src/HOL/ex/README.html
author kleing
Sat, 01 Mar 2003 16:45:51 +0100
changeset 13840 399c8103a98f
parent 11444 b24017251fc1
child 15167 67f9c3855715
permissions -rw-r--r--
keep a copy of generated files in repository

<!-- $Id$ -->
<HTML><HEAD><TITLE>HOL/ex/README</TITLE></HEAD><BODY>

<H2>ex--Miscellaneous Examples</H2>

<P>This directory presents a number of small examples, illustrating various
features of Isabelle/HOL.

<UL> 
<LI>File <A HREF="cla.ML"><KBD>cla.ML</KBD></A> demonstrates the
power of Isabelle's classical reasoner.

<LI>Files <A HREF="mesontest.ML"><KBD>mesontest.ML</KBD></A> and
<A HREF="mesontest2.ML"><KBD>mesontest2.ML</KBD></A> present an
implementation of the Model Elimination (ME) proof procedure, which is even
more powerful than the classical reasoner but not generic.

<LI><A HREF="InSort.thy"><KBD>InSort</KBD></A> and <A HREF="Qsort.thy"><KBD>Qsort</KBD></A> are correctness proofs for sorting
functions.

<LI><A HREF="Primrec.thy"><KBD>Primrec</KBD></A> proves that Ackermann's
function is not primitive recursive.

<LI><A HREF="Tarski.thy"><KBD>Tarski</KBD></A> is a proof of Tarski's fixedpoint theorem: the full
version, which states that the fixedpoints of a complete lattice themselves
form a complete lattice.  The example demonstrates first-class reasoning about theories.

<LI><A HREF="NatSum.thy"><KBD>NatSum</KBD></A> demonstrates the power of permutative rewriting.
Well-known identities about summations are proved using just induction and
rewriting.

<LI><A HREF="MT.thy"><KBD>MT</KBD></A> is a preliminary version of Jacob Frost's coinduction
example.  The full version is on the directory <KBD>ZF/Coind</KBD>.
</UL>

<HR>
<P>Last modified on $Date$

<ADDRESS>
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
</ADDRESS>
</BODY></HTML>