author | huffman |
Tue, 01 Jul 2008 01:09:03 +0200 | |
changeset 27406 | 3897988917a3 |
parent 26739 | 947b6013e863 |
child 28143 | e5c6c4aac52c |
permissions | -rw-r--r-- |
19829 | 1 |
(* ID: $Id$ |
2 |
Authors: Klaus Aehlig, Tobias Nipkow |
|
20807 | 3 |
*) |
19829 | 4 |
|
21059 | 5 |
header {* Test of normalization function *} |
19829 | 6 |
|
7 |
theory NormalForm |
|
25165 | 8 |
imports Main "~~/src/HOL/Real/Rational" |
19829 | 9 |
begin |
10 |
||
21117 | 11 |
lemma "True" by normalization |
19971 | 12 |
lemma "p \<longrightarrow> True" by normalization |
20523
36a59e5d0039
Major update to function package, including new syntax and the (only theoretical)
krauss
parents:
20352
diff
changeset
|
13 |
declare disj_assoc [code func] |
25866 | 14 |
lemma "((P | Q) | R) = (P | (Q | R))" by normalization rule |
22845 | 15 |
declare disj_assoc [code func del] |
25866 | 16 |
lemma "0 + (n::nat) = n" by normalization rule |
17 |
lemma "0 + Suc n = Suc n" by normalization rule |
|
18 |
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization rule |
|
19971 | 19 |
lemma "~((0::nat) < (0::nat))" by normalization |
20 |
||
19829 | 21 |
datatype n = Z | S n |
22 |
consts |
|
20842 | 23 |
add :: "n \<Rightarrow> n \<Rightarrow> n" |
24 |
add2 :: "n \<Rightarrow> n \<Rightarrow> n" |
|
25 |
mul :: "n \<Rightarrow> n \<Rightarrow> n" |
|
26 |
mul2 :: "n \<Rightarrow> n \<Rightarrow> n" |
|
27 |
exp :: "n \<Rightarrow> n \<Rightarrow> n" |
|
19829 | 28 |
primrec |
20842 | 29 |
"add Z = id" |
30 |
"add (S m) = S o add m" |
|
19829 | 31 |
primrec |
20842 | 32 |
"add2 Z n = n" |
33 |
"add2 (S m) n = S(add2 m n)" |
|
19829 | 34 |
|
35 |
lemma [code]: "add2 (add2 n m) k = add2 n (add2 m k)" |
|
20842 | 36 |
by(induct n) auto |
37 |
lemma [code]: "add2 n (S m) = S (add2 n m)" |
|
38 |
by(induct n) auto |
|
19829 | 39 |
lemma [code]: "add2 n Z = n" |
20842 | 40 |
by(induct n) auto |
19971 | 41 |
|
25866 | 42 |
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization rule |
43 |
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization rule |
|
44 |
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization rule |
|
19829 | 45 |
|
46 |
primrec |
|
20842 | 47 |
"mul Z = (%n. Z)" |
48 |
"mul (S m) = (%n. add (mul m n) n)" |
|
19829 | 49 |
primrec |
20842 | 50 |
"mul2 Z n = Z" |
51 |
"mul2 (S m) n = add2 n (mul2 m n)" |
|
19829 | 52 |
primrec |
20842 | 53 |
"exp m Z = S Z" |
54 |
"exp m (S n) = mul (exp m n) m" |
|
19829 | 55 |
|
19971 | 56 |
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization |
57 |
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization |
|
58 |
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization |
|
59 |
||
60 |
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization |
|
26739 | 61 |
lemma "split (%x y. x) (a, b) = a" by normalization rule |
19971 | 62 |
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization |
63 |
||
64 |
lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization |
|
19829 | 65 |
|
20842 | 66 |
lemma "[] @ [] = []" by normalization |
26739 | 67 |
lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization rule+ |
68 |
lemma "[a, b, c] @ xs = a # b # c # xs" by normalization rule+ |
|
69 |
lemma "[] @ xs = xs" by normalization rule |
|
25934 | 70 |
lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization rule+ |
71 |
lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs" by normalization rule+ |
|
26739 | 72 |
lemma "rev [a, b, c] = [c, b, a]" by normalization rule+ |
73 |
normal_form "rev (a#b#cs) = rev cs @ [b, a]" |
|
19829 | 74 |
normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])" |
75 |
normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))" |
|
76 |
normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])" |
|
25934 | 77 |
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" |
78 |
by normalization |
|
19829 | 79 |
normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False" |
25934 | 80 |
normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P" |
26739 | 81 |
lemma "let x = y in [x, x] = [y, y]" by normalization rule+ |
82 |
lemma "Let y (%x. [x,x]) = [y, y]" by normalization rule+ |
|
19829 | 83 |
normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False" |
25934 | 84 |
lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization rule+ |
19829 | 85 |
normal_form "filter (%x. x) ([True,False,x]@xs)" |
86 |
normal_form "filter Not ([True,False,x]@xs)" |
|
87 |
||
26739 | 88 |
lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization rule+ |
89 |
lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization rule+ |
|
25100 | 90 |
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization |
19829 | 91 |
|
26739 | 92 |
lemma "last [a, b, c] = c" by normalization rule |
93 |
lemma "last ([a, b, c] @ xs) = (if null xs then c else last xs)" |
|
25866 | 94 |
by normalization rule |
19829 | 95 |
|
25866 | 96 |
lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization rule |
20842 | 97 |
lemma "(-4::int) * 2 = -8" by normalization |
98 |
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization |
|
99 |
lemma "(2::int) + 3 = 5" by normalization |
|
100 |
lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization |
|
101 |
lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization |
|
102 |
lemma "(2::int) < 3" by normalization |
|
103 |
lemma "(2::int) <= 3" by normalization |
|
104 |
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization |
|
105 |
lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization |
|
106 |
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization |
|
22394 | 107 |
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization |
108 |
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization |
|
25100 | 109 |
lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization |
110 |
lemma "max (Suc 0) 0 = Suc 0" by normalization |
|
25187 | 111 |
lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization |
21059 | 112 |
normal_form "Suc 0 \<in> set ms" |
20922 | 113 |
|
26739 | 114 |
lemma "f = f" by normalization rule+ |
115 |
lemma "f x = f x" by normalization rule+ |
|
116 |
lemma "(f o g) x = f (g x)" by normalization rule+ |
|
117 |
lemma "(f o id) x = f x" by normalization rule+ |
|
25934 | 118 |
normal_form "(\<lambda>x. x)" |
21987 | 119 |
|
23396 | 120 |
(* Church numerals: *) |
121 |
||
122 |
normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" |
|
123 |
normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" |
|
124 |
normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))" |
|
125 |
||
19829 | 126 |
end |