1477
|
1 |
(* Title: FOLP/ex/nat.thy
|
0
|
2 |
ID: $Id$
|
1477
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
0
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Examples for the manual "Introduction to Isabelle"
|
|
7 |
|
|
8 |
Theory of the natural numbers: Peano's axioms, primitive recursion
|
|
9 |
*)
|
|
10 |
|
|
11 |
Nat = IFOLP +
|
353
|
12 |
types nat
|
0
|
13 |
arities nat :: term
|
|
14 |
consts "0" :: "nat" ("0")
|
|
15 |
Suc :: "nat=>nat"
|
|
16 |
rec :: "[nat, 'a, [nat,'a]=>'a] => 'a"
|
|
17 |
"+" :: "[nat, nat] => nat" (infixl 60)
|
|
18 |
|
|
19 |
(*Proof terms*)
|
|
20 |
nrec :: "[nat,p,[nat,p]=>p]=>p"
|
|
21 |
ninj,nneq :: "p=>p"
|
|
22 |
rec0, recSuc :: "p"
|
|
23 |
|
|
24 |
rules
|
1149
|
25 |
induct "[| b:P(0); !!x u. u:P(x) ==> c(x,u):P(Suc(x))
|
|
26 |
|] ==> nrec(n,b,c):P(n)"
|
0
|
27 |
|
|
28 |
Suc_inject "p:Suc(m)=Suc(n) ==> ninj(p) : m=n"
|
|
29 |
Suc_neq_0 "p:Suc(m)=0 ==> nneq(p) : R"
|
|
30 |
rec_0 "rec0 : rec(0,a,f) = a"
|
|
31 |
rec_Suc "recSuc : rec(Suc(m), a, f) = f(m, rec(m,a,f))"
|
|
32 |
add_def "m+n == rec(m, n, %x y. Suc(y))"
|
|
33 |
|
|
34 |
nrecB0 "b: A ==> nrec(0,b,c) = b : A"
|
|
35 |
nrecBSuc "c(n,nrec(n,b,c)) : A ==> nrec(Suc(n),b,c) = c(n,nrec(n,b,c)) : A"
|
|
36 |
end
|