author | paulson |
Thu, 29 Jun 2000 12:16:43 +0200 | |
changeset 9188 | 379b0c3f7c85 |
parent 9180 | 3bda56c0d70d |
child 9491 | 1a36151ee2fc |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/CardinalArith.ML |
437 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
437 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
Cardinal arithmetic -- WITHOUT the Axiom of Choice |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
7 |
|
846 | 8 |
Note: Could omit proving the algebraic laws for cardinal addition and |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
9 |
multiplication. On finite cardinals these operations coincide with |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
10 |
addition and multiplication of natural numbers; on infinite cardinals they |
846 | 11 |
coincide with union (maximum). Either way we get most laws for free. |
437 | 12 |
*) |
13 |
||
14 |
(*** Cardinal addition ***) |
|
15 |
||
16 |
(** Cardinal addition is commutative **) |
|
17 |
||
5067 | 18 |
Goalw [eqpoll_def] "A+B eqpoll B+A"; |
437 | 19 |
by (rtac exI 1); |
20 |
by (res_inst_tac [("c", "case(Inr, Inl)"), ("d", "case(Inr, Inl)")] |
|
21 |
lam_bijective 1); |
|
5488 | 22 |
by Auto_tac; |
760 | 23 |
qed "sum_commute_eqpoll"; |
437 | 24 |
|
5067 | 25 |
Goalw [cadd_def] "i |+| j = j |+| i"; |
437 | 26 |
by (rtac (sum_commute_eqpoll RS cardinal_cong) 1); |
760 | 27 |
qed "cadd_commute"; |
437 | 28 |
|
29 |
(** Cardinal addition is associative **) |
|
30 |
||
5067 | 31 |
Goalw [eqpoll_def] "(A+B)+C eqpoll A+(B+C)"; |
437 | 32 |
by (rtac exI 1); |
1461 | 33 |
by (rtac sum_assoc_bij 1); |
760 | 34 |
qed "sum_assoc_eqpoll"; |
437 | 35 |
|
36 |
(*Unconditional version requires AC*) |
|
5067 | 37 |
Goalw [cadd_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
38 |
"[| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \ |
437 | 39 |
\ (i |+| j) |+| k = i |+| (j |+| k)"; |
40 |
by (rtac cardinal_cong 1); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
41 |
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS sum_eqpoll_cong RS |
1461 | 42 |
eqpoll_trans) 1); |
437 | 43 |
by (rtac (sum_assoc_eqpoll RS eqpoll_trans) 2); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
44 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS |
1461 | 45 |
eqpoll_sym) 2); |
484 | 46 |
by (REPEAT (ares_tac [well_ord_radd] 1)); |
760 | 47 |
qed "well_ord_cadd_assoc"; |
437 | 48 |
|
49 |
(** 0 is the identity for addition **) |
|
50 |
||
5067 | 51 |
Goalw [eqpoll_def] "0+A eqpoll A"; |
437 | 52 |
by (rtac exI 1); |
846 | 53 |
by (rtac bij_0_sum 1); |
760 | 54 |
qed "sum_0_eqpoll"; |
437 | 55 |
|
5137 | 56 |
Goalw [cadd_def] "Card(K) ==> 0 |+| K = K"; |
4091 | 57 |
by (asm_simp_tac (simpset() addsimps [sum_0_eqpoll RS cardinal_cong, |
4312 | 58 |
Card_cardinal_eq]) 1); |
760 | 59 |
qed "cadd_0"; |
6070 | 60 |
Addsimps [cadd_0]; |
437 | 61 |
|
767 | 62 |
(** Addition by another cardinal **) |
63 |
||
5067 | 64 |
Goalw [lepoll_def, inj_def] "A lepoll A+B"; |
767 | 65 |
by (res_inst_tac [("x", "lam x:A. Inl(x)")] exI 1); |
6153 | 66 |
by (Asm_simp_tac 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
67 |
qed "sum_lepoll_self"; |
767 | 68 |
|
69 |
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*) |
|
5067 | 70 |
Goalw [cadd_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
71 |
"[| Card(K); Ord(L) |] ==> K le (K |+| L)"; |
767 | 72 |
by (rtac ([Card_cardinal_le, well_ord_lepoll_imp_Card_le] MRS le_trans) 1); |
73 |
by (rtac sum_lepoll_self 3); |
|
74 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Card_is_Ord] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
75 |
qed "cadd_le_self"; |
767 | 76 |
|
77 |
(** Monotonicity of addition **) |
|
78 |
||
5067 | 79 |
Goalw [lepoll_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
80 |
"[| A lepoll C; B lepoll D |] ==> A + B lepoll C + D"; |
767 | 81 |
by (REPEAT (etac exE 1)); |
82 |
by (res_inst_tac [("x", "lam z:A+B. case(%w. Inl(f`w), %y. Inr(fa`y), z)")] |
|
83 |
exI 1); |
|
84 |
by (res_inst_tac |
|
85 |
[("d", "case(%w. Inl(converse(f)`w), %y. Inr(converse(fa)`y))")] |
|
86 |
lam_injective 1); |
|
6153 | 87 |
by (typecheck_tac (tcset() addTCs [inj_is_fun])); |
6176
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
paulson
parents:
6153
diff
changeset
|
88 |
by Auto_tac; |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
89 |
qed "sum_lepoll_mono"; |
767 | 90 |
|
5067 | 91 |
Goalw [cadd_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
92 |
"[| K' le K; L' le L |] ==> (K' |+| L') le (K |+| L)"; |
4091 | 93 |
by (safe_tac (claset() addSDs [le_subset_iff RS iffD1])); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
94 |
by (rtac well_ord_lepoll_imp_Card_le 1); |
767 | 95 |
by (REPEAT (ares_tac [sum_lepoll_mono, subset_imp_lepoll] 2)); |
96 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
97 |
qed "cadd_le_mono"; |
767 | 98 |
|
437 | 99 |
(** Addition of finite cardinals is "ordinary" addition **) |
100 |
||
5067 | 101 |
Goalw [eqpoll_def] "succ(A)+B eqpoll succ(A+B)"; |
437 | 102 |
by (rtac exI 1); |
6068 | 103 |
by (res_inst_tac [("c", "%z. if z=Inl(A) then A+B else z"), |
104 |
("d", "%z. if z=A+B then Inl(A) else z")] |
|
437 | 105 |
lam_bijective 1); |
106 |
by (ALLGOALS |
|
4091 | 107 |
(asm_simp_tac (simpset() addsimps [succI2, mem_imp_not_eq] |
4312 | 108 |
setloop eresolve_tac [sumE,succE]))); |
760 | 109 |
qed "sum_succ_eqpoll"; |
437 | 110 |
|
111 |
(*Pulling the succ(...) outside the |...| requires m, n: nat *) |
|
112 |
(*Unconditional version requires AC*) |
|
5067 | 113 |
Goalw [cadd_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
114 |
"[| Ord(m); Ord(n) |] ==> succ(m) |+| n = |succ(m |+| n)|"; |
437 | 115 |
by (rtac (sum_succ_eqpoll RS cardinal_cong RS trans) 1); |
116 |
by (rtac (succ_eqpoll_cong RS cardinal_cong) 1); |
|
117 |
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1); |
|
118 |
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1)); |
|
760 | 119 |
qed "cadd_succ_lemma"; |
437 | 120 |
|
6070 | 121 |
Goal "[| m: nat; n: nat |] ==> m |+| n = m#+n"; |
122 |
by (induct_tac "m" 1); |
|
4091 | 123 |
by (asm_simp_tac (simpset() addsimps [nat_into_Card RS cadd_0]) 1); |
8201 | 124 |
by (asm_simp_tac (simpset() addsimps [cadd_succ_lemma, |
4312 | 125 |
nat_into_Card RS Card_cardinal_eq]) 1); |
760 | 126 |
qed "nat_cadd_eq_add"; |
437 | 127 |
|
128 |
||
129 |
(*** Cardinal multiplication ***) |
|
130 |
||
131 |
(** Cardinal multiplication is commutative **) |
|
132 |
||
133 |
(*Easier to prove the two directions separately*) |
|
5067 | 134 |
Goalw [eqpoll_def] "A*B eqpoll B*A"; |
437 | 135 |
by (rtac exI 1); |
1090
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
136 |
by (res_inst_tac [("c", "%<x,y>.<y,x>"), ("d", "%<x,y>.<y,x>")] |
437 | 137 |
lam_bijective 1); |
4152 | 138 |
by Safe_tac; |
2469 | 139 |
by (ALLGOALS (Asm_simp_tac)); |
760 | 140 |
qed "prod_commute_eqpoll"; |
437 | 141 |
|
5067 | 142 |
Goalw [cmult_def] "i |*| j = j |*| i"; |
437 | 143 |
by (rtac (prod_commute_eqpoll RS cardinal_cong) 1); |
760 | 144 |
qed "cmult_commute"; |
437 | 145 |
|
146 |
(** Cardinal multiplication is associative **) |
|
147 |
||
5067 | 148 |
Goalw [eqpoll_def] "(A*B)*C eqpoll A*(B*C)"; |
437 | 149 |
by (rtac exI 1); |
1461 | 150 |
by (rtac prod_assoc_bij 1); |
760 | 151 |
qed "prod_assoc_eqpoll"; |
437 | 152 |
|
153 |
(*Unconditional version requires AC*) |
|
5067 | 154 |
Goalw [cmult_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
155 |
"[| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \ |
437 | 156 |
\ (i |*| j) |*| k = i |*| (j |*| k)"; |
157 |
by (rtac cardinal_cong 1); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
158 |
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS |
1461 | 159 |
eqpoll_trans) 1); |
437 | 160 |
by (rtac (prod_assoc_eqpoll RS eqpoll_trans) 2); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
161 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS prod_eqpoll_cong RS |
1461 | 162 |
eqpoll_sym) 2); |
484 | 163 |
by (REPEAT (ares_tac [well_ord_rmult] 1)); |
760 | 164 |
qed "well_ord_cmult_assoc"; |
437 | 165 |
|
166 |
(** Cardinal multiplication distributes over addition **) |
|
167 |
||
5067 | 168 |
Goalw [eqpoll_def] "(A+B)*C eqpoll (A*C)+(B*C)"; |
437 | 169 |
by (rtac exI 1); |
1461 | 170 |
by (rtac sum_prod_distrib_bij 1); |
760 | 171 |
qed "sum_prod_distrib_eqpoll"; |
437 | 172 |
|
5067 | 173 |
Goalw [cadd_def, cmult_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
174 |
"[| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \ |
846 | 175 |
\ (i |+| j) |*| k = (i |*| k) |+| (j |*| k)"; |
176 |
by (rtac cardinal_cong 1); |
|
177 |
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS |
|
1461 | 178 |
eqpoll_trans) 1); |
846 | 179 |
by (rtac (sum_prod_distrib_eqpoll RS eqpoll_trans) 2); |
4312 | 180 |
by (rtac ([well_ord_cardinal_eqpoll, well_ord_cardinal_eqpoll] MRS |
181 |
sum_eqpoll_cong RS eqpoll_sym) 2); |
|
846 | 182 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd] 1)); |
183 |
qed "well_ord_cadd_cmult_distrib"; |
|
184 |
||
437 | 185 |
(** Multiplication by 0 yields 0 **) |
186 |
||
5067 | 187 |
Goalw [eqpoll_def] "0*A eqpoll 0"; |
437 | 188 |
by (rtac exI 1); |
189 |
by (rtac lam_bijective 1); |
|
4152 | 190 |
by Safe_tac; |
760 | 191 |
qed "prod_0_eqpoll"; |
437 | 192 |
|
5067 | 193 |
Goalw [cmult_def] "0 |*| i = 0"; |
4091 | 194 |
by (asm_simp_tac (simpset() addsimps [prod_0_eqpoll RS cardinal_cong, |
4312 | 195 |
Card_0 RS Card_cardinal_eq]) 1); |
760 | 196 |
qed "cmult_0"; |
6070 | 197 |
Addsimps [cmult_0]; |
437 | 198 |
|
199 |
(** 1 is the identity for multiplication **) |
|
200 |
||
5067 | 201 |
Goalw [eqpoll_def] "{x}*A eqpoll A"; |
437 | 202 |
by (rtac exI 1); |
846 | 203 |
by (resolve_tac [singleton_prod_bij RS bij_converse_bij] 1); |
760 | 204 |
qed "prod_singleton_eqpoll"; |
437 | 205 |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
206 |
Goalw [cmult_def, succ_def] "Card(K) ==> 1 |*| K = K"; |
4091 | 207 |
by (asm_simp_tac (simpset() addsimps [prod_singleton_eqpoll RS cardinal_cong, |
4312 | 208 |
Card_cardinal_eq]) 1); |
760 | 209 |
qed "cmult_1"; |
6070 | 210 |
Addsimps [cmult_1]; |
437 | 211 |
|
767 | 212 |
(*** Some inequalities for multiplication ***) |
213 |
||
5067 | 214 |
Goalw [lepoll_def, inj_def] "A lepoll A*A"; |
767 | 215 |
by (res_inst_tac [("x", "lam x:A. <x,x>")] exI 1); |
6153 | 216 |
by (Simp_tac 1); |
767 | 217 |
qed "prod_square_lepoll"; |
218 |
||
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
219 |
(*Could probably weaken the premise to well_ord(K,r), or remove using AC*) |
5137 | 220 |
Goalw [cmult_def] "Card(K) ==> K le K |*| K"; |
767 | 221 |
by (rtac le_trans 1); |
222 |
by (rtac well_ord_lepoll_imp_Card_le 2); |
|
223 |
by (rtac prod_square_lepoll 3); |
|
224 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord] 2)); |
|
4312 | 225 |
by (asm_simp_tac (simpset() |
226 |
addsimps [le_refl, Card_is_Ord, Card_cardinal_eq]) 1); |
|
767 | 227 |
qed "cmult_square_le"; |
228 |
||
229 |
(** Multiplication by a non-zero cardinal **) |
|
230 |
||
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
231 |
Goalw [lepoll_def, inj_def] "b: B ==> A lepoll A*B"; |
767 | 232 |
by (res_inst_tac [("x", "lam x:A. <x,b>")] exI 1); |
6153 | 233 |
by (Asm_simp_tac 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
234 |
qed "prod_lepoll_self"; |
767 | 235 |
|
236 |
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*) |
|
5067 | 237 |
Goalw [cmult_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
238 |
"[| Card(K); Ord(L); 0<L |] ==> K le (K |*| L)"; |
767 | 239 |
by (rtac ([Card_cardinal_le, well_ord_lepoll_imp_Card_le] MRS le_trans) 1); |
240 |
by (rtac prod_lepoll_self 3); |
|
241 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord, ltD] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
242 |
qed "cmult_le_self"; |
767 | 243 |
|
244 |
(** Monotonicity of multiplication **) |
|
245 |
||
5067 | 246 |
Goalw [lepoll_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
247 |
"[| A lepoll C; B lepoll D |] ==> A * B lepoll C * D"; |
767 | 248 |
by (REPEAT (etac exE 1)); |
1090
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
249 |
by (res_inst_tac [("x", "lam <w,y>:A*B. <f`w, fa`y>")] exI 1); |
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
lcp
parents:
1075
diff
changeset
|
250 |
by (res_inst_tac [("d", "%<w,y>.<converse(f)`w, converse(fa)`y>")] |
1461 | 251 |
lam_injective 1); |
6153 | 252 |
by (typecheck_tac (tcset() addTCs [inj_is_fun])); |
6176
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
paulson
parents:
6153
diff
changeset
|
253 |
by Auto_tac; |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
254 |
qed "prod_lepoll_mono"; |
767 | 255 |
|
5067 | 256 |
Goalw [cmult_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
257 |
"[| K' le K; L' le L |] ==> (K' |*| L') le (K |*| L)"; |
4091 | 258 |
by (safe_tac (claset() addSDs [le_subset_iff RS iffD1])); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
259 |
by (rtac well_ord_lepoll_imp_Card_le 1); |
767 | 260 |
by (REPEAT (ares_tac [prod_lepoll_mono, subset_imp_lepoll] 2)); |
261 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
262 |
qed "cmult_le_mono"; |
767 | 263 |
|
264 |
(*** Multiplication of finite cardinals is "ordinary" multiplication ***) |
|
437 | 265 |
|
5067 | 266 |
Goalw [eqpoll_def] "succ(A)*B eqpoll B + A*B"; |
437 | 267 |
by (rtac exI 1); |
6068 | 268 |
by (res_inst_tac [("c", "%<x,y>. if x=A then Inl(y) else Inr(<x,y>)"), |
3840 | 269 |
("d", "case(%y. <A,y>, %z. z)")] |
437 | 270 |
lam_bijective 1); |
5488 | 271 |
by Safe_tac; |
437 | 272 |
by (ALLGOALS |
4091 | 273 |
(asm_simp_tac (simpset() addsimps [succI2, if_type, mem_imp_not_eq]))); |
760 | 274 |
qed "prod_succ_eqpoll"; |
437 | 275 |
|
276 |
(*Unconditional version requires AC*) |
|
5067 | 277 |
Goalw [cmult_def, cadd_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
278 |
"[| Ord(m); Ord(n) |] ==> succ(m) |*| n = n |+| (m |*| n)"; |
437 | 279 |
by (rtac (prod_succ_eqpoll RS cardinal_cong RS trans) 1); |
280 |
by (rtac (cardinal_cong RS sym) 1); |
|
281 |
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong) 1); |
|
282 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); |
|
760 | 283 |
qed "cmult_succ_lemma"; |
437 | 284 |
|
6070 | 285 |
Goal "[| m: nat; n: nat |] ==> m |*| n = m#*n"; |
286 |
by (induct_tac "m" 1); |
|
287 |
by (Asm_simp_tac 1); |
|
8201 | 288 |
by (asm_simp_tac (simpset() addsimps [cmult_succ_lemma, nat_cadd_eq_add]) 1); |
760 | 289 |
qed "nat_cmult_eq_mult"; |
437 | 290 |
|
5137 | 291 |
Goal "Card(n) ==> 2 |*| n = n |+| n"; |
767 | 292 |
by (asm_simp_tac |
6153 | 293 |
(simpset() addsimps [cmult_succ_lemma, Card_is_Ord, |
8551 | 294 |
inst "j" "0" cadd_commute]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
295 |
qed "cmult_2"; |
767 | 296 |
|
437 | 297 |
|
5284
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
298 |
val sum_lepoll_prod = [sum_eq_2_times RS equalityD1 RS subset_imp_lepoll, |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
299 |
asm_rl, lepoll_refl] MRS (prod_lepoll_mono RSN (2, lepoll_trans)) |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
300 |
|> standard; |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
301 |
|
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
302 |
Goal "[| A lepoll B; 2 lepoll A |] ==> A+B lepoll A*B"; |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
303 |
by (REPEAT (ares_tac [[sum_lepoll_mono, sum_lepoll_prod] |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
304 |
MRS lepoll_trans, lepoll_refl] 1)); |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
305 |
qed "lepoll_imp_sum_lepoll_prod"; |
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
306 |
|
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
paulson
parents:
5147
diff
changeset
|
307 |
|
437 | 308 |
(*** Infinite Cardinals are Limit Ordinals ***) |
309 |
||
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
310 |
(*This proof is modelled upon one assuming nat<=A, with injection |
6068 | 311 |
lam z:cons(u,A). if z=u then 0 else if z : nat then succ(z) else z |
312 |
and inverse %y. if y:nat then nat_case(u, %z. z, y) else y. \ |
|
313 |
If f: inj(nat,A) then range(f) behaves like the natural numbers.*) |
|
314 |
Goalw [lepoll_def] "nat lepoll A ==> cons(u,A) lepoll A"; |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
315 |
by (etac exE 1); |
516 | 316 |
by (res_inst_tac [("x", |
6068 | 317 |
"lam z:cons(u,A). if z=u then f`0 \ |
318 |
\ else if z: range(f) then f`succ(converse(f)`z) \ |
|
319 |
\ else z")] exI 1); |
|
320 |
by (res_inst_tac [("d", "%y. if y: range(f) \ |
|
321 |
\ then nat_case(u, %z. f`z, converse(f)`y) \ |
|
322 |
\ else y")] |
|
516 | 323 |
lam_injective 1); |
5137 | 324 |
by (fast_tac (claset() addSIs [if_type, apply_type] |
325 |
addIs [inj_is_fun, inj_converse_fun]) 1); |
|
516 | 326 |
by (asm_simp_tac |
4091 | 327 |
(simpset() addsimps [inj_is_fun RS apply_rangeI, |
4312 | 328 |
inj_converse_fun RS apply_rangeI, |
6176
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
paulson
parents:
6153
diff
changeset
|
329 |
inj_converse_fun RS apply_funtype]) 1); |
760 | 330 |
qed "nat_cons_lepoll"; |
516 | 331 |
|
5137 | 332 |
Goal "nat lepoll A ==> cons(u,A) eqpoll A"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
333 |
by (etac (nat_cons_lepoll RS eqpollI) 1); |
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
334 |
by (rtac (subset_consI RS subset_imp_lepoll) 1); |
760 | 335 |
qed "nat_cons_eqpoll"; |
437 | 336 |
|
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
337 |
(*Specialized version required below*) |
5137 | 338 |
Goalw [succ_def] "nat <= A ==> succ(A) eqpoll A"; |
571
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
lcp
parents:
523
diff
changeset
|
339 |
by (eresolve_tac [subset_imp_lepoll RS nat_cons_eqpoll] 1); |
760 | 340 |
qed "nat_succ_eqpoll"; |
437 | 341 |
|
5067 | 342 |
Goalw [InfCard_def] "InfCard(nat)"; |
4091 | 343 |
by (blast_tac (claset() addIs [Card_nat, le_refl, Card_is_Ord]) 1); |
760 | 344 |
qed "InfCard_nat"; |
488 | 345 |
|
5137 | 346 |
Goalw [InfCard_def] "InfCard(K) ==> Card(K)"; |
437 | 347 |
by (etac conjunct1 1); |
760 | 348 |
qed "InfCard_is_Card"; |
437 | 349 |
|
5067 | 350 |
Goalw [InfCard_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
351 |
"[| InfCard(K); Card(L) |] ==> InfCard(K Un L)"; |
4091 | 352 |
by (asm_simp_tac (simpset() addsimps [Card_Un, Un_upper1_le RSN (2,le_trans), |
4312 | 353 |
Card_is_Ord]) 1); |
760 | 354 |
qed "InfCard_Un"; |
523 | 355 |
|
437 | 356 |
(*Kunen's Lemma 10.11*) |
5137 | 357 |
Goalw [InfCard_def] "InfCard(K) ==> Limit(K)"; |
437 | 358 |
by (etac conjE 1); |
7499 | 359 |
by (ftac Card_is_Ord 1); |
437 | 360 |
by (rtac (ltI RS non_succ_LimitI) 1); |
361 |
by (etac ([asm_rl, nat_0I] MRS (le_imp_subset RS subsetD)) 1); |
|
4091 | 362 |
by (safe_tac (claset() addSDs [Limit_nat RS Limit_le_succD])); |
437 | 363 |
by (rewtac Card_def); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
364 |
by (dtac trans 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
365 |
by (etac (le_imp_subset RS nat_succ_eqpoll RS cardinal_cong) 1); |
3016 | 366 |
by (etac (Ord_cardinal_le RS lt_trans2 RS lt_irrefl) 1); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
367 |
by (REPEAT (ares_tac [le_eqI, Ord_cardinal] 1)); |
760 | 368 |
qed "InfCard_is_Limit"; |
437 | 369 |
|
370 |
||
371 |
(*** An infinite cardinal equals its square (Kunen, Thm 10.12, page 29) ***) |
|
372 |
||
373 |
(*A general fact about ordermap*) |
|
5325
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
374 |
Goalw [eqpoll_def] |
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
paulson
parents:
5284
diff
changeset
|
375 |
"[| well_ord(A,r); x:A |] ==> ordermap(A,r)`x eqpoll pred(A,x,r)"; |
437 | 376 |
by (rtac exI 1); |
4091 | 377 |
by (asm_simp_tac (simpset() addsimps [ordermap_eq_image, well_ord_is_wf]) 1); |
467 | 378 |
by (etac (ordermap_bij RS bij_is_inj RS restrict_bij RS bij_converse_bij) 1); |
437 | 379 |
by (rtac pred_subset 1); |
760 | 380 |
qed "ordermap_eqpoll_pred"; |
437 | 381 |
|
382 |
(** Establishing the well-ordering **) |
|
383 |
||
5488 | 384 |
Goalw [inj_def] "Ord(K) ==> (lam <x,y>:K*K. <x Un y, x, y>) : inj(K*K, K*K*K)"; |
385 |
by (force_tac (claset() addIs [lam_type, Un_least_lt RS ltD, ltI], |
|
386 |
simpset()) 1); |
|
760 | 387 |
qed "csquare_lam_inj"; |
437 | 388 |
|
5488 | 389 |
Goalw [csquare_rel_def] "Ord(K) ==> well_ord(K*K, csquare_rel(K))"; |
437 | 390 |
by (rtac (csquare_lam_inj RS well_ord_rvimage) 1); |
391 |
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); |
|
760 | 392 |
qed "well_ord_csquare"; |
437 | 393 |
|
394 |
(** Characterising initial segments of the well-ordering **) |
|
395 |
||
5067 | 396 |
Goalw [csquare_rel_def] |
5488 | 397 |
"[| <<x,y>, <z,z>> : csquare_rel(K); x<K; y<K; z<K |] ==> x le z & y le z"; |
398 |
by (etac rev_mp 1); |
|
437 | 399 |
by (REPEAT (etac ltE 1)); |
4091 | 400 |
by (asm_simp_tac (simpset() addsimps [rvimage_iff, rmult_iff, Memrel_iff, |
4312 | 401 |
Un_absorb, Un_least_mem_iff, ltD]) 1); |
4091 | 402 |
by (safe_tac (claset() addSEs [mem_irrefl] |
4312 | 403 |
addSIs [Un_upper1_le, Un_upper2_le])); |
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
404 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [lt_def, succI2]))); |
5488 | 405 |
qed "csquareD"; |
437 | 406 |
|
5067 | 407 |
Goalw [pred_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
408 |
"z<K ==> pred(K*K, <z,z>, csquare_rel(K)) <= succ(z)*succ(z)"; |
5488 | 409 |
by (safe_tac (claset() delrules [SigmaI,succCI])); (*avoids using succCI,...*) |
410 |
by (etac (csquareD RS conjE) 1); |
|
437 | 411 |
by (rewtac lt_def); |
2925 | 412 |
by (ALLGOALS Blast_tac); |
760 | 413 |
qed "pred_csquare_subset"; |
437 | 414 |
|
5067 | 415 |
Goalw [csquare_rel_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
416 |
"[| x<z; y<z; z<K |] ==> <<x,y>, <z,z>> : csquare_rel(K)"; |
484 | 417 |
by (subgoals_tac ["x<K", "y<K"] 1); |
437 | 418 |
by (REPEAT (eresolve_tac [asm_rl, lt_trans] 2)); |
419 |
by (REPEAT (etac ltE 1)); |
|
4091 | 420 |
by (asm_simp_tac (simpset() addsimps [rvimage_iff, rmult_iff, Memrel_iff, |
4312 | 421 |
Un_absorb, Un_least_mem_iff, ltD]) 1); |
760 | 422 |
qed "csquare_ltI"; |
437 | 423 |
|
424 |
(*Part of the traditional proof. UNUSED since it's harder to prove & apply *) |
|
5067 | 425 |
Goalw [csquare_rel_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
426 |
"[| x le z; y le z; z<K |] ==> \ |
484 | 427 |
\ <<x,y>, <z,z>> : csquare_rel(K) | x=z & y=z"; |
428 |
by (subgoals_tac ["x<K", "y<K"] 1); |
|
437 | 429 |
by (REPEAT (eresolve_tac [asm_rl, lt_trans1] 2)); |
430 |
by (REPEAT (etac ltE 1)); |
|
4091 | 431 |
by (asm_simp_tac (simpset() addsimps [rvimage_iff, rmult_iff, Memrel_iff, |
4312 | 432 |
Un_absorb, Un_least_mem_iff, ltD]) 1); |
437 | 433 |
by (REPEAT_FIRST (etac succE)); |
434 |
by (ALLGOALS |
|
4091 | 435 |
(asm_simp_tac (simpset() addsimps [subset_Un_iff RS iff_sym, |
4312 | 436 |
subset_Un_iff2 RS iff_sym, OrdmemD]))); |
760 | 437 |
qed "csquare_or_eqI"; |
437 | 438 |
|
439 |
(** The cardinality of initial segments **) |
|
440 |
||
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
441 |
Goal "[| Limit(K); x<K; y<K; z=succ(x Un y) |] ==> \ |
1461 | 442 |
\ ordermap(K*K, csquare_rel(K)) ` <x,y> < \ |
484 | 443 |
\ ordermap(K*K, csquare_rel(K)) ` <z,z>"; |
444 |
by (subgoals_tac ["z<K", "well_ord(K*K, csquare_rel(K))"] 1); |
|
846 | 445 |
by (etac (Limit_is_Ord RS well_ord_csquare) 2); |
4091 | 446 |
by (blast_tac (claset() addSIs [Un_least_lt, Limit_has_succ]) 2); |
870 | 447 |
by (rtac (csquare_ltI RS ordermap_mono RS ltI) 1); |
437 | 448 |
by (etac well_ord_is_wf 4); |
449 |
by (ALLGOALS |
|
4091 | 450 |
(blast_tac (claset() addSIs [Un_upper1_le, Un_upper2_le, Ord_ordermap] |
4312 | 451 |
addSEs [ltE]))); |
870 | 452 |
qed "ordermap_z_lt"; |
437 | 453 |
|
484 | 454 |
(*Kunen: "each <x,y>: K*K has no more than z*z predecessors..." (page 29) *) |
5067 | 455 |
Goalw [cmult_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
456 |
"[| Limit(K); x<K; y<K; z=succ(x Un y) |] ==> \ |
484 | 457 |
\ | ordermap(K*K, csquare_rel(K)) ` <x,y> | le |succ(z)| |*| |succ(z)|"; |
767 | 458 |
by (rtac (well_ord_rmult RS well_ord_lepoll_imp_Card_le) 1); |
437 | 459 |
by (REPEAT (ares_tac [Ord_cardinal, well_ord_Memrel] 1)); |
484 | 460 |
by (subgoals_tac ["z<K"] 1); |
4091 | 461 |
by (blast_tac (claset() addSIs [Un_least_lt, Limit_has_succ]) 2); |
1609 | 462 |
by (rtac (ordermap_z_lt RS leI RS le_imp_lepoll RS lepoll_trans) 1); |
437 | 463 |
by (REPEAT_SOME assume_tac); |
464 |
by (rtac (ordermap_eqpoll_pred RS eqpoll_imp_lepoll RS lepoll_trans) 1); |
|
846 | 465 |
by (etac (Limit_is_Ord RS well_ord_csquare) 1); |
4091 | 466 |
by (blast_tac (claset() addIs [ltD]) 1); |
437 | 467 |
by (rtac (pred_csquare_subset RS subset_imp_lepoll RS lepoll_trans) 1 THEN |
468 |
assume_tac 1); |
|
469 |
by (REPEAT_FIRST (etac ltE)); |
|
470 |
by (rtac (prod_eqpoll_cong RS eqpoll_sym RS eqpoll_imp_lepoll) 1); |
|
471 |
by (REPEAT_FIRST (etac (Ord_succ RS Ord_cardinal_eqpoll))); |
|
760 | 472 |
qed "ordermap_csquare_le"; |
437 | 473 |
|
484 | 474 |
(*Kunen: "... so the order type <= K" *) |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
475 |
Goal "[| InfCard(K); ALL y:K. InfCard(y) --> y |*| y = y |] ==> \ |
484 | 476 |
\ ordertype(K*K, csquare_rel(K)) le K"; |
437 | 477 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1); |
478 |
by (rtac all_lt_imp_le 1); |
|
479 |
by (assume_tac 1); |
|
480 |
by (etac (well_ord_csquare RS Ord_ordertype) 1); |
|
481 |
by (rtac Card_lt_imp_lt 1); |
|
482 |
by (etac InfCard_is_Card 3); |
|
483 |
by (etac ltE 2 THEN assume_tac 2); |
|
4091 | 484 |
by (asm_full_simp_tac (simpset() addsimps [ordertype_unfold]) 1); |
485 |
by (safe_tac (claset() addSEs [ltE])); |
|
437 | 486 |
by (subgoals_tac ["Ord(xb)", "Ord(y)"] 1); |
487 |
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 2)); |
|
846 | 488 |
by (rtac (InfCard_is_Limit RS ordermap_csquare_le RS lt_trans1) 1 THEN |
437 | 489 |
REPEAT (ares_tac [refl] 1 ORELSE etac ltI 1)); |
490 |
by (res_inst_tac [("i","xb Un y"), ("j","nat")] Ord_linear2 1 THEN |
|
491 |
REPEAT (ares_tac [Ord_Un, Ord_nat] 1)); |
|
492 |
(*the finite case: xb Un y < nat *) |
|
493 |
by (res_inst_tac [("j", "nat")] lt_trans2 1); |
|
4091 | 494 |
by (asm_full_simp_tac (simpset() addsimps [InfCard_def]) 2); |
437 | 495 |
by (asm_full_simp_tac |
4091 | 496 |
(simpset() addsimps [lt_def, nat_cmult_eq_mult, nat_succI, mult_type, |
4312 | 497 |
nat_into_Card RS Card_cardinal_eq, Ord_nat]) 1); |
846 | 498 |
(*case nat le (xb Un y) *) |
437 | 499 |
by (asm_full_simp_tac |
4091 | 500 |
(simpset() addsimps [le_imp_subset RS nat_succ_eqpoll RS cardinal_cong, |
4312 | 501 |
le_succ_iff, InfCard_def, Card_cardinal, Un_least_lt, |
502 |
Ord_Un, ltI, nat_le_cardinal, |
|
503 |
Ord_cardinal_le RS lt_trans1 RS ltD]) 1); |
|
760 | 504 |
qed "ordertype_csquare_le"; |
437 | 505 |
|
506 |
(*Main result: Kunen's Theorem 10.12*) |
|
5137 | 507 |
Goal "InfCard(K) ==> K |*| K = K"; |
437 | 508 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1); |
509 |
by (etac rev_mp 1); |
|
484 | 510 |
by (trans_ind_tac "K" [] 1); |
437 | 511 |
by (rtac impI 1); |
512 |
by (rtac le_anti_sym 1); |
|
513 |
by (etac (InfCard_is_Card RS cmult_square_le) 2); |
|
514 |
by (rtac (ordertype_csquare_le RSN (2, le_trans)) 1); |
|
515 |
by (assume_tac 2); |
|
516 |
by (assume_tac 2); |
|
517 |
by (asm_simp_tac |
|
4091 | 518 |
(simpset() addsimps [cmult_def, Ord_cardinal_le, |
4312 | 519 |
well_ord_csquare RS ordermap_bij RS |
520 |
bij_imp_eqpoll RS cardinal_cong, |
|
521 |
well_ord_csquare RS Ord_ordertype]) 1); |
|
760 | 522 |
qed "InfCard_csquare_eq"; |
484 | 523 |
|
767 | 524 |
(*Corollary for arbitrary well-ordered sets (all sets, assuming AC)*) |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
525 |
Goal "[| well_ord(A,r); InfCard(|A|) |] ==> A*A eqpoll A"; |
484 | 526 |
by (resolve_tac [prod_eqpoll_cong RS eqpoll_trans] 1); |
527 |
by (REPEAT (etac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1)); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
528 |
by (rtac well_ord_cardinal_eqE 1); |
484 | 529 |
by (REPEAT (ares_tac [Ord_cardinal, well_ord_rmult, well_ord_Memrel] 1)); |
4312 | 530 |
by (asm_simp_tac (simpset() |
531 |
addsimps [symmetric cmult_def, InfCard_csquare_eq]) 1); |
|
760 | 532 |
qed "well_ord_InfCard_square_eq"; |
484 | 533 |
|
767 | 534 |
(** Toward's Kunen's Corollary 10.13 (1) **) |
535 |
||
5137 | 536 |
Goal "[| InfCard(K); L le K; 0<L |] ==> K |*| L = K"; |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
537 |
by (rtac le_anti_sym 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
538 |
by (etac ltE 2 THEN |
767 | 539 |
REPEAT (ares_tac [cmult_le_self, InfCard_is_Card] 2)); |
540 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord RS le_refl] 1); |
|
541 |
by (resolve_tac [cmult_le_mono RS le_trans] 1 THEN REPEAT (assume_tac 1)); |
|
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
542 |
by (asm_full_simp_tac (simpset() addsimps [InfCard_csquare_eq]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
543 |
qed "InfCard_le_cmult_eq"; |
767 | 544 |
|
545 |
(*Corollary 10.13 (1), for cardinal multiplication*) |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
546 |
Goal "[| InfCard(K); InfCard(L) |] ==> K |*| L = K Un L"; |
767 | 547 |
by (res_inst_tac [("i","K"),("j","L")] Ord_linear_le 1); |
6153 | 548 |
by (typecheck_tac (tcset() addTCs [InfCard_is_Card, Card_is_Ord])); |
767 | 549 |
by (resolve_tac [cmult_commute RS ssubst] 1); |
550 |
by (resolve_tac [Un_commute RS ssubst] 1); |
|
551 |
by (ALLGOALS |
|
552 |
(asm_simp_tac |
|
4091 | 553 |
(simpset() addsimps [InfCard_is_Limit RS Limit_has_0, InfCard_le_cmult_eq, |
4312 | 554 |
subset_Un_iff2 RS iffD1, le_imp_subset]))); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
555 |
qed "InfCard_cmult_eq"; |
767 | 556 |
|
5137 | 557 |
Goal "InfCard(K) ==> K |+| K = K"; |
767 | 558 |
by (asm_simp_tac |
4091 | 559 |
(simpset() addsimps [cmult_2 RS sym, InfCard_is_Card, cmult_commute]) 1); |
6153 | 560 |
by (asm_simp_tac |
561 |
(simpset() addsimps [InfCard_le_cmult_eq, InfCard_is_Limit, |
|
562 |
Limit_has_0, Limit_has_succ]) 1); |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
563 |
qed "InfCard_cdouble_eq"; |
767 | 564 |
|
565 |
(*Corollary 10.13 (1), for cardinal addition*) |
|
5137 | 566 |
Goal "[| InfCard(K); L le K |] ==> K |+| L = K"; |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
567 |
by (rtac le_anti_sym 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
568 |
by (etac ltE 2 THEN |
767 | 569 |
REPEAT (ares_tac [cadd_le_self, InfCard_is_Card] 2)); |
570 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord RS le_refl] 1); |
|
571 |
by (resolve_tac [cadd_le_mono RS le_trans] 1 THEN REPEAT (assume_tac 1)); |
|
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
572 |
by (asm_full_simp_tac (simpset() addsimps [InfCard_cdouble_eq]) 1); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
573 |
qed "InfCard_le_cadd_eq"; |
767 | 574 |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
575 |
Goal "[| InfCard(K); InfCard(L) |] ==> K |+| L = K Un L"; |
767 | 576 |
by (res_inst_tac [("i","K"),("j","L")] Ord_linear_le 1); |
6153 | 577 |
by (typecheck_tac (tcset() addTCs [InfCard_is_Card, Card_is_Ord])); |
767 | 578 |
by (resolve_tac [cadd_commute RS ssubst] 1); |
579 |
by (resolve_tac [Un_commute RS ssubst] 1); |
|
580 |
by (ALLGOALS |
|
581 |
(asm_simp_tac |
|
4091 | 582 |
(simpset() addsimps [InfCard_le_cadd_eq, |
4312 | 583 |
subset_Un_iff2 RS iffD1, le_imp_subset]))); |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
767
diff
changeset
|
584 |
qed "InfCard_cadd_eq"; |
767 | 585 |
|
586 |
(*The other part, Corollary 10.13 (2), refers to the cardinality of the set |
|
587 |
of all n-tuples of elements of K. A better version for the Isabelle theory |
|
588 |
might be InfCard(K) ==> |list(K)| = K. |
|
589 |
*) |
|
484 | 590 |
|
591 |
(*** For every cardinal number there exists a greater one |
|
592 |
[Kunen's Theorem 10.16, which would be trivial using AC] ***) |
|
593 |
||
5067 | 594 |
Goalw [jump_cardinal_def] "Ord(jump_cardinal(K))"; |
484 | 595 |
by (rtac (Ord_is_Transset RSN (2,OrdI)) 1); |
4091 | 596 |
by (blast_tac (claset() addSIs [Ord_ordertype]) 2); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
597 |
by (rewtac Transset_def); |
1075
848bf2e18dff
Modified proofs for new claset primitives. The problem is that they enforce
lcp
parents:
989
diff
changeset
|
598 |
by (safe_tac subset_cs); |
4091 | 599 |
by (asm_full_simp_tac (simpset() addsimps [ordertype_pred_unfold]) 1); |
4152 | 600 |
by Safe_tac; |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
601 |
by (rtac UN_I 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
602 |
by (rtac ReplaceI 2); |
4091 | 603 |
by (ALLGOALS (blast_tac (claset() addIs [well_ord_subset] addSEs [predE]))); |
760 | 604 |
qed "Ord_jump_cardinal"; |
484 | 605 |
|
606 |
(*Allows selective unfolding. Less work than deriving intro/elim rules*) |
|
5067 | 607 |
Goalw [jump_cardinal_def] |
484 | 608 |
"i : jump_cardinal(K) <-> \ |
609 |
\ (EX r X. r <= K*K & X <= K & well_ord(X,r) & i = ordertype(X,r))"; |
|
1461 | 610 |
by (fast_tac subset_cs 1); (*It's vital to avoid reasoning about <=*) |
760 | 611 |
qed "jump_cardinal_iff"; |
484 | 612 |
|
613 |
(*The easy part of Theorem 10.16: jump_cardinal(K) exceeds K*) |
|
5137 | 614 |
Goal "Ord(K) ==> K < jump_cardinal(K)"; |
484 | 615 |
by (resolve_tac [Ord_jump_cardinal RSN (2,ltI)] 1); |
616 |
by (resolve_tac [jump_cardinal_iff RS iffD2] 1); |
|
617 |
by (REPEAT_FIRST (ares_tac [exI, conjI, well_ord_Memrel])); |
|
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
618 |
by (rtac subset_refl 2); |
4091 | 619 |
by (asm_simp_tac (simpset() addsimps [Memrel_def, subset_iff]) 1); |
620 |
by (asm_simp_tac (simpset() addsimps [ordertype_Memrel]) 1); |
|
760 | 621 |
qed "K_lt_jump_cardinal"; |
484 | 622 |
|
623 |
(*The proof by contradiction: the bijection f yields a wellordering of X |
|
624 |
whose ordertype is jump_cardinal(K). *) |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
625 |
Goal "[| well_ord(X,r); r <= K * K; X <= K; \ |
1461 | 626 |
\ f : bij(ordertype(X,r), jump_cardinal(K)) \ |
627 |
\ |] ==> jump_cardinal(K) : jump_cardinal(K)"; |
|
484 | 628 |
by (subgoal_tac "f O ordermap(X,r): bij(X, jump_cardinal(K))" 1); |
629 |
by (REPEAT (ares_tac [comp_bij, ordermap_bij] 2)); |
|
630 |
by (resolve_tac [jump_cardinal_iff RS iffD2] 1); |
|
631 |
by (REPEAT_FIRST (resolve_tac [exI, conjI])); |
|
632 |
by (rtac ([rvimage_type, Sigma_mono] MRS subset_trans) 1); |
|
633 |
by (REPEAT (assume_tac 1)); |
|
634 |
by (etac (bij_is_inj RS well_ord_rvimage) 1); |
|
635 |
by (rtac (Ord_jump_cardinal RS well_ord_Memrel) 1); |
|
636 |
by (asm_simp_tac |
|
4091 | 637 |
(simpset() addsimps [well_ord_Memrel RSN (2, bij_ordertype_vimage), |
4312 | 638 |
ordertype_Memrel, Ord_jump_cardinal]) 1); |
760 | 639 |
qed "Card_jump_cardinal_lemma"; |
484 | 640 |
|
641 |
(*The hard part of Theorem 10.16: jump_cardinal(K) is itself a cardinal*) |
|
5067 | 642 |
Goal "Card(jump_cardinal(K))"; |
484 | 643 |
by (rtac (Ord_jump_cardinal RS CardI) 1); |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
644 |
by (rewtac eqpoll_def); |
4091 | 645 |
by (safe_tac (claset() addSDs [ltD, jump_cardinal_iff RS iffD1])); |
484 | 646 |
by (REPEAT (ares_tac [Card_jump_cardinal_lemma RS mem_irrefl] 1)); |
760 | 647 |
qed "Card_jump_cardinal"; |
484 | 648 |
|
649 |
(*** Basic properties of successor cardinals ***) |
|
650 |
||
5067 | 651 |
Goalw [csucc_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
652 |
"Ord(K) ==> Card(csucc(K)) & K < csucc(K)"; |
484 | 653 |
by (rtac LeastI 1); |
654 |
by (REPEAT (ares_tac [conjI, Card_jump_cardinal, K_lt_jump_cardinal, |
|
1461 | 655 |
Ord_jump_cardinal] 1)); |
760 | 656 |
qed "csucc_basic"; |
484 | 657 |
|
800
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
658 |
bind_thm ("Card_csucc", csucc_basic RS conjunct1); |
484 | 659 |
|
800
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
lcp
parents:
782
diff
changeset
|
660 |
bind_thm ("lt_csucc", csucc_basic RS conjunct2); |
484 | 661 |
|
5137 | 662 |
Goal "Ord(K) ==> 0 < csucc(K)"; |
517 | 663 |
by (resolve_tac [[Ord_0_le, lt_csucc] MRS lt_trans1] 1); |
664 |
by (REPEAT (assume_tac 1)); |
|
760 | 665 |
qed "Ord_0_lt_csucc"; |
517 | 666 |
|
5067 | 667 |
Goalw [csucc_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
668 |
"[| Card(L); K<L |] ==> csucc(K) le L"; |
484 | 669 |
by (rtac Least_le 1); |
670 |
by (REPEAT (ares_tac [conjI, Card_is_Ord] 1)); |
|
760 | 671 |
qed "csucc_le"; |
484 | 672 |
|
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
673 |
Goal "[| Ord(i); Card(K) |] ==> i < csucc(K) <-> |i| le K"; |
823
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
674 |
by (rtac iffI 1); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
675 |
by (rtac Card_lt_imp_lt 2); |
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
lcp
parents:
800
diff
changeset
|
676 |
by (etac lt_trans1 2); |
484 | 677 |
by (REPEAT (ares_tac [lt_csucc, Card_csucc, Card_is_Ord] 2)); |
678 |
by (resolve_tac [notI RS not_lt_imp_le] 1); |
|
679 |
by (resolve_tac [Card_cardinal RS csucc_le RS lt_trans1 RS lt_irrefl] 1); |
|
680 |
by (assume_tac 1); |
|
681 |
by (resolve_tac [Ord_cardinal_le RS lt_trans1] 1); |
|
682 |
by (REPEAT (ares_tac [Ord_cardinal] 1 |
|
683 |
ORELSE eresolve_tac [ltE, Card_is_Ord] 1)); |
|
760 | 684 |
qed "lt_csucc_iff"; |
484 | 685 |
|
9180 | 686 |
Goal "[| Card(K'); Card(K) |] ==> K' < csucc(K) <-> K' le K"; |
484 | 687 |
by (asm_simp_tac |
4091 | 688 |
(simpset() addsimps [lt_csucc_iff, Card_cardinal_eq, Card_is_Ord]) 1); |
760 | 689 |
qed "Card_lt_csucc_iff"; |
488 | 690 |
|
5067 | 691 |
Goalw [InfCard_def] |
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
692 |
"InfCard(K) ==> InfCard(csucc(K))"; |
4091 | 693 |
by (asm_simp_tac (simpset() addsimps [Card_csucc, Card_is_Ord, |
4312 | 694 |
lt_csucc RS leI RSN (2,le_trans)]) 1); |
760 | 695 |
qed "InfCard_csucc"; |
517 | 696 |
|
1609 | 697 |
|
698 |
(*** Finite sets ***) |
|
699 |
||
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
700 |
Goal "n: nat ==> ALL A. A eqpoll n --> A : Fin(A)"; |
6070 | 701 |
by (induct_tac "n" 1); |
5529 | 702 |
by (simp_tac (simpset() addsimps eqpoll_0_iff::Fin.intrs) 1); |
3736
39ee3d31cfbc
Much tidying including step_tac -> clarify_tac or safe_tac; sometimes
paulson
parents:
3016
diff
changeset
|
703 |
by (Clarify_tac 1); |
1609 | 704 |
by (subgoal_tac "EX u. u:A" 1); |
1622 | 705 |
by (etac exE 1); |
1609 | 706 |
by (resolve_tac [Diff_sing_eqpoll RS revcut_rl] 1); |
707 |
by (assume_tac 2); |
|
708 |
by (assume_tac 1); |
|
709 |
by (res_inst_tac [("b", "A")] (cons_Diff RS subst) 1); |
|
710 |
by (assume_tac 1); |
|
711 |
by (resolve_tac [Fin.consI] 1); |
|
2925 | 712 |
by (Blast_tac 1); |
4091 | 713 |
by (blast_tac (claset() addIs [subset_consI RS Fin_mono RS subsetD]) 1); |
1609 | 714 |
(*Now for the lemma assumed above*) |
1622 | 715 |
by (rewtac eqpoll_def); |
4091 | 716 |
by (blast_tac (claset() addIs [bij_converse_bij RS bij_is_fun RS apply_type]) 1); |
1609 | 717 |
val lemma = result(); |
718 |
||
5137 | 719 |
Goalw [Finite_def] "Finite(A) ==> A : Fin(A)"; |
4091 | 720 |
by (blast_tac (claset() addIs [lemma RS spec RS mp]) 1); |
1609 | 721 |
qed "Finite_into_Fin"; |
722 |
||
5137 | 723 |
Goal "A : Fin(U) ==> Finite(A)"; |
4091 | 724 |
by (fast_tac (claset() addSIs [Finite_0, Finite_cons] addEs [Fin.induct]) 1); |
1609 | 725 |
qed "Fin_into_Finite"; |
726 |
||
5067 | 727 |
Goal "Finite(A) <-> A : Fin(A)"; |
4091 | 728 |
by (blast_tac (claset() addIs [Finite_into_Fin, Fin_into_Finite]) 1); |
1609 | 729 |
qed "Finite_Fin_iff"; |
730 |
||
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
731 |
Goal "[| Finite(A); Finite(B) |] ==> Finite(A Un B)"; |
4091 | 732 |
by (blast_tac (claset() addSIs [Fin_into_Finite, Fin_UnI] |
4312 | 733 |
addSDs [Finite_into_Fin] |
734 |
addIs [Un_upper1 RS Fin_mono RS subsetD, |
|
735 |
Un_upper2 RS Fin_mono RS subsetD]) 1); |
|
1609 | 736 |
qed "Finite_Un"; |
737 |
||
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
738 |
Goal "[| ALL y:X. Finite(y); Finite(X) |] ==> Finite(Union(X))"; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
739 |
by (asm_full_simp_tac (simpset() addsimps [Finite_Fin_iff]) 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
740 |
by (rtac Fin_UnionI 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
741 |
by (etac Fin.induct 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
742 |
by (Simp_tac 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
743 |
by (blast_tac (claset() addIs [Fin.consI, impOfSubs Fin_mono]) 1); |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
744 |
qed "Finite_Union"; |
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
745 |
|
1609 | 746 |
|
747 |
(** Removing elements from a finite set decreases its cardinality **) |
|
748 |
||
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
749 |
Goal "A: Fin(U) ==> x~:A --> ~ cons(x,A) lepoll A"; |
1622 | 750 |
by (etac Fin_induct 1); |
4091 | 751 |
by (simp_tac (simpset() addsimps [lepoll_0_iff]) 1); |
1609 | 752 |
by (subgoal_tac "cons(x,cons(xa,y)) = cons(xa,cons(x,y))" 1); |
2469 | 753 |
by (Asm_simp_tac 1); |
4091 | 754 |
by (blast_tac (claset() addSDs [cons_lepoll_consD]) 1); |
2925 | 755 |
by (Blast_tac 1); |
1609 | 756 |
qed "Fin_imp_not_cons_lepoll"; |
757 |
||
5147
825877190618
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5137
diff
changeset
|
758 |
Goal "[| Finite(A); a~:A |] ==> |cons(a,A)| = succ(|A|)"; |
1622 | 759 |
by (rewtac cardinal_def); |
760 |
by (rtac Least_equality 1); |
|
1609 | 761 |
by (fold_tac [cardinal_def]); |
4091 | 762 |
by (simp_tac (simpset() addsimps [succ_def]) 1); |
763 |
by (blast_tac (claset() addIs [cons_eqpoll_cong, well_ord_cardinal_eqpoll] |
|
4312 | 764 |
addSEs [mem_irrefl] |
765 |
addSDs [Finite_imp_well_ord]) 1); |
|
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
766 |
by (blast_tac (claset() addIs [Card_cardinal, Card_is_Ord]) 1); |
1622 | 767 |
by (rtac notI 1); |
1609 | 768 |
by (resolve_tac [Finite_into_Fin RS Fin_imp_not_cons_lepoll RS mp RS notE] 1); |
769 |
by (assume_tac 1); |
|
770 |
by (assume_tac 1); |
|
771 |
by (eresolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS lepoll_trans] 1); |
|
772 |
by (eresolve_tac [le_imp_lepoll RS lepoll_trans] 1); |
|
4091 | 773 |
by (blast_tac (claset() addIs [well_ord_cardinal_eqpoll RS eqpoll_imp_lepoll] |
1609 | 774 |
addSDs [Finite_imp_well_ord]) 1); |
775 |
qed "Finite_imp_cardinal_cons"; |
|
776 |
||
777 |
||
5137 | 778 |
Goal "[| Finite(A); a:A |] ==> succ(|A-{a}|) = |A|"; |
1609 | 779 |
by (res_inst_tac [("b", "A")] (cons_Diff RS subst) 1); |
780 |
by (assume_tac 1); |
|
4091 | 781 |
by (asm_simp_tac (simpset() addsimps [Finite_imp_cardinal_cons, |
1622 | 782 |
Diff_subset RS subset_Finite]) 1); |
4091 | 783 |
by (asm_simp_tac (simpset() addsimps [cons_Diff]) 1); |
1622 | 784 |
qed "Finite_imp_succ_cardinal_Diff"; |
785 |
||
5137 | 786 |
Goal "[| Finite(A); a:A |] ==> |A-{a}| < |A|"; |
1622 | 787 |
by (rtac succ_leE 1); |
8127
68c6159440f1
new lemmas for Ntree recursor example; more simprules; more lemmas borrowed
paulson
parents:
7499
diff
changeset
|
788 |
by (asm_simp_tac (simpset() addsimps [Finite_imp_succ_cardinal_Diff]) 1); |
1609 | 789 |
qed "Finite_imp_cardinal_Diff"; |
790 |
||
791 |
||
4312 | 792 |
(** Theorems by Krzysztof Grabczewski, proofs by lcp **) |
1609 | 793 |
|
3887 | 794 |
val nat_implies_well_ord = |
795 |
(transfer CardinalArith.thy nat_into_Ord) RS well_ord_Memrel; |
|
1609 | 796 |
|
5137 | 797 |
Goal "[| m:nat; n:nat |] ==> m + n eqpoll m #+ n"; |
1609 | 798 |
by (rtac eqpoll_trans 1); |
4312 | 799 |
by (resolve_tac [well_ord_radd RS well_ord_cardinal_eqpoll RS eqpoll_sym] 1); |
4477
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
paulson
parents:
4312
diff
changeset
|
800 |
by (REPEAT (etac nat_implies_well_ord 1)); |
4312 | 801 |
by (asm_simp_tac (simpset() |
802 |
addsimps [nat_cadd_eq_add RS sym, cadd_def, eqpoll_refl]) 1); |
|
1609 | 803 |
qed "nat_sum_eqpoll_sum"; |
804 |