3123
|
1 |
<!-- $Id$ -->
|
3279
|
2 |
<HTML><HEAD><TITLE>HOL/ex/README</TITLE></HEAD><BODY>
|
3123
|
3 |
|
|
4 |
<H2>ex--Miscellaneous Examples</H2>
|
|
5 |
|
|
6 |
<P>This directory presents a number of small examples, illustrating various
|
|
7 |
features of Isabelle/HOL.
|
|
8 |
|
|
9 |
<UL>
|
11444
|
10 |
<LI>File <A HREF="cla.ML"><KBD>cla.ML</KBD></A> demonstrates the
|
3123
|
11 |
power of Isabelle's classical reasoner.
|
|
12 |
|
11444
|
13 |
<LI>Files <A HREF="mesontest.ML"><KBD>mesontest.ML</KBD></A> and
|
|
14 |
<A HREF="mesontest2.ML"><KBD>mesontest2.ML</KBD></A> present an
|
3123
|
15 |
implementation of the Model Elimination (ME) proof procedure, which is even
|
|
16 |
more powerful than the classical reasoner but not generic.
|
|
17 |
|
11444
|
18 |
<LI><A HREF="InSort.thy"><KBD>InSort</KBD></A> and <A HREF="Qsort.thy"><KBD>Qsort</KBD></A> are correctness proofs for sorting
|
3123
|
19 |
functions.
|
|
20 |
|
11444
|
21 |
<LI><A HREF="Primrec.thy"><KBD>Primrec</KBD></A> proves that Ackermann's
|
|
22 |
function is not primitive recursive.
|
3123
|
23 |
|
11444
|
24 |
<LI><A HREF="Tarski.thy"><KBD>Tarski</KBD></A> is a proof of Tarski's fixedpoint theorem: the full
|
7146
|
25 |
version, which states that the fixedpoints of a complete lattice themselves
|
|
26 |
form a complete lattice. The example demonstrates first-class reasoning about theories.
|
|
27 |
|
11444
|
28 |
<LI><A HREF="NatSum.thy"><KBD>NatSum</KBD></A> demonstrates the power of permutative rewriting.
|
3123
|
29 |
Well-known identities about summations are proved using just induction and
|
|
30 |
rewriting.
|
|
31 |
|
11444
|
32 |
<LI><A HREF="MT.thy"><KBD>MT</KBD></A> is a preliminary version of Jacob Frost's coinduction
|
3123
|
33 |
example. The full version is on the directory <KBD>ZF/Coind</KBD>.
|
|
34 |
</UL>
|
|
35 |
|
|
36 |
<HR>
|
7146
|
37 |
<P>Last modified on $Date$
|
3123
|
38 |
|
|
39 |
<ADDRESS>
|
|
40 |
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
|
|
41 |
</ADDRESS>
|
|
42 |
</BODY></HTML>
|