2112
|
1 |
(* Derived wellfounded relations, plus customized-for-TFL theorems from WF *)
|
|
2 |
|
|
3 |
WF1 = List +
|
|
4 |
consts
|
|
5 |
inv_image :: "('b * 'b)set => ('a => 'b) => ('a * 'a)set"
|
|
6 |
measure :: "('a => nat) => ('a * 'a)set"
|
|
7 |
"**" :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set" (infixl 70)
|
|
8 |
rprod :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
|
|
9 |
emptyr :: "('a * 'b) set"
|
|
10 |
pred_list :: "('a list * 'a list) set"
|
|
11 |
|
|
12 |
defs
|
|
13 |
inv_image_def "inv_image R f == {p. (f(fst p), f(snd p)) : R}"
|
|
14 |
|
|
15 |
measure_def "measure == inv_image (trancl pred_nat)"
|
|
16 |
|
|
17 |
lex_prod_def "ra**rb == {p. ? a a' b b'.
|
|
18 |
p = ((a,b),(a',b')) &
|
|
19 |
((a,a') : ra | a=a' & (b,b') : rb)}"
|
|
20 |
|
|
21 |
rprod_def "rprod ra rb == {p. ? a a' b b'.
|
|
22 |
p = ((a,b),(a',b')) &
|
|
23 |
((a,a') : ra & (b,b') : rb)}"
|
|
24 |
|
|
25 |
emptyr_def "emptyr == {}"
|
|
26 |
pred_list_def "pred_list == {p. ? h. snd p = h#(fst p)}"
|
|
27 |
end
|