I x p" |
2151 |
by blast |
|
23274 | 2152 |
next |
55964 | 2153 |
fix x |
2154 |
assume "?I x p" |
|
2155 |
then have "?I (- x) ?mp" |
|
55999 | 2156 |
using mirror[OF assms, where x="- x", symmetric] by auto |
55964 | 2157 |
then show "\<exists>x. ?I x ?mp" |
2158 |
by blast |
|
23274 | 2159 |
qed |
24349 | 2160 |
|
50313 | 2161 |
lemma cp_thm': |
55999 | 2162 |
assumes "iszlfm p" |
2163 |
and "d_\<beta> p 1" |
|
2164 |
and "d_\<delta> p d" |
|
2165 |
and "d > 0" |
|
55964 | 2166 |
shows "(\<exists>x. Ifm bbs (x # bs) p) \<longleftrightarrow> |
2167 |
((\<exists>j\<in> {1 .. d}. Ifm bbs (j#bs) (minusinf p)) \<or> |
|
2168 |
(\<exists>j\<in> {1.. d}. \<exists>b\<in> (Inum (i#bs)) ` set (\<beta> p). Ifm bbs ((b + j) # bs) p))" |
|
55999 | 2169 |
using cp_thm[OF assms,where i="i"] by auto |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2170 |
|
50313 | 2171 |
definition unit :: "fm \<Rightarrow> fm \<times> num list \<times> int" |
2172 |
where |
|
55964 | 2173 |
"unit p = |
2174 |
(let |
|
2175 |
p' = zlfm p; |
|
2176 |
l = \<zeta> p'; |
|
2177 |
q = And (Dvd l (CN 0 1 (C 0))) (a_\<beta> p' l); |
|
2178 |
d = \<delta> q; |
|
2179 |
B = remdups (map simpnum (\<beta> q)); |
|
2180 |
a = remdups (map simpnum (\<alpha> q)) |
|
2181 |
in if length B \<le> length a then (q, B, d) else (mirror q, a, d))" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2182 |
|
50313 | 2183 |
lemma unit: |
2184 |
assumes qf: "qfree p" |
|
60708 | 2185 |
fixes q B d |
2186 |
assumes qBd: "unit p = (q, B, d)" |
|
2187 |
shows "((\<exists>x. Ifm bbs (x # bs) p) \<longleftrightarrow> (\<exists>x. Ifm bbs (x # bs) q)) \<and> |
|
55964 | 2188 |
(Inum (i # bs)) ` set B = (Inum (i # bs)) ` set (\<beta> q) \<and> d_\<beta> q 1 \<and> d_\<delta> q d \<and> d > 0 \<and> |
2189 |
iszlfm q \<and> (\<forall>b\<in> set B. numbound0 b)" |
|
50313 | 2190 |
proof - |
2191 |
let ?I = "\<lambda>x p. Ifm bbs (x#bs) p" |
|
23274 | 2192 |
let ?p' = "zlfm p" |
2193 |
let ?l = "\<zeta> ?p'" |
|
50252 | 2194 |
let ?q = "And (Dvd ?l (CN 0 1 (C 0))) (a_\<beta> ?p' ?l)" |
23274 | 2195 |
let ?d = "\<delta> ?q" |
2196 |
let ?B = "set (\<beta> ?q)" |
|
2197 |
let ?B'= "remdups (map simpnum (\<beta> ?q))" |
|
2198 |
let ?A = "set (\<alpha> ?q)" |
|
2199 |
let ?A'= "remdups (map simpnum (\<alpha> ?q))" |
|
50313 | 2200 |
from conjunct1[OF zlfm_I[OF qf, where bs="bs"]] |
2201 |
have pp': "\<forall>i. ?I i ?p' = ?I i p" by auto |
|
23274 | 2202 |
from conjunct2[OF zlfm_I[OF qf, where bs="bs" and i="i"]] |
50313 | 2203 |
have lp': "iszlfm ?p'" . |
50252 | 2204 |
from lp' \<zeta>[where p="?p'"] have lp: "?l >0" and dl: "d_\<beta> ?p' ?l" by auto |
2205 |
from a_\<beta>_ex[where p="?p'" and l="?l" and bs="bs", OF lp' dl lp] pp' |
|
50313 | 2206 |
have pq_ex:"(\<exists>(x::int). ?I x p) = (\<exists>x. ?I x ?q)" by simp |
50252 | 2207 |
from lp' lp a_\<beta>[OF lp' dl lp] have lq:"iszlfm ?q" and uq: "d_\<beta> ?q 1" by auto |
2208 |
from \<delta>[OF lq] have dp:"?d >0" and dd: "d_\<delta> ?q ?d" by blast+ |
|
50313 | 2209 |
let ?N = "\<lambda>t. Inum (i#bs) t" |
55981 | 2210 |
have "?N ` set ?B' = ((?N \<circ> simpnum) ` ?B)" |
2211 |
by auto |
|
2212 |
also have "\<dots> = ?N ` ?B" |
|
2213 |
using simpnum_ci[where bs="i#bs"] by auto |
|
23274 | 2214 |
finally have BB': "?N ` set ?B' = ?N ` ?B" . |
55981 | 2215 |
have "?N ` set ?A' = ((?N \<circ> simpnum) ` ?A)" |
2216 |
by auto |
|
2217 |
also have "\<dots> = ?N ` ?A" |
|
2218 |
using simpnum_ci[where bs="i#bs"] by auto |
|
23274 | 2219 |
finally have AA': "?N ` set ?A' = ?N ` ?A" . |
50313 | 2220 |
from \<beta>_numbound0[OF lq] have B_nb:"\<forall>b\<in> set ?B'. numbound0 b" |
23274 | 2221 |
by (simp add: simpnum_numbound0) |
50313 | 2222 |
from \<alpha>_l[OF lq] have A_nb: "\<forall>b\<in> set ?A'. numbound0 b" |
23274 | 2223 |
by (simp add: simpnum_numbound0) |
60708 | 2224 |
show ?thesis |
2225 |
proof (cases "length ?B' \<le> length ?A'") |
|
2226 |
case True |
|
55981 | 2227 |
then have q: "q = ?q" and "B = ?B'" and d: "d = ?d" |
23274 | 2228 |
using qBd by (auto simp add: Let_def unit_def) |
55981 | 2229 |
with BB' B_nb |
2230 |
have b: "?N ` (set B) = ?N ` set (\<beta> q)" and bn: "\<forall>b\<in> set B. numbound0 b" |
|
2231 |
by simp_all |
|
60708 | 2232 |
with pq_ex dp uq dd lq q d show ?thesis |
55981 | 2233 |
by simp |
60708 | 2234 |
next |
2235 |
case False |
|
55885 | 2236 |
then have q:"q=mirror ?q" and "B = ?A'" and d:"d = ?d" |
23274 | 2237 |
using qBd by (auto simp add: Let_def unit_def) |
50313 | 2238 |
with AA' mirror_\<alpha>_\<beta>[OF lq] A_nb have b:"?N ` (set B) = ?N ` set (\<beta> q)" |
2239 |
and bn: "\<forall>b\<in> set B. numbound0 b" by simp_all |
|
2240 |
from mirror_ex[OF lq] pq_ex q |
|
55981 | 2241 |
have pqm_eq:"(\<exists>(x::int). ?I x p) = (\<exists>(x::int). ?I x q)" |
2242 |
by simp |
|
23274 | 2243 |
from lq uq q mirror_l[where p="?q"] |
55981 | 2244 |
have lq': "iszlfm q" and uq: "d_\<beta> q 1" |
2245 |
by auto |
|
2246 |
from \<delta>[OF lq'] mirror_\<delta>[OF lq] q d have dq: "d_\<delta> q d" |
|
2247 |
by auto |
|
60708 | 2248 |
from pqm_eq b bn uq lq' dp dq q dp d show ?thesis |
55981 | 2249 |
by simp |
60708 | 2250 |
qed |
23274 | 2251 |
qed |
50313 | 2252 |
|
2253 |
||
70091 | 2254 |
subsection \<open>Cooper's Algorithm\<close> |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2255 |
|
55981 | 2256 |
definition cooper :: "fm \<Rightarrow> fm" |
2257 |
where |
|
50313 | 2258 |
"cooper p = |
2259 |
(let |
|
2260 |
(q, B, d) = unit p; |
|
2261 |
js = [1..d]; |
|
2262 |
mq = simpfm (minusinf q); |
|
2263 |
md = evaldjf (\<lambda>j. simpfm (subst0 (C j) mq)) js |
|
2264 |
in |
|
2265 |
if md = T then T |
|
2266 |
else |
|
2267 |
(let |
|
2268 |
qd = evaldjf (\<lambda>(b, j). simpfm (subst0 (Add b (C j)) q)) [(b, j). b \<leftarrow> B, j \<leftarrow> js] |
|
2269 |
in decr (disj md qd)))" |
|
2270 |
||
2271 |
lemma cooper: |
|
2272 |
assumes qf: "qfree p" |
|
60708 | 2273 |
shows "(\<exists>x. Ifm bbs (x#bs) p) = Ifm bbs bs (cooper p) \<and> qfree (cooper p)" |
2274 |
(is "?lhs = ?rhs \<and> _") |
|
50313 | 2275 |
proof - |
2276 |
let ?I = "\<lambda>x p. Ifm bbs (x#bs) p" |
|
23274 | 2277 |
let ?q = "fst (unit p)" |
2278 |
let ?B = "fst (snd(unit p))" |
|
2279 |
let ?d = "snd (snd (unit p))" |
|
41836 | 2280 |
let ?js = "[1..?d]" |
23274 | 2281 |
let ?mq = "minusinf ?q" |
2282 |
let ?smq = "simpfm ?mq" |
|
50313 | 2283 |
let ?md = "evaldjf (\<lambda>j. simpfm (subst0 (C j) ?smq)) ?js" |
26934 | 2284 |
fix i |
50313 | 2285 |
let ?N = "\<lambda>t. Inum (i#bs) t" |
24336 | 2286 |
let ?Bjs = "[(b,j). b\<leftarrow>?B,j\<leftarrow>?js]" |
50313 | 2287 |
let ?qd = "evaldjf (\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)) ?Bjs" |
23274 | 2288 |
have qbf:"unit p = (?q,?B,?d)" by simp |
55981 | 2289 |
from unit[OF qf qbf] |
2290 |
have pq_ex: "(\<exists>(x::int). ?I x p) \<longleftrightarrow> (\<exists>(x::int). ?I x ?q)" |
|
2291 |
and B: "?N ` set ?B = ?N ` set (\<beta> ?q)" |
|
2292 |
and uq: "d_\<beta> ?q 1" |
|
2293 |
and dd: "d_\<delta> ?q ?d" |
|
2294 |
and dp: "?d > 0" |
|
2295 |
and lq: "iszlfm ?q" |
|
2296 |
and Bn: "\<forall>b\<in> set ?B. numbound0 b" |
|
2297 |
by auto |
|
23274 | 2298 |
from zlin_qfree[OF lq] have qfq: "qfree ?q" . |
55921 | 2299 |
from simpfm_qf[OF minusinf_qfree[OF qfq]] have qfmq: "qfree ?smq" . |
55981 | 2300 |
have jsnb: "\<forall>j \<in> set ?js. numbound0 (C j)" |
2301 |
by simp |
|
55885 | 2302 |
then have "\<forall>j\<in> set ?js. bound0 (subst0 (C j) ?smq)" |
23274 | 2303 |
by (auto simp only: subst0_bound0[OF qfmq]) |
55885 | 2304 |
then have th: "\<forall>j\<in> set ?js. bound0 (simpfm (subst0 (C j) ?smq))" |
23274 | 2305 |
by (auto simp add: simpfm_bound0) |
55981 | 2306 |
from evaldjf_bound0[OF th] have mdb: "bound0 ?md" |
2307 |
by simp |
|
50313 | 2308 |
from Bn jsnb have "\<forall>(b,j) \<in> set ?Bjs. numbound0 (Add b (C j))" |
23689
0410269099dc
replaced code generator framework for reflected cooper
haftmann
parents:
23515
diff
changeset
|
2309 |
by simp |
55885 | 2310 |
then have "\<forall>(b,j) \<in> set ?Bjs. bound0 (subst0 (Add b (C j)) ?q)" |
23274 | 2311 |
using subst0_bound0[OF qfq] by blast |
55885 | 2312 |
then have "\<forall>(b,j) \<in> set ?Bjs. bound0 (simpfm (subst0 (Add b (C j)) ?q))" |
55981 | 2313 |
using simpfm_bound0 by blast |
55885 | 2314 |
then have th': "\<forall>x \<in> set ?Bjs. bound0 ((\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)) x)" |
50313 | 2315 |
by auto |
55981 | 2316 |
from evaldjf_bound0 [OF th'] have qdb: "bound0 ?qd" |
2317 |
by simp |
|
2318 |
from mdb qdb have mdqdb: "bound0 (disj ?md ?qd)" |
|
2319 |
unfolding disj_def by (cases "?md = T \<or> ?qd = T") simp_all |
|
23274 | 2320 |
from trans [OF pq_ex cp_thm'[OF lq uq dd dp,where i="i"]] B |
55981 | 2321 |
have "?lhs \<longleftrightarrow> (\<exists>j \<in> {1.. ?d}. ?I j ?mq \<or> (\<exists>b \<in> ?N ` set ?B. Ifm bbs ((b + j) # bs) ?q))" |
55921 | 2322 |
by auto |
55981 | 2323 |
also have "\<dots> \<longleftrightarrow> (\<exists>j \<in> {1.. ?d}. ?I j ?mq \<or> (\<exists>b \<in> set ?B. Ifm bbs ((?N b + j) # bs) ?q))" |
55921 | 2324 |
by simp |
55981 | 2325 |
also have "\<dots> \<longleftrightarrow> (\<exists>j \<in> {1.. ?d}. ?I j ?mq ) \<or> |
2326 |
(\<exists>j\<in> {1.. ?d}. \<exists>b \<in> set ?B. Ifm bbs ((?N (Add b (C j))) # bs) ?q)" |
|
50313 | 2327 |
by (simp only: Inum.simps) blast |
55981 | 2328 |
also have "\<dots> \<longleftrightarrow> (\<exists>j \<in> {1.. ?d}. ?I j ?smq) \<or> |
2329 |
(\<exists>j \<in> {1.. ?d}. \<exists>b \<in> set ?B. Ifm bbs ((?N (Add b (C j))) # bs) ?q)" |
|
50313 | 2330 |
by (simp add: simpfm) |
55981 | 2331 |
also have "\<dots> \<longleftrightarrow> (\<exists>j\<in> set ?js. (\<lambda>j. ?I i (simpfm (subst0 (C j) ?smq))) j) \<or> |
2332 |
(\<exists>j\<in> set ?js. \<exists>b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q)" |
|
41836 | 2333 |
by (simp only: simpfm subst0_I[OF qfmq] set_upto) auto |
55981 | 2334 |
also have "\<dots> \<longleftrightarrow> ?I i (evaldjf (\<lambda>j. simpfm (subst0 (C j) ?smq)) ?js) \<or> |
2335 |
(\<exists>j\<in> set ?js. \<exists>b\<in> set ?B. ?I i (subst0 (Add b (C j)) ?q))" |
|
50313 | 2336 |
by (simp only: evaldjf_ex subst0_I[OF qfq]) |
55981 | 2337 |
also have "\<dots> \<longleftrightarrow> ?I i ?md \<or> |
2338 |
(\<exists>(b,j) \<in> set ?Bjs. (\<lambda>(b,j). ?I i (simpfm (subst0 (Add b (C j)) ?q))) (b,j))" |
|
50313 | 2339 |
by (simp only: simpfm set_concat set_map concat_map_singleton UN_simps) blast |
55981 | 2340 |
also have "\<dots> \<longleftrightarrow> ?I i ?md \<or> ?I i (evaldjf (\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)) ?Bjs)" |
50313 | 2341 |
by (simp only: evaldjf_ex[where bs="i#bs" and f="\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)" and ps="?Bjs"]) |
2342 |
(auto simp add: split_def) |
|
55981 | 2343 |
finally have mdqd: "?lhs \<longleftrightarrow> ?I i ?md \<or> ?I i ?qd" |
55921 | 2344 |
by simp |
55981 | 2345 |
also have "\<dots> \<longleftrightarrow> ?I i (disj ?md ?qd)" |
55921 | 2346 |
by (simp add: disj) |
55981 | 2347 |
also have "\<dots> \<longleftrightarrow> Ifm bbs bs (decr (disj ?md ?qd))" |
55921 | 2348 |
by (simp only: decr [OF mdqdb]) |
55981 | 2349 |
finally have mdqd2: "?lhs \<longleftrightarrow> Ifm bbs bs (decr (disj ?md ?qd))" . |
60708 | 2350 |
show ?thesis |
2351 |
proof (cases "?md = T") |
|
2352 |
case True |
|
55921 | 2353 |
then have cT: "cooper p = T" |
23274 | 2354 |
by (simp only: cooper_def unit_def split_def Let_def if_True) simp |
60708 | 2355 |
from True have lhs: "?lhs" |
55921 | 2356 |
using mdqd by simp |
60708 | 2357 |
from True have "?rhs" |
55921 | 2358 |
by (simp add: cooper_def unit_def split_def) |
60708 | 2359 |
with lhs cT show ?thesis |
55981 | 2360 |
by simp |
60708 | 2361 |
next |
2362 |
case False |
|
55921 | 2363 |
then have "cooper p = decr (disj ?md ?qd)" |
50313 | 2364 |
by (simp only: cooper_def unit_def split_def Let_def if_False) |
60708 | 2365 |
with mdqd2 decr_qf[OF mdqdb] show ?thesis |
55921 | 2366 |
by simp |
60708 | 2367 |
qed |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2368 |
qed |
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2369 |
|
55921 | 2370 |
definition pa :: "fm \<Rightarrow> fm" |
2371 |
where "pa p = qelim (prep p) cooper" |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2372 |
|
55921 | 2373 |
theorem mirqe: "Ifm bbs bs (pa p) = Ifm bbs bs p \<and> qfree (pa p)" |
23274 | 2374 |
using qelim_ci cooper prep by (auto simp add: pa_def) |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2375 |
|
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2376 |
|
70091 | 2377 |
subsection \<open>Setup\<close> |
27456 | 2378 |
|
60533 | 2379 |
oracle linzqe_oracle = \<open> |
27456 | 2380 |
let |
2381 |
||
55814 | 2382 |
fun num_of_term vs (t as Free (xn, xT)) = |
67399 | 2383 |
(case AList.lookup (=) vs t of |
55814 | 2384 |
NONE => error "Variable not found in the list!" |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2385 |
| SOME n => @{code Bound} (@{code nat_of_integer} n)) |
69597 | 2386 |
| num_of_term vs \<^term>\<open>0::int\<close> = @{code C} (@{code int_of_integer} 0) |
2387 |
| num_of_term vs \<^term>\<open>1::int\<close> = @{code C} (@{code int_of_integer} 1) |
|
2388 |
| num_of_term vs \<^term>\<open>- 1::int\<close> = @{code C} (@{code int_of_integer} (~ 1)) |
|
74397 | 2389 |
| num_of_term vs \<^Const_>\<open>numeral _ for t\<close> = |
62342 | 2390 |
@{code C} (@{code int_of_integer} (HOLogic.dest_numeral t)) |
74406
ed4149b3d7ab
proper patterns for (- numeral t), amending 03ff4d1e6784;
wenzelm
parents:
74397
diff
changeset
|
2391 |
| num_of_term vs \<^Const_>\<open>uminus \<^Type>\<open>int\<close> for \<^Const_>\<open>numeral \<^Type>\<open>int\<close> for t\<close>\<close> = |
62342 | 2392 |
@{code C} (@{code int_of_integer} (~(HOLogic.dest_numeral t))) |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2393 |
| num_of_term vs (Bound i) = @{code Bound} (@{code nat_of_integer} i) |
74397 | 2394 |
| num_of_term vs \<^Const_>\<open>uminus \<^Type>\<open>int\<close> for t'\<close> = @{code Neg} (num_of_term vs t') |
2395 |
| num_of_term vs \<^Const_>\<open>plus \<^Type>\<open>int\<close> for t1 t2\<close> = |
|
27456 | 2396 |
@{code Add} (num_of_term vs t1, num_of_term vs t2) |
74397 | 2397 |
| num_of_term vs \<^Const_>\<open>minus \<^Type>\<open>int\<close> for t1 t2\<close> = |
27456 | 2398 |
@{code Sub} (num_of_term vs t1, num_of_term vs t2) |
74397 | 2399 |
| num_of_term vs \<^Const_>\<open>times \<^Type>\<open>int\<close> for t1 t2\<close> = |
55814 | 2400 |
(case try HOLogic.dest_number t1 of |
2401 |
SOME (_, i) => @{code Mul} (@{code int_of_integer} i, num_of_term vs t2) |
|
2402 |
| NONE => |
|
2403 |
(case try HOLogic.dest_number t2 of |
|
2404 |
SOME (_, i) => @{code Mul} (@{code int_of_integer} i, num_of_term vs t1) |
|
2405 |
| NONE => error "num_of_term: unsupported multiplication")) |
|
69597 | 2406 |
| num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term \<^context> t); |
27456 | 2407 |
|
74397 | 2408 |
fun fm_of_term ps vs \<^Const_>\<open>True\<close> = @{code T} |
2409 |
| fm_of_term ps vs \<^Const_>\<open>False\<close> = @{code F} |
|
2410 |
| fm_of_term ps vs \<^Const_>\<open>less \<^Type>\<open>int\<close> for t1 t2\<close> = |
|
27456 | 2411 |
@{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) |
74397 | 2412 |
| fm_of_term ps vs \<^Const_>\<open>less_eq \<^Type>\<open>int\<close> for t1 t2\<close> = |
27456 | 2413 |
@{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) |
74397 | 2414 |
| fm_of_term ps vs \<^Const_>\<open>HOL.eq \<^Type>\<open>int\<close> for t1 t2\<close> = |
50313 | 2415 |
@{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) |
74397 | 2416 |
| fm_of_term ps vs \<^Const_>\<open>dvd \<^Type>\<open>int\<close> for t1 t2\<close> = |
55814 | 2417 |
(case try HOLogic.dest_number t1 of |
2418 |
SOME (_, i) => @{code Dvd} (@{code int_of_integer} i, num_of_term vs t2) |
|
2419 |
| NONE => error "num_of_term: unsupported dvd") |
|
74397 | 2420 |
| fm_of_term ps vs \<^Const_>\<open>HOL.eq \<^Type>\<open>bool\<close> for t1 t2\<close> = |
27456 | 2421 |
@{code Iff} (fm_of_term ps vs t1, fm_of_term ps vs t2) |
74397 | 2422 |
| fm_of_term ps vs \<^Const_>\<open>HOL.conj for t1 t2\<close> = |
27456 | 2423 |
@{code And} (fm_of_term ps vs t1, fm_of_term ps vs t2) |
74397 | 2424 |
| fm_of_term ps vs \<^Const_>\<open>HOL.disj for t1 t2\<close> = |
27456 | 2425 |
@{code Or} (fm_of_term ps vs t1, fm_of_term ps vs t2) |
74397 | 2426 |
| fm_of_term ps vs \<^Const_>\<open>HOL.implies for t1 t2\<close> = |
27456 | 2427 |
@{code Imp} (fm_of_term ps vs t1, fm_of_term ps vs t2) |
74397 | 2428 |
| fm_of_term ps vs \<^Const_>\<open>HOL.Not for t'\<close> = |
74101 | 2429 |
@{code Not} (fm_of_term ps vs t') |
74527 | 2430 |
| fm_of_term ps vs \<^Const_>\<open>Ex _ for \<open>t as Abs _\<close>\<close> = |
27456 | 2431 |
let |
74525
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
2432 |
val (x', p') = Term.dest_abs_global t; |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
2433 |
val vs' = (Free x', 0) :: map (fn (v, n) => (v, n + 1)) vs; |
74527 | 2434 |
in @{code E} (fm_of_term ps vs' p') end |
2435 |
| fm_of_term ps vs \<^Const_>\<open>All _ for \<open>t as Abs _\<close>\<close> = |
|
27456 | 2436 |
let |
74525
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
2437 |
val (x', p') = Term.dest_abs_global t; |
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
2438 |
val vs' = (Free x', 0) :: map (fn (v, n) => (v, n + 1)) vs; |
74527 | 2439 |
in @{code A} (fm_of_term ps vs' p') end |
69597 | 2440 |
| fm_of_term ps vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term \<^context> t); |
23515 | 2441 |
|
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2442 |
fun term_of_num vs (@{code C} i) = HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i) |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2443 |
| term_of_num vs (@{code Bound} n) = |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2444 |
let |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2445 |
val q = @{code integer_of_nat} n |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2446 |
in fst (the (find_first (fn (_, m) => q = m) vs)) end |
74397 | 2447 |
| term_of_num vs (@{code Neg} t') = \<^Const>\<open>uminus \<^Type>\<open>int\<close> for \<open>term_of_num vs t'\<close>\<close> |
2448 |
| term_of_num vs (@{code Add} (t1, t2)) = |
|
2449 |
\<^Const>\<open>plus \<^Type>\<open>int\<close> for \<open>term_of_num vs t1\<close> \<open>term_of_num vs t2\<close>\<close> |
|
2450 |
| term_of_num vs (@{code Sub} (t1, t2)) = |
|
2451 |
\<^Const>\<open>minus \<^Type>\<open>int\<close> for \<open>term_of_num vs t1\<close> \<open>term_of_num vs t2\<close>\<close> |
|
2452 |
| term_of_num vs (@{code Mul} (i, t2)) = |
|
2453 |
\<^Const>\<open>times \<^Type>\<open>int\<close> for \<open>term_of_num vs (@{code C} i)\<close> \<open>term_of_num vs t2\<close>\<close> |
|
55814 | 2454 |
| term_of_num vs (@{code CN} (n, i, t)) = |
2455 |
term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t)); |
|
27456 | 2456 |
|
74397 | 2457 |
fun term_of_fm ps vs @{code T} = \<^Const>\<open>True\<close> |
2458 |
| term_of_fm ps vs @{code F} = \<^Const>\<open>False\<close> |
|
27456 | 2459 |
| term_of_fm ps vs (@{code Lt} t) = |
74397 | 2460 |
\<^Const>\<open>less \<^Type>\<open>int\<close> for \<open>term_of_num vs t\<close> \<^term>\<open>0::int\<close>\<close> |
27456 | 2461 |
| term_of_fm ps vs (@{code Le} t) = |
74397 | 2462 |
\<^Const>\<open>less_eq \<^Type>\<open>int\<close> for \<open>term_of_num vs t\<close> \<^term>\<open>0::int\<close>\<close> |
27456 | 2463 |
| term_of_fm ps vs (@{code Gt} t) = |
74397 | 2464 |
\<^Const>\<open>less \<^Type>\<open>int\<close> for \<^term>\<open>0::int\<close> \<open>term_of_num vs t\<close>\<close> |
27456 | 2465 |
| term_of_fm ps vs (@{code Ge} t) = |
74397 | 2466 |
\<^Const>\<open>less_eq \<^Type>\<open>int\<close> for \<^term>\<open>0::int\<close> \<open>term_of_num vs t\<close>\<close> |
27456 | 2467 |
| term_of_fm ps vs (@{code Eq} t) = |
74397 | 2468 |
\<^Const>\<open>HOL.eq \<^Type>\<open>int\<close> for \<open>term_of_num vs t\<close> \<^term>\<open>0::int\<close>\<close> |
27456 | 2469 |
| term_of_fm ps vs (@{code NEq} t) = |
74101 | 2470 |
term_of_fm ps vs (@{code Not} (@{code Eq} t)) |
27456 | 2471 |
| term_of_fm ps vs (@{code Dvd} (i, t)) = |
74397 | 2472 |
\<^Const>\<open>dvd \<^Type>\<open>int\<close> for \<open>term_of_num vs (@{code C} i)\<close> \<open>term_of_num vs t\<close>\<close> |
27456 | 2473 |
| term_of_fm ps vs (@{code NDvd} (i, t)) = |
74101 | 2474 |
term_of_fm ps vs (@{code Not} (@{code Dvd} (i, t))) |
2475 |
| term_of_fm ps vs (@{code Not} t') = |
|
74397 | 2476 |
\<^Const>\<open>HOL.Not for \<open>term_of_fm ps vs t'\<close>\<close> |
27456 | 2477 |
| term_of_fm ps vs (@{code And} (t1, t2)) = |
74397 | 2478 |
\<^Const>\<open>HOL.conj for \<open>term_of_fm ps vs t1\<close> \<open>term_of_fm ps vs t2\<close>\<close> |
27456 | 2479 |
| term_of_fm ps vs (@{code Or} (t1, t2)) = |
74397 | 2480 |
\<^Const>\<open>HOL.disj for \<open>term_of_fm ps vs t1\<close> \<open>term_of_fm ps vs t2\<close>\<close> |
27456 | 2481 |
| term_of_fm ps vs (@{code Imp} (t1, t2)) = |
74397 | 2482 |
\<^Const>\<open>HOL.implies for \<open>term_of_fm ps vs t1\<close> \<open>term_of_fm ps vs t2\<close>\<close> |
27456 | 2483 |
| term_of_fm ps vs (@{code Iff} (t1, t2)) = |
74397 | 2484 |
\<^Const>\<open>HOL.eq \<^Type>\<open>bool\<close> for \<open>term_of_fm ps vs t1\<close> \<open>term_of_fm ps vs t2\<close>\<close> |
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2485 |
| term_of_fm ps vs (@{code Closed} n) = |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2486 |
let |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2487 |
val q = @{code integer_of_nat} n |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50313
diff
changeset
|
2488 |
in (fst o the) (find_first (fn (_, m) => m = q) ps) end |
74101 | 2489 |
| term_of_fm ps vs (@{code NClosed} n) = term_of_fm ps vs (@{code Not} (@{code Closed} n)); |
27456 | 2490 |
|
2491 |
fun term_bools acc t = |
|
2492 |
let |
|
55814 | 2493 |
val is_op = |
74397 | 2494 |
member (=) [\<^Const>\<open>HOL.conj\<close>, \<^Const>\<open>HOL.disj\<close>, \<^Const>\<open>HOL.implies\<close>, |
2495 |
\<^Const>\<open>HOL.eq \<^Type>\<open>bool\<close>\<close>, |
|
2496 |
\<^Const>\<open>HOL.eq \<^Type>\<open>int\<close>\<close>, \<^Const>\<open>less \<^Type>\<open>int\<close>\<close>, |
|
2497 |
\<^Const>\<open>less_eq \<^Type>\<open>int\<close>\<close>, \<^Const>\<open>HOL.Not\<close>, \<^Const>\<open>All \<^Type>\<open>int\<close>\<close>, |
|
2498 |
\<^Const>\<open>Ex \<^Type>\<open>int\<close>\<close>, \<^Const>\<open>True\<close>, \<^Const>\<open>False\<close>] |
|
2499 |
fun is_ty t = not (fastype_of t = \<^Type>\<open>bool\<close>) |
|
55814 | 2500 |
in |
2501 |
(case t of |
|
2502 |
(l as f $ a) $ b => |
|
2503 |
if is_ty t orelse is_op t then term_bools (term_bools acc l) b |
|
69214 | 2504 |
else insert (op aconv) t acc |
55814 | 2505 |
| f $ a => |
2506 |
if is_ty t orelse is_op t then term_bools (term_bools acc f) a |
|
69214 | 2507 |
else insert (op aconv) t acc |
74525
c960bfcb91db
discontinued Term.dest_abs / Logic.dest_all, which are officially superseded by Variable.dest_abs etc., but there are also Term.dest_abs_global to recover existing tools easily;
wenzelm
parents:
74408
diff
changeset
|
2508 |
| Abs _ => term_bools acc (snd (Term.dest_abs_global t)) |
69214 | 2509 |
| _ => if is_ty t orelse is_op t then acc else insert (op aconv) t acc) |
27456 | 2510 |
end; |
2511 |
||
55814 | 2512 |
in |
60325 | 2513 |
fn (ctxt, t) => |
55814 | 2514 |
let |
2515 |
val fs = Misc_Legacy.term_frees t; |
|
2516 |
val bs = term_bools [] t; |
|
2517 |
val vs = map_index swap fs; |
|
2518 |
val ps = map_index swap bs; |
|
60325 | 2519 |
val t' = term_of_fm ps vs (@{code pa} (fm_of_term ps vs t)); |
2520 |
in Thm.cterm_of ctxt (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t'))) end |
|
69266
7cc2d66a92a6
proper ML expressions, without trailing semicolons;
wenzelm
parents:
69214
diff
changeset
|
2521 |
end |
60533 | 2522 |
\<close> |
27456 | 2523 |
|
69605 | 2524 |
ML_file \<open>cooper_tac.ML\<close> |
47432 | 2525 |
|
60533 | 2526 |
method_setup cooper = \<open> |
53168 | 2527 |
Scan.lift (Args.mode "no_quantify") >> |
47432 | 2528 |
(fn q => fn ctxt => SIMPLE_METHOD' (Cooper_Tac.linz_tac ctxt (not q))) |
60533 | 2529 |
\<close> "decision procedure for linear integer arithmetic" |
47432 | 2530 |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2531 |
|
70091 | 2532 |
subsection \<open>Tests\<close> |
27456 | 2533 |
|
55814 | 2534 |
lemma "\<exists>(j::int). \<forall>x\<ge>j. \<exists>a b. x = 3*a+5*b" |
27456 | 2535 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2536 |
|
55814 | 2537 |
lemma "\<forall>(x::int) \<ge> 8. \<exists>i j. 5*i + 3*j = x" |
27456 | 2538 |
by cooper |
2539 |
||
55814 | 2540 |
theorem "(\<forall>(y::int). 3 dvd y) \<Longrightarrow> \<forall>(x::int). b < x \<longrightarrow> a \<le> x" |
23274 | 2541 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2542 |
|
55814 | 2543 |
theorem "\<And>(y::int) (z::int) (n::int). 3 dvd z \<Longrightarrow> 2 dvd (y::int) \<Longrightarrow> |
2544 |
(\<exists>(x::int). 2*x = y) \<and> (\<exists>(k::int). 3*k = z)" |
|
23274 | 2545 |
by cooper |
2546 |
||
55814 | 2547 |
theorem "\<And>(y::int) (z::int) n. Suc n < 6 \<Longrightarrow> 3 dvd z \<Longrightarrow> |
2548 |
2 dvd (y::int) \<Longrightarrow> (\<exists>(x::int). 2*x = y) \<and> (\<exists>(k::int). 3*k = z)" |
|
23274 | 2549 |
by cooper |
2550 |
||
55814 | 2551 |
theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 \<longrightarrow> y = 5 + x" |
23274 | 2552 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2553 |
|
55814 | 2554 |
lemma "\<forall>(x::int) \<ge> 8. \<exists>i j. 5*i + 3*j = x" |
50313 | 2555 |
by cooper |
27456 | 2556 |
|
55814 | 2557 |
lemma "\<forall>(y::int) (z::int) (n::int). |
2558 |
3 dvd z \<longrightarrow> 2 dvd (y::int) \<longrightarrow> (\<exists>(x::int). 2*x = y) \<and> (\<exists>(k::int). 3*k = z)" |
|
27456 | 2559 |
by cooper |
2560 |
||
55814 | 2561 |
lemma "\<forall>(x::int) y. x < y \<longrightarrow> 2 * x + 1 < 2 * y" |
27456 | 2562 |
by cooper |
2563 |
||
55814 | 2564 |
lemma "\<forall>(x::int) y. 2 * x + 1 \<noteq> 2 * y" |
27456 | 2565 |
by cooper |
2566 |
||
55814 | 2567 |
lemma "\<exists>(x::int) y. 0 < x \<and> 0 \<le> y \<and> 3 * x - 5 * y = 1" |
27456 | 2568 |
by cooper |
2569 |
||
55814 | 2570 |
lemma "\<not> (\<exists>(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)" |
27456 | 2571 |
by cooper |
2572 |
||
55814 | 2573 |
lemma "\<forall>(x::int). 2 dvd x \<longrightarrow> (\<exists>(y::int). x = 2*y)" |
27456 | 2574 |
by cooper |
2575 |
||
55814 | 2576 |
lemma "\<forall>(x::int). 2 dvd x \<longleftrightarrow> (\<exists>(y::int). x = 2*y)" |
27456 | 2577 |
by cooper |
2578 |
||
55814 | 2579 |
lemma "\<forall>(x::int). 2 dvd x \<longleftrightarrow> (\<forall>(y::int). x \<noteq> 2*y + 1)" |
27456 | 2580 |
by cooper |
2581 |
||
55814 | 2582 |
lemma "\<not> (\<forall>(x::int). |
55921 | 2583 |
(2 dvd x \<longleftrightarrow> (\<forall>(y::int). x \<noteq> 2*y+1) \<or> |
55814 | 2584 |
(\<exists>(q::int) (u::int) i. 3*i + 2*q - u < 17) \<longrightarrow> 0 < x \<or> (\<not> 3 dvd x \<and> x + 8 = 0)))" |
23274 | 2585 |
by cooper |
27456 | 2586 |
|
55814 | 2587 |
lemma "\<not> (\<forall>(i::int). 4 \<le> i \<longrightarrow> (\<exists>x y. 0 \<le> x \<and> 0 \<le> y \<and> 3 * x + 5 * y = i))" |
27456 | 2588 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2589 |
|
55814 | 2590 |
lemma "\<exists>j. \<forall>(x::int) \<ge> j. \<exists>i j. 5*i + 3*j = x" |
2591 |
by cooper |
|
2592 |
||
2593 |
theorem "(\<forall>(y::int). 3 dvd y) \<Longrightarrow> \<forall>(x::int). b < x \<longrightarrow> a \<le> x" |
|
23274 | 2594 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2595 |
|
55814 | 2596 |
theorem "\<And>(y::int) (z::int) (n::int). 3 dvd z \<Longrightarrow> 2 dvd (y::int) \<Longrightarrow> |
2597 |
(\<exists>(x::int). 2*x = y) \<and> (\<exists>(k::int). 3*k = z)" |
|
23274 | 2598 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2599 |
|
55814 | 2600 |
theorem "\<And>(y::int) (z::int) n. Suc n < 6 \<Longrightarrow> 3 dvd z \<Longrightarrow> |
2601 |
2 dvd (y::int) \<Longrightarrow> (\<exists>(x::int). 2*x = y) \<and> (\<exists>(k::int). 3*k = z)" |
|
23274 | 2602 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2603 |
|
55814 | 2604 |
theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 \<longrightarrow> y = 5 + x" |
23274 | 2605 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2606 |
|
55814 | 2607 |
theorem "\<forall>(x::nat). \<exists>(y::nat). y = 5 + x \<or> x div 6 + 1 = 2" |
23274 | 2608 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2609 |
|
23274 | 2610 |
theorem "\<exists>(x::int). 0 < x" |
2611 |
by cooper |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2612 |
|
55814 | 2613 |
theorem "\<forall>(x::int) y. x < y \<longrightarrow> 2 * x + 1 < 2 * y" |
23274 | 2614 |
by cooper |
50313 | 2615 |
|
23274 | 2616 |
theorem "\<forall>(x::int) y. 2 * x + 1 \<noteq> 2 * y" |
2617 |
by cooper |
|
50313 | 2618 |
|
67123 | 2619 |
theorem "\<exists>(x::int) y. 0 < x \<and> 0 \<le> y \<and> 3 * x - 5 * y = 1" |
23274 | 2620 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2621 |
|
55814 | 2622 |
theorem "\<not> (\<exists>(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)" |
23274 | 2623 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2624 |
|
55814 | 2625 |
theorem "\<not> (\<exists>(x::int). False)" |
23274 | 2626 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2627 |
|
55814 | 2628 |
theorem "\<forall>(x::int). 2 dvd x \<longrightarrow> (\<exists>(y::int). x = 2*y)" |
50313 | 2629 |
by cooper |
23274 | 2630 |
|
55814 | 2631 |
theorem "\<forall>(x::int). 2 dvd x \<longrightarrow> (\<exists>(y::int). x = 2*y)" |
50313 | 2632 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2633 |
|
55814 | 2634 |
theorem "\<forall>(x::int). 2 dvd x \<longleftrightarrow> (\<exists>(y::int). x = 2*y)" |
50313 | 2635 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2636 |
|
55814 | 2637 |
theorem "\<forall>(x::int). 2 dvd x \<longleftrightarrow> (\<forall>(y::int). x \<noteq> 2*y + 1)" |
50313 | 2638 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2639 |
|
55814 | 2640 |
theorem |
2641 |
"\<not> (\<forall>(x::int). |
|
2642 |
(2 dvd x \<longleftrightarrow> |
|
2643 |
(\<forall>(y::int). x \<noteq> 2*y+1) \<or> |
|
2644 |
(\<exists>(q::int) (u::int) i. 3*i + 2*q - u < 17) |
|
2645 |
\<longrightarrow> 0 < x \<or> (\<not> 3 dvd x \<and> x + 8 = 0)))" |
|
23274 | 2646 |
by cooper |
50313 | 2647 |
|
55814 | 2648 |
theorem "\<not> (\<forall>(i::int). 4 \<le> i \<longrightarrow> (\<exists>x y. 0 \<le> x \<and> 0 \<le> y \<and> 3 * x + 5 * y = i))" |
23274 | 2649 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2650 |
|
55814 | 2651 |
theorem "\<forall>(i::int). 8 \<le> i \<longrightarrow> (\<exists>x y. 0 \<le> x \<and> 0 \<le> y \<and> 3 * x + 5 * y = i)" |
23274 | 2652 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2653 |
|
55814 | 2654 |
theorem "\<exists>(j::int). \<forall>i. j \<le> i \<longrightarrow> (\<exists>x y. 0 \<le> x \<and> 0 \<le> y \<and> 3 * x + 5 * y = i)" |
23274 | 2655 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2656 |
|
55814 | 2657 |
theorem "\<not> (\<forall>j (i::int). j \<le> i \<longrightarrow> (\<exists>x y. 0 \<le> x \<and> 0 \<le> y \<and> 3 * x + 5 * y = i))" |
23274 | 2658 |
by cooper |
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2659 |
|
55814 | 2660 |
theorem "(\<exists>m::nat. n = 2 * m) \<longrightarrow> (n + 1) div 2 = n div 2" |
23274 | 2661 |
by cooper |
17388 | 2662 |
|
70091 | 2663 |
|
2664 |
subsection \<open>Variant for HOL-Main\<close> |
|
2665 |
||
70092
a19dd7006a3c
more explicit way to re-generate ~~/src/HOL/Tools/Qelim/cooper_procedure.ML
haftmann
parents:
70091
diff
changeset
|
2666 |
export_code pa T Bound nat_of_integer integer_of_nat int_of_integer integer_of_int |
a19dd7006a3c
more explicit way to re-generate ~~/src/HOL/Tools/Qelim/cooper_procedure.ML
haftmann
parents:
70091
diff
changeset
|
2667 |
in Eval module_name Cooper_Procedure file_prefix cooper_procedure |
70091 | 2668 |
|
17378
105519771c67
The oracle for Presburger has been changer: It is automatically generated form a verified formaliztion of Cooper's Algorithm ex/Reflected_Presburger.thy
chaieb
parents:
diff
changeset
|
2669 |
end |